mirror of
https://github.com/mikage-emu/mikage-dev.git
synced 2025-01-10 07:21:00 +01:00
1329 lines
50 KiB
C++
1329 lines
50 KiB
C++
#pragma once
|
|
|
|
#include "float.hpp"
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <cmath>
|
|
#include <initializer_list>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
#include <framework/bit_field_new.hpp>
|
|
#include <framework/image_format.hpp>
|
|
#include <framework/meta_tools.hpp>
|
|
#include <video_core/src/support/common/bit_field.h>
|
|
|
|
namespace Pica {
|
|
|
|
// helper macro to properly align structure members.
|
|
// Calling INSERT_PADDING_WORDS will add a new member variable with a name like "pad121",
|
|
// depending on the current source line to make sure variable names are unique.
|
|
#define INSERT_PADDING_WORDS_HELPER1(x, y) x ## y
|
|
#define INSERT_PADDING_WORDS_HELPER2(x, y) INSERT_PADDING_WORDS_HELPER1(x, y)
|
|
#define INSERT_PADDING_WORDS(num_words) uint32_t INSERT_PADDING_WORDS_HELPER2(pad, __LINE__)[(num_words)]
|
|
|
|
enum class CullMode : uint32_t {
|
|
// Select which polygons are considered to be "frontfacing".
|
|
KeepAll = 0,
|
|
KeepClockWise = 1,
|
|
KeepCounterClockWise = 2,
|
|
// TODO: What does the third value imply?
|
|
};
|
|
|
|
union AlphaTest {
|
|
enum class Function : uint32_t {
|
|
Always = 1,
|
|
NotEqual = 3,
|
|
GreaterThan = 6,
|
|
GreaterThanOrEqual = 7,
|
|
};
|
|
|
|
BitFieldLegacy<0, 1, uint32_t> enable;
|
|
BitFieldLegacy<4, 3, Function> function;
|
|
BitFieldLegacy<8, 8, uint32_t> reference;
|
|
};
|
|
|
|
struct StencilTest {
|
|
uint32_t raw1;
|
|
uint32_t raw2;
|
|
|
|
enum class CompareFunc {
|
|
Never = 0,
|
|
Always = 1,
|
|
Equal = 2,
|
|
NotEqual = 3,
|
|
LessThan = 4,
|
|
LessThanOrEqual = 5,
|
|
GreaterThan = 6,
|
|
GreaterThanOrEqual = 7
|
|
};
|
|
|
|
enum class Op {
|
|
Keep = 0,
|
|
Zero = 1,
|
|
Replace = 2,
|
|
IncrementAndClamp = 3,
|
|
DecrementAndClamp = 4,
|
|
Invert = 5,
|
|
IncrementAndWrap = 6,
|
|
DecrementAndWrap = 7
|
|
};
|
|
|
|
auto enabled() const { return BitField::v3::MakeFlagOn<&StencilTest::raw1, 0>(this); }
|
|
auto compare_function() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 4, 3, CompareFunc>(this); }
|
|
auto reference() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 16, 8>(this); }
|
|
|
|
// Masks for compare stencil op outputs and stencil function inputs, respectively
|
|
auto mask_out() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 8, 8>(this); }
|
|
auto mask_in() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 24, 8>(this); }
|
|
|
|
auto op_fail_stencil() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 0, 3, Op>(this); }
|
|
auto op_pass_stencil_fail_depth() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 4, 3, Op>(this); }
|
|
auto op_pass_both() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 8, 3, Op>(this); }
|
|
};
|
|
|
|
enum class DepthFunc : uint32_t {
|
|
Never = 0,
|
|
Always = 1,
|
|
LessThan = 4,
|
|
LessThanOrEqual = 5,
|
|
GreaterThan = 6,
|
|
GreaterThanOrEqual = 7,
|
|
};
|
|
|
|
enum class AlphaBlendEquation : uint32_t {
|
|
Add = 0,
|
|
|
|
ReverseSubtract = 2,
|
|
};
|
|
|
|
enum class AlphaBlendFactor : uint32_t {
|
|
Zero = 0,
|
|
One = 1,
|
|
SourceColor = 2,
|
|
|
|
DestinationColor = 4,
|
|
|
|
SourceAlpha = 6,
|
|
OneMinusSourceAlpha = 7,
|
|
DestinationAlpha = 8,
|
|
OneMinusDestinationAlpha = 9,
|
|
ConstantColor = 0xa,
|
|
OneMinusConstantColor = 0xb,
|
|
ConstantAlpha = 0xc,
|
|
OneMinusConstantAlpha = 0xd,
|
|
SourceAlphaSaturate = 0xe,
|
|
};
|
|
|
|
enum class LogicOp : uint32_t {
|
|
Copy = 3,
|
|
Set = 4,
|
|
Noop = 6,
|
|
};
|
|
|
|
enum class TexFilter : uint32_t {
|
|
Nearest = 0,
|
|
Linear = 1
|
|
};
|
|
|
|
enum class TexWrapMode : uint32_t {
|
|
ClampToEdge = 0,
|
|
ClampToBorder = 1,
|
|
