citra/src/core/hle/kernel/process.cpp
Subv 1856aa7b32 Kernel/SVC: Partially implemented svcExitProcess.
Terminating processes with ready threads is not currently implemented and will assert. It is currently unknown how the 3DS kernel stops ready threads or threads running in another core.
2017-12-15 15:47:33 -05:00

326 lines
11 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
// Lists all processes that exist in the current session.
static std::vector<SharedPtr<Process>> process_list;
SharedPtr<CodeSet> CodeSet::Create(std::string name, u64 program_id) {
SharedPtr<CodeSet> codeset(new CodeSet);
codeset->name = std::move(name);
codeset->program_id = program_id;
return codeset;
}
CodeSet::CodeSet() {}
CodeSet::~CodeSet() {}
u32 Process::next_process_id;
SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
SharedPtr<Process> process(new Process);
process->codeset = std::move(code_set);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->status = ProcessStatus::Created;
process_list.push_back(process);
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
for (size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: %d.%d", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x%08X", descriptor);
}
}
}
void Process::Run(s32 main_thread_priority, u32 stack_size) {
memory_region = GetMemoryRegion(flags.memory_region);
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
auto vma = vm_manager
.MapMemoryBlock(segment.addr, codeset->memory, segment.offset, segment.size,
memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
misc_memory_used += segment.size;
memory_region->used += segment.size;
};
// Map CodeSet segments
MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code);
MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private);
// Allocate and map stack
vm_manager
.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Locked)
.Unwrap();
misc_memory_used += stack_size;
memory_region->used += stack_size;
// Map special address mappings
MapSharedPages(vm_manager);
for (const auto& mapping : address_mappings) {
HandleSpecialMapping(vm_manager, mapping);
}
status = ProcessStatus::Running;
vm_manager.LogLayout(Log::Level::Debug);
Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority, this);
}
VAddr Process::GetLinearHeapAreaAddress() const {
// Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
// the extra RAM in the n3DS.
return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}
VAddr Process::GetLinearHeapBase() const {
return GetLinearHeapAreaAddress() + memory_region->base;
}
VAddr Process::GetLinearHeapLimit() const {
return GetLinearHeapBase() + memory_region->size;
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<std::vector<u8>>();
heap_start = heap_end = target;
}
// If necessary, expand backing vector to cover new heap extents.
if (target < heap_start) {
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
heap_start = target;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
if (target + size > heap_end) {
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
heap_end = target + size;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
ASSERT(heap_end - heap_start == heap_memory->size());
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
size, MemoryState::Private));
vm_manager.Reprotect(vma, perms);
heap_used += size;
memory_region->used += size;
return MakeResult<VAddr>(heap_end - size);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
heap_used -= size;
memory_region->used -= size;
return RESULT_SUCCESS;
}
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
auto& linheap_memory = memory_region->linear_heap_memory;
VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size();
// Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
// but explicit addresses are also accepted and respected.
if (target == 0) {
target = heap_end;
}
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() || target > heap_end ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
// Expansion of the linear heap is only allowed if you do an allocation immediately at its
// end. It's possible to free gaps in the middle of the heap and then reallocate them later,
// but expansions are only allowed at the end.
if (target == heap_end) {
linheap_memory->insert(linheap_memory->end(), size, 0);
vm_manager.RefreshMemoryBlockMappings(linheap_memory.get());
}
// TODO(yuriks): As is, this lets processes map memory allocated by other processes from the
// same region. It is unknown if or how the 3DS kernel checks against this.
size_t offset = target - GetLinearHeapBase();
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linheap_memory, offset, size,
MemoryState::Continuous));
vm_manager.Reprotect(vma, perms);
linear_heap_used += size;
memory_region->used += size;
return MakeResult<VAddr>(target);
}
ResultCode Process::LinearFree(VAddr target, u32 size) {
auto& linheap_memory = memory_region->linear_heap_memory;
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size();
if (target + size > heap_end) {
return ERR_INVALID_ADDRESS_STATE;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
linear_heap_used -= size;
memory_region->used -= size;
if (target + size == heap_end) {
// End of linear heap has been freed, so check what's the last allocated block in it and
// reduce the size.
auto vma = vm_manager.FindVMA(target);
ASSERT(vma != vm_manager.vma_map.end());
ASSERT(vma->second.type == VMAType::Free);
VAddr new_end = vma->second.base;
if (new_end >= GetLinearHeapBase()) {
linheap_memory->resize(new_end - GetLinearHeapBase());
}
}
return RESULT_SUCCESS;
}
Kernel::Process::Process() {}
Kernel::Process::~Process() {}
void ClearProcessList() {
process_list.clear();
}
SharedPtr<Process> GetProcessById(u32 process_id) {
auto itr = std::find_if(
process_list.begin(), process_list.end(),
[&](const SharedPtr<Process>& process) { return process->process_id == process_id; });
if (itr == process_list.end())
return nullptr;
return *itr;
}
SharedPtr<Process> g_current_process;
} // namespace Kernel