Repeat = 2,
|
|
MirroredRepeat = 3,
|
|
};
|
|
|
|
enum class LightLutIndex : uint32_t {
|
|
D0 = 0,
|
|
D1 = 1,
|
|
|
|
FR = 3, // Fresnel
|
|
RB = 4, // Reflect Blue
|
|
RG = 5, // Reflect Green
|
|
RR = 6, // Reflect Red
|
|
|
|
// Spot light
|
|
SP0 = 8,
|
|
// 9-15: SP1-SP7
|
|
|
|
// Distance attenuation
|
|
DA0 = 16,
|
|
// 17-23: DA1-DA7
|
|
};
|
|
|
|
enum class LightLutInput : uint32_t {
|
|
NH = 0,
|
|
VH = 1,
|
|
NV = 2,
|
|
LN = 3,
|
|
SP = 4, // Spot light
|
|
CP = 5, // (cos φ)
|
|
};
|
|
|
|
enum class LightLutScale : uint32_t {
|
|
x1 = 0,
|
|
x2 = 1,
|
|
x4 = 2,
|
|
x8 = 3,
|
|
|
|
x0_25 = 6,
|
|
x0_5 = 7,
|
|
};
|
|
|
|
struct FramebufferColorFormat {
|
|
uint32_t raw;
|
|
|
|
static constexpr std::array<GenericImageFormat, 5> format_map = {{
|
|
GenericImageFormat::RGBA8,
|
|
GenericImageFormat::RGB8,
|
|
GenericImageFormat::RGBA5551,
|
|
GenericImageFormat::RGB565,
|
|
GenericImageFormat::RGBA4
|
|
}};
|
|
};
|
|
|
|
struct FramebufferDepthStencilFormat {
|
|
uint32_t raw;
|
|
|
|
static constexpr std::array<GenericImageFormat, 4> format_map = {{
|
|
GenericImageFormat::D16,
|
|
GenericImageFormat::Unknown,
|
|
GenericImageFormat::D24,
|
|
GenericImageFormat::D24S8
|
|
}};
|
|
};
|
|
|
|
struct LightingColor {
|
|
uint32_t storage;
|
|
|
|
constexpr auto blue() const { return BitField::v3::MakeFieldOn<0, 10>(this); }
|
|
constexpr auto green() const { return BitField::v3::MakeFieldOn<10, 10>(this); }
|
|
constexpr auto red() const { return BitField::v3::MakeFieldOn<20, 10>(this); }
|
|
};
|
|
|
|
struct TextureConfig {
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
|
|
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
|
|
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
|
|
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
|
|
} border_color;
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 16, uint32_t> height;
|
|
BitFieldLegacy<16, 16, uint32_t> width;
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy< 1, 1, TexFilter> mag_filter;
|
|
BitFieldLegacy< 2, 1, TexFilter> min_filter;
|
|
|
|
BitFieldLegacy< 8, 2, TexWrapMode> wrap_t;
|
|
BitFieldLegacy<12, 2, TexWrapMode> wrap_s;
|
|
|
|
BitFieldLegacy<24, 1, TexFilter> mip_filter;
|
|
};
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
uint32_t address_raw;
|
|
|
|
uint32_t GetPhysicalAddress() const {
|
|
return address_raw * 8;
|
|
}
|
|
|
|
// texture1 and texture2 store the texture format directly after the address
|
|
// whereas texture0 inserts some additional flags inbetween.
|
|
// Hence, we store the format separately so that all other parameters can be described
|
|
// in a single structure.
|
|
};
|
|
|
|
struct TextureFormat {
|
|
uint32_t raw;
|
|
|
|
static constexpr std::array<GenericImageFormat, 14> format_map = {{
|
|
GenericImageFormat::RGBA8,
|
|
GenericImageFormat::RGB8,
|
|
GenericImageFormat::RGBA5551,
|
|
GenericImageFormat::RGB565,
|
|
GenericImageFormat::RGBA4,
|
|
GenericImageFormat::IA8,
|
|
GenericImageFormat::RG8,
|
|
GenericImageFormat::I8,
|
|
GenericImageFormat::A8,
|
|
GenericImageFormat::IA4,
|
|
GenericImageFormat::I4,
|
|
GenericImageFormat::A4,
|
|
GenericImageFormat::ETC1,
|
|
GenericImageFormat::ETC1A4,
|
|
}};
|
|
};
|
|
|
|
struct FullTextureConfig {
|
|
bool enabled;
|
|
TextureConfig config;
|
|
TextureFormat format;
|
|
};
|
|
|
|
// Returns index corresponding to the Regs member labeled by field_name
|
|
// TODO: Due to Visual studio bug 209229, offsetof does not return constant expressions
|
|
// when used with array elements (e.g. PICA_REG_INDEX(vs_uniform_setup.set_value[1])).
|
|
// For details cf. https://connect.microsoft.com/VisualStudio/feedback/details/209229/offsetof-does-not-produce-a-constant-expression-for-array-members
|
|
// Hopefully, this will be fixed sometime in the future.
|
|
// For lack of better alternatives, we currently hardcode the offsets when constant
|
|
// expressions are needed via PICA_REG_INDEX_WORKAROUND (on sane compilers, static_asserts
|
|
// will then make sure the offsets indeed match the automatically calculated ones).
|
|
#define PICA_REG_INDEX(field_name) (offsetof(Pica::Regs, field_name) / sizeof(uint32_t))
|
|
#if defined(_MSC_VER)
|
|
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) (backup_workaround_index)
|
|
#else
|
|
// NOTE: Yeah, hacking in a static_assert here just to workaround the lacking MSVC compiler
|
|
// really is this annoying. This macro just forwards its first argument to PICA_REG_INDEX
|
|
// and then performs a (no-op) cast to size_t iff the second argument matches the expected
|
|
// field offset. Otherwise, the compiler will fail to compile this code.
|
|
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) \
|
|
((typename std::enable_if<backup_workaround_index == PICA_REG_INDEX(field_name), size_t>::type)PICA_REG_INDEX(field_name))
|
|
#endif // _MSC_VER
|
|
|
|
struct Regs {
|
|
INSERT_PADDING_WORDS(0x10);
|
|
|
|
uint32_t trigger_irq;
|
|
|
|
INSERT_PADDING_WORDS(0x2f);
|
|
|
|
union {
|
|
BitFieldLegacy<0, 2, CullMode> cull_mode;
|
|
};
|
|
|
|
// NOTE: This is actually half the viewport width
|
|
BitFieldLegacy<0, 24, uint32_t> viewport_size_x;
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
// NOTE: This is actually half the viewport height
|
|
BitFieldLegacy<0, 24, uint32_t> viewport_size_y;
|
|
|
|
INSERT_PADDING_WORDS(0x9);
|
|
|
|
BitFieldLegacy<0, 24, uint32_t> viewport_depth_range; // float24
|
|
BitFieldLegacy<0, 24, uint32_t> viewport_depth_far_plane; // float24
|
|
|
|
/**
|
|
* Total number of attributes output by the final shader stage and sent to
|
|
* the post-shader-pipeline.
|
|
*
|
|
* Note that this is unrelated to the set of output registers accessible
|
|
* by shaders, which is indicated by gs/vs_output_register_mask instead.
|
|
* In particular, the shader output registers may have indexes higher
|
|
* than the number of shader output attributes: Output attributes are
|
|
* tightly packed, whereas there may be "gaps" of unused output registers.
|
|
*/
|
|
BitFieldLegacy<0, 3, uint32_t> shader_num_output_attributes;
|
|
|
|
union VSOutputAttributes {
|
|
// Maps components of output vertex attributes to semantics
|
|
enum Semantic : uint32_t
|
|
{
|
|
POSITION_X = 0,
|
|
POSITION_Y = 1,
|
|
POSITION_Z = 2,
|
|
POSITION_W = 3,
|
|
|
|
// This quaternion encodes a rotation from the orthonormal triad into the (normal, tangent, bitangent) coordinate system
|
|
QUATERNION_X = 4,
|
|
QUATERNION_Y = 5,
|
|
QUATERNION_Z = 6,
|
|
QUATERNION_W = 7,
|
|
|
|
COLOR_R = 8,
|
|
COLOR_G = 9,
|
|
COLOR_B = 10,
|
|
COLOR_A = 11,
|
|
|
|
TEXCOORD0_U = 12,
|
|
TEXCOORD0_V = 13,
|
|
TEXCOORD1_U = 14,
|
|
TEXCOORD1_V = 15,
|
|
TEXCOORD0_W = 16, // For projection texture (texture unit 0, only)
|
|
TEXCOORD2_U = 22,
|
|
TEXCOORD2_V = 23,
|
|
|
|
VIEW_X = 18,
|
|
VIEW_Y = 19,
|
|
VIEW_Z = 20,
|
|
|
|
INVALID = 31,
|
|
};
|
|
|
|
BitFieldLegacy< 0, 5, Semantic> map_x;
|
|
BitFieldLegacy< 8, 5, Semantic> map_y;
|
|
BitFieldLegacy<16, 5, Semantic> map_z;
|
|
BitFieldLegacy<24, 5, Semantic> map_w;
|
|
};
|
|
|
|
std::array<VSOutputAttributes, 7> shader_output_semantics;
|
|
|
|
INSERT_PADDING_WORDS(0xf);
|
|
|
|
uint32_t scissor_pos;
|
|
uint32_t scissor_size;
|
|
|
|
union {
|
|
uint32_t raw;
|
|
|
|
BitFieldLegacy< 0, 10, int32_t> x;
|
|
BitFieldLegacy<16, 10, int32_t> y;
|
|
} viewport_corner;
|
|
|
|
INSERT_PADDING_WORDS(0x17);
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 1, uint32_t> texture0_enable;
|
|
BitFieldLegacy< 1, 1, uint32_t> texture1_enable;
|
|
BitFieldLegacy< 2, 1, uint32_t> texture2_enable;
|
|
};
|
|
TextureConfig texture0;
|
|
INSERT_PADDING_WORDS(0x8);
|
|
struct TextureFormatRegister {
|
|
uint32_t storage;
|
|
|
|
auto value() const { return BitField::v3::MakeFieldOn<0, 4, TextureFormat>(this); }
|
|
|
|
operator TextureFormat() const {
|
|
return value()();
|
|
}
|
|
};
|
|
|
|
TextureFormatRegister texture0_format;
|
|
INSERT_PADDING_WORDS(0x2);
|
|
TextureConfig texture1;
|
|
TextureFormatRegister texture1_format;
|
|
INSERT_PADDING_WORDS(0x2);
|
|
TextureConfig texture2;
|
|
TextureFormatRegister texture2_format;
|
|
INSERT_PADDING_WORDS(0x21);
|
|
|
|
const std::array<FullTextureConfig, 3> GetTextures() const {
|
|
return {{
|
|
{ texture0_enable.ToBool(), texture0, texture0_format },
|
|
{ texture1_enable.ToBool(), texture1, texture1_format },
|
|
{ texture2_enable.ToBool(), texture2, texture2_format }
|
|
}};
|
|
}
|
|
|
|
// 0xc0-0xff: Texture Combiner (akin to glTexEnv)
|
|
struct TevStageConfig {
|
|
enum class Source : uint32_t {
|
|
PrimaryColor = 0x0,
|
|
PrimaryFragmentColor = 0x1,
|
|
SecondaryFragmentColor = 0x2,
|
|
Texture0 = 0x3,
|
|
Texture1 = 0x4,
|
|
Texture2 = 0x5,
|
|
Texture3 = 0x6,
|
|
// 0x7-0xc = primary color??
|
|
CombinerBuffer = 0xd,
|
|
Constant = 0xe,
|
|
Previous = 0xf,
|
|
};
|
|
|
|
enum class ColorModifier : uint32_t {
|
|
SourceColor = 0,
|
|
OneMinusSourceColor = 1,
|
|
SourceAlpha = 2,
|
|
OneMinusSourceAlpha = 3,
|
|
|
|
// Non-standard extensions:
|
|
SourceRed = 4,
|
|
OneMinusSourceRed = 5,
|
|
|
|
SourceGreen = 8,
|
|
OneMinusSourceGreen = 9,
|
|
|
|
SourceBlue = 12,
|
|
OneMinusSourceBlue = 13,
|
|
};
|
|
|
|
enum class AlphaModifier : uint32_t {
|
|
SourceAlpha = 0,
|
|
OneMinusSourceAlpha = 1,
|
|
|
|
// Non-standard extensions:
|
|
SourceRed = 2,
|
|
OneMinusSourceRed = 3,
|
|
SourceGreen = 4,
|
|
OneMinusSourceGreen = 5,
|
|
SourceBlue = 6,
|
|
OneMinusSourceBlue = 7,
|
|
};
|
|
|
|
enum class Operation : uint32_t {
|
|
Replace = 0,
|
|
Modulate = 1,
|
|
Add = 2,
|
|
AddSigned = 3,
|
|
Lerp = 4,
|
|
Subtract = 5,
|
|
Dot3RGB = 6, // Dot product of first and second input, each offset by the median value (0.5/127.5)
|
|
Dot3RGBA = 7, // Like Dot3, but the scalar result is written to all components rather than just the RGB ones
|
|
MultiplyThenAdd = 8,
|
|
AddThenMultiply = 9,
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 4, Source> color_source1;
|
|
BitFieldLegacy< 4, 4, Source> color_source2;
|
|
BitFieldLegacy< 8, 4, Source> color_source3;
|
|
BitFieldLegacy<16, 4, Source> alpha_source1;
|
|
BitFieldLegacy<20, 4, Source> alpha_source2;
|
|
BitFieldLegacy<24, 4, Source> alpha_source3;
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 4, ColorModifier> color_modifier1;
|
|
BitFieldLegacy< 4, 4, ColorModifier> color_modifier2;
|
|
BitFieldLegacy< 8, 4, ColorModifier> color_modifier3;
|
|
BitFieldLegacy<12, 3, AlphaModifier> alpha_modifier1;
|
|
BitFieldLegacy<16, 3, AlphaModifier> alpha_modifier2;
|
|
BitFieldLegacy<20, 3, AlphaModifier> alpha_modifier3;
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 4, Operation> color_op;
|
|
BitFieldLegacy<16, 4, Operation> alpha_op;
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 8, uint32_t> const_r;
|
|
BitFieldLegacy< 8, 8, uint32_t> const_g;
|
|
BitFieldLegacy<16, 8, uint32_t> const_b;
|
|
BitFieldLegacy<24, 8, uint32_t> const_a;
|
|
};
|
|
|
|
union {
|
|
// Access these through the convenience getters below
|
|
BitFieldLegacy< 0, 2, uint32_t> multiplier_exp_rgb;
|
|
BitFieldLegacy<16, 2, uint32_t> multiplier_exp_a;
|
|
};
|
|
|
|
uint32_t GetMultiplierRGB() const {
|
|
if (multiplier_exp_rgb == 3) {
|
|
throw std::runtime_error("Invalid RGB scaling exponent 3");
|
|
}
|
|
return (1 << multiplier_exp_rgb);
|
|
}
|
|
|
|
uint32_t GetMultiplierA() const {
|
|
if (multiplier_exp_a == 3) {
|
|
throw std::runtime_error("Invalid alpha scaling exponent 3");
|
|
}
|
|
return (1 << multiplier_exp_a);
|
|
}
|
|
};
|
|
|
|
TevStageConfig tev_stage0;
|
|
INSERT_PADDING_WORDS(0x3);
|
|
TevStageConfig tev_stage1;
|
|
INSERT_PADDING_WORDS(0x3);
|
|
TevStageConfig tev_stage2;
|
|
INSERT_PADDING_WORDS(0x3);
|
|
TevStageConfig tev_stage3;
|
|
INSERT_PADDING_WORDS(0x3);
|
|
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
auto update_mask_rgb() const { return BitField::v3::MakeFieldOn<8, 4>(this); }
|
|
auto update_mask_a() const { return BitField::v3::MakeFieldOn<12, 4>(this); }
|
|
|
|
bool TevStageUpdatesRGB(std::size_t index) const {
|
|
return 0 != ((update_mask_rgb() >> index) & 1);
|
|
}
|
|
|
|
bool TevStageUpdatesA(std::size_t index) const {
|
|
return 0 != ((update_mask_a() >> index) & 1);
|
|
}
|
|
} combiner_buffer;
|
|
|
|
INSERT_PADDING_WORDS(0xf);
|
|
TevStageConfig tev_stage4;
|
|
INSERT_PADDING_WORDS(0x3);
|
|
TevStageConfig tev_stage5;
|
|
|
|
// Value used to initialize the tev combiner buffer
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
|
|
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
|
|
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
|
|
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
|
|
} combiner_buffer_init;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
const std::array<Regs::TevStageConfig,6> GetTevStages() const {
|
|
return { tev_stage0, tev_stage1,
|
|
tev_stage2, tev_stage3,
|
|
tev_stage4, tev_stage5 };
|
|
}
|
|
|
|
struct OutputMerger {
|
|
union {
|
|
// If false, logic blending is used
|
|
BitFieldLegacy<8, 1, uint32_t> alphablend_enable;
|
|
};
|
|
|
|
union {
|
|
uint32_t raw;
|
|
|
|
BitFieldLegacy< 0, 8, AlphaBlendEquation> blend_equation_rgb;
|
|
BitFieldLegacy< 8, 8, AlphaBlendEquation> blend_equation_a;
|
|
|
|
BitFieldLegacy<16, 4, AlphaBlendFactor> factor_source_rgb;
|
|
BitFieldLegacy<20, 4, AlphaBlendFactor> factor_dest_rgb;
|
|
|
|
BitFieldLegacy<24, 4, AlphaBlendFactor> factor_source_a;
|
|
BitFieldLegacy<28, 4, AlphaBlendFactor> factor_dest_a;
|
|
} alpha_blending;
|
|
|
|
union {
|
|
BitFieldLegacy<0, 4, LogicOp> op;
|
|
} logic_op;
|
|
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
|
|
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
|
|
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
|
|
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
|
|
} blend_constant;
|
|
|
|
AlphaTest alpha_test;
|
|
|
|
StencilTest stencil_test;
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 1, uint32_t> depth_test_enable;
|
|
BitFieldLegacy< 4, 3, DepthFunc> depth_test_func;
|
|
BitFieldLegacy< 8, 1, uint32_t> color_write_enable_r;
|
|
BitFieldLegacy< 9, 1, uint32_t> color_write_enable_g;
|
|
BitFieldLegacy<10, 1, uint32_t> color_write_enable_b;
|
|
BitFieldLegacy<11, 1, uint32_t> color_write_enable_a;
|
|
BitFieldLegacy<12, 1, uint32_t> depth_write_enable;
|
|
};
|
|
|
|
INSERT_PADDING_WORDS(0x8);
|
|
} output_merger;
|
|
|
|
struct {
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
uint32_t raw_access_flags_color[2];
|
|
uint32_t raw_access_flags_depth_stencil[2];
|
|
|
|
// These fields look like bitmasks, but they control access to all components at once.
|
|
// Disabling them (i.e. setting them to 0) takes priority over the output_merger flags.
|
|
auto color_read_enabled() const { return BitField::v3::MakeFieldOn<0, 4>(&raw_access_flags_color[0]); }
|
|
auto color_write_enabled() const { return BitField::v3::MakeFieldOn<0, 4>(&raw_access_flags_color[1]); }
|
|
auto depth_stencil_read_enabled() const { return BitField::v3::MakeFieldOn<0, 2>(&raw_access_flags_depth_stencil[0]); }
|
|
auto depth_stencil_write_enabled() const { return BitField::v3::MakeFieldOn<0, 2>(&raw_access_flags_depth_stencil[1]); }
|
|
|
|
uint32_t depth_format;
|
|
BitFieldLegacy<16, 3, uint32_t> color_format;
|
|
|
|
FramebufferColorFormat GetColorFormat() const {
|
|
return { color_format.Value() };
|
|
}
|
|
|
|
FramebufferDepthStencilFormat GetDepthStencilFormat() const {
|
|
return { depth_format };
|
|
}
|
|
|
|
bool HasStencilBuffer() const {
|
|
return (FramebufferDepthStencilFormat::format_map[depth_format] == GenericImageFormat::D24S8);
|
|
}
|
|
|
|
INSERT_PADDING_WORDS(0x4);
|
|
|
|
uint32_t depth_buffer_address;
|
|
uint32_t color_buffer_address;
|
|
|
|
union {
|
|
// Apparently, the framebuffer width is stored as expected,
|
|
// while the height is stored as the actual height minus one.
|
|
// Hence, don't access these fields directly but use the accessors
|
|
// GetWidth() and GetHeight() instead.
|
|
BitFieldLegacy< 0, 11, uint32_t> width;
|
|
BitFieldLegacy<12, 10, uint32_t> height; // TODO: Does this indeed only have 10 bits?
|
|
};
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
inline uint32_t GetColorBufferPhysicalAddress() const {
|
|
return DecodeAddressRegister(color_buffer_address);
|
|
}
|
|
inline uint32_t GetDepthBufferPhysicalAddress() const {
|
|
return DecodeAddressRegister(depth_buffer_address);
|
|
}
|
|
|
|
inline uint32_t GetWidth() const {
|
|
return width;
|
|
}
|
|
|
|
inline uint32_t GetHeight() const {
|
|
return height + 1;
|
|
}
|
|
} framebuffer;
|
|
|
|
INSERT_PADDING_WORDS(0x20);
|
|
|
|
struct {
|
|
struct {
|
|
// The 3DS fragment lighting pipeline doesn't distinguish between
|
|
// materials and lights, so these properties are premultiplied
|
|
LightingColor specular[2];
|
|
LightingColor diffuse;
|
|
LightingColor ambient;
|
|
|
|
// NOTE: If is_directional() is false, these actually specify the position
|
|
uint32_t raw_light_dir[2];
|
|
constexpr auto raw_light_dir_x() const { return BitField::v3::MakeFieldOn< 0, 16>(&raw_light_dir[0]); }
|
|
constexpr auto raw_light_dir_y() const { return BitField::v3::MakeFieldOn<16, 16>(&raw_light_dir[0]); }
|
|
constexpr auto raw_light_dir_z() const { return BitField::v3::MakeFieldOn< 0, 16>(&raw_light_dir[1]); }
|
|
float16 get_light_dir_x() const { return float16::FromRawFloat(raw_light_dir_x()); }
|
|
float16 get_light_dir_y() const { return float16::FromRawFloat(raw_light_dir_y()); }
|
|
float16 get_light_dir_z() const { return float16::FromRawFloat(raw_light_dir_z()); }
|
|
|
|
// 13-bit signed fixed-point coordinates with 11 bits of precision
|
|
uint32_t raw_spot_dir[2];
|
|
constexpr auto spot_dir_x() const { return BitField::v3::MakeFieldOn< 0, 13, int32_t>(&raw_spot_dir[0]); }
|
|
constexpr auto spot_dir_y() const { return BitField::v3::MakeFieldOn<16, 13, int32_t>(&raw_spot_dir[0]); }
|
|
constexpr auto spot_dir_z() const { return BitField::v3::MakeFieldOn< 0, 13, int32_t>(&raw_spot_dir[1]); }
|
|
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
constexpr auto is_directional() const { return BitField::v3::MakeFlagOn<0>(this); }
|
|
|
|
// If true, the absolute value is used for dot products. This
|
|
// unconditionally applies to the computation for diffuse
|
|
// lighting, but it affects LUT indexing only if unsigned
|
|
// indexes are used.
|
|
constexpr auto abs_dot_products() const { return BitField::v3::MakeFlagOn<1>(this); }
|
|
|
|
constexpr auto specular0_use_geometric_factor() const { return BitField::v3::MakeFlagOn<2>(this); }
|
|
constexpr auto specular1_use_geometric_factor() const { return BitField::v3::MakeFlagOn<3>(this); }
|
|
} config;
|
|
// INSERT_PADDING_WORDS(0x1); // TODO: This ("two sided diffuse") takes the absolute of the dot product before indexing into the LUT. Not sure if it applies to all LUTs though
|
|
INSERT_PADDING_WORDS(0x6);
|
|
} lights[8]; // indexing must take light permutation into account
|
|
|
|
LightingColor global_ambient;
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
struct {
|
|
uint32_t storage;
|
|
constexpr auto value() const { return BitField::v3::MakeFieldOn<0, 3>(this); }
|
|
} max_light_id;
|
|
|
|
#pragma pack(4)
|
|
struct {
|
|
uint64_t storage;
|
|
|
|
constexpr auto fresnel_to_primary_alpha() const { return BitField::v3::MakeFlagOn<2>(this); }
|
|
constexpr auto fresnel_to_secondary_alpha() const { return BitField::v3::MakeFlagOn<3>(this); }
|
|
|
|
constexpr auto lut_config() const { return BitField::v3::MakeFieldOn<4, 4>(this); }
|
|
|
|
// If true, set the secondary fragment color to zero if the LN dot product is zero
|
|
constexpr auto clamp_highlights() const { return BitField::v3::MakeFlagOn<27>(this); }
|
|
|
|
// TODO: Do these control the LUTs themselves or the use of the corresponding terms in lighting calculations?
|
|
constexpr auto spot_disabled() const { return BitField::v3::MakeFieldOn<40, 8>(this); }
|
|
constexpr auto d0_disabled() const { return BitField::v3::MakeFlagOn<48>(this); }
|
|
constexpr auto d1_disabled() const { return BitField::v3::MakeFlagOn<49>(this); }
|
|
// Bit 50 doesn't seem to be used (always set 1)
|
|
constexpr auto fr_disabled() const { return BitField::v3::MakeFlagOn<51>(this); }
|
|
constexpr auto rb_disabled() const { return BitField::v3::MakeFlagOn<52>(this); }
|
|
constexpr auto rg_disabled() const { return BitField::v3::MakeFlagOn<53>(this); }
|
|
constexpr auto rr_disabled() const { return BitField::v3::MakeFlagOn<54>(this); }
|
|
constexpr auto dist_disabled() const { return BitField::v3::MakeFieldOn<56, 8>(this); }
|
|
|
|
uint32_t GetEnabledLUTMask() const {
|
|
uint32_t mask = 0;
|
|
mask |= spot_disabled()() << Meta::to_underlying(LightLutIndex::SP0);
|
|
mask |= dist_disabled()() << Meta::to_underlying(LightLutIndex::DA0);
|
|
|
|
mask |= d0_disabled() << Meta::to_underlying(LightLutIndex::D0);
|
|
mask |= d1_disabled() << Meta::to_underlying(LightLutIndex::D1);
|
|
// NOTE: LUT index 2 not used
|
|
mask |= fr_disabled() << Meta::to_underlying(LightLutIndex::FR);
|
|
mask |= rb_disabled() << Meta::to_underlying(LightLutIndex::RB);
|
|
mask |= rg_disabled() << Meta::to_underlying(LightLutIndex::RG);
|
|
mask |= rr_disabled() << Meta::to_underlying(LightLutIndex::RR);
|
|
// NOTE: LUT index 7 not used
|
|
|
|
return (~mask) & (0xffffff ^ 0b1000'0100);
|
|
}
|
|
|
|
bool LUTConfigConsistent() const {
|
|
// TODO: Check that lut_config is consistent with the disablement bits
|
|
const uint32_t enabled_masks[32] = {
|
|
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::SP0)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
|
|
(1 << Meta::to_underlying(LightLutIndex::FR)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::SP0)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
|
|
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::D1)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
|
|
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::D1)) | (1 << Meta::to_underlying(LightLutIndex::FR)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
|
|
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::FR)),
|
|
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::D1)),
|
|
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::RB)) ^ (1 << Meta::to_underlying(LightLutIndex::RG)),
|
|
0,
|
|
0xffffff,
|
|
};
|
|
auto enabled_luts_mask = enabled_masks[lut_config()];
|
|
auto used_luts_mask = GetEnabledLUTMask();
|
|
return !used_luts_mask || ((used_luts_mask & enabled_luts_mask) == used_luts_mask);
|
|
}
|
|
} config;
|
|
#pragma pack()
|
|
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
constexpr auto entry_index() const { return BitField::v3::MakeFieldOn<0, 8>(this); }
|
|
constexpr auto table_selector() const { return BitField::v3::MakeFieldOn<8, 5, LightLutIndex>(this); }
|
|
} lut_write_index;
|
|
|
|
uint32_t disabled_storage;
|
|
constexpr auto disabled() const { return BitField::v3::MakeFlagOn<0>(&disabled_storage); }
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
// Sink register for writing LUT data to the location given by lut_write_index
|
|
struct {
|
|
uint32_t storage;
|
|
|
|
// Unsigned 0.12-bit fixed-point
|
|
constexpr auto value() const { return BitField::v3::MakeFieldOn<0, 12>(this); }
|
|
|
|
// Signed 1.0.11-bit fixed-point
|
|
constexpr auto delta() const { return BitField::v3::MakeFieldOn<12, 12>(this); }
|
|
} set_lut_data[8];
|
|
|
|
struct {
|
|
uint32_t storage_index_signs; // TODO
|
|
uint32_t storage_selectors;
|
|
uint32_t storage_scales; // TODO
|
|
|
|
// If set, the LUT index is computed by multiplying the dot product with 128 and clamping to [-128;127].
|
|
// Otherwise, it is computed by multiplying with 256 and clamping to [0;255].
|
|
// For the latter case, also consider the abs flag in the light config.
|
|
constexpr auto index_signed_d0() const { return BitField::v3::MakeFlagOn< 1>(&storage_index_signs); }
|
|
constexpr auto index_signed_d1() const { return BitField::v3::MakeFlagOn< 5>(&storage_index_signs); }
|
|
constexpr auto index_signed_sp() const { return BitField::v3::MakeFlagOn< 9>(&storage_index_signs); }
|
|
constexpr auto index_signed_fr() const { return BitField::v3::MakeFlagOn<13>(&storage_index_signs); }
|
|
constexpr auto index_signed_rb() const { return BitField::v3::MakeFlagOn<17>(&storage_index_signs); }
|
|
constexpr auto index_signed_rg() const { return BitField::v3::MakeFlagOn<21>(&storage_index_signs); }
|
|
constexpr auto index_signed_rr() const { return BitField::v3::MakeFlagOn<25>(&storage_index_signs); }
|
|
|
|
constexpr auto selector_d0() const { return BitField::v3::MakeFieldOn< 0, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_d1() const { return BitField::v3::MakeFieldOn< 4, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_sp() const { return BitField::v3::MakeFieldOn< 8, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_fr() const { return BitField::v3::MakeFieldOn<12, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_rb() const { return BitField::v3::MakeFieldOn<16, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_rg() const { return BitField::v3::MakeFieldOn<20, 3, LightLutInput>(&storage_selectors); }
|
|
constexpr auto selector_rr() const { return BitField::v3::MakeFieldOn<24, 3, LightLutInput>(&storage_selectors); }
|
|
|
|
constexpr auto scale_d0() const { return BitField::v3::MakeFieldOn< 0, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_d1() const { return BitField::v3::MakeFieldOn< 4, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_sp() const { return BitField::v3::MakeFieldOn< 8, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_fr() const { return BitField::v3::MakeFieldOn<12, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_rb() const { return BitField::v3::MakeFieldOn<16, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_rg() const { return BitField::v3::MakeFieldOn<20, 3, LightLutScale>(&storage_scales); }
|
|
constexpr auto scale_rr() const { return BitField::v3::MakeFieldOn<24, 3, LightLutScale>(&storage_scales); }
|
|
} lut_config;
|
|
|
|
INSERT_PADDING_WORDS(0x6);
|
|
|
|
uint32_t storage_light_permutation;
|
|
|
|
// Maps light IDs (0..max_light_id) to indexes into the light config array
|
|
unsigned GetLightIndex(unsigned id) {
|
|
return (storage_light_permutation >> (4 * id)) & 0b111;
|
|
}
|
|
|
|
INSERT_PADDING_WORDS(0x26);
|
|
} lighting;
|
|
|
|
struct VertexAttributes {
|
|
enum class Format : uint64_t {
|
|
BYTE = 0,
|
|
UBYTE = 1,
|
|
SHORT = 2,
|
|
FLOAT = 3,
|
|
};
|
|
|
|
BitFieldLegacy<0, 29, uint32_t> base_address;
|
|
|
|
uint32_t GetPhysicalBaseAddress() const {
|
|
return DecodeAddressRegister(base_address);
|
|
}
|
|
|
|
// Descriptor for internal vertex attributes
|
|
union {
|
|
BitFieldLegacy< 0, 2, Format> format0; // size of one element
|
|
BitFieldLegacy< 2, 2, uint64_t> size0; // number of elements minus 1
|
|
BitFieldLegacy< 4, 2, Format> format1;
|
|
BitFieldLegacy< 6, 2, uint64_t> size1;
|
|
BitFieldLegacy< 8, 2, Format> format2;
|
|
BitFieldLegacy<10, 2, uint64_t> size2;
|
|
BitFieldLegacy<12, 2, Format> format3;
|
|
BitFieldLegacy<14, 2, uint64_t> size3;
|
|
BitFieldLegacy<16, 2, Format> format4;
|
|
BitFieldLegacy<18, 2, uint64_t> size4;
|
|
BitFieldLegacy<20, 2, Format> format5;
|
|
BitFieldLegacy<22, 2, uint64_t> size5;
|
|
BitFieldLegacy<24, 2, Format> format6;
|
|
BitFieldLegacy<26, 2, uint64_t> size6;
|
|
BitFieldLegacy<28, 2, Format> format7;
|
|
BitFieldLegacy<30, 2, uint64_t> size7;
|
|
BitFieldLegacy<32, 2, Format> format8;
|
|
BitFieldLegacy<34, 2, uint64_t> size8;
|
|
BitFieldLegacy<36, 2, Format> format9;
|
|
BitFieldLegacy<38, 2, uint64_t> size9;
|
|
BitFieldLegacy<40, 2, Format> format10;
|
|
BitFieldLegacy<42, 2, uint64_t> size10;
|
|
BitFieldLegacy<44, 2, Format> format11;
|
|
BitFieldLegacy<46, 2, uint64_t> size11;
|
|
|
|
// If bit N in this field is set, data written to fixed_vertex_attribute_sink
|
|
// will be used as the default for uninitialized attributes.
|
|
// (Note that vertex loaders take priority over this default value)
|
|
BitFieldLegacy<48, 12, uint64_t> fixed_attribute_mask;
|
|
|
|
// number of total attributes minus 1
|
|
BitFieldLegacy<60, 4, uint64_t> num_extra_attributes;
|
|
};
|
|
|
|
inline Format GetFormat(int n) const {
|
|
Format formats[] = {
|
|
format0, format1, format2, format3,
|
|
format4, format5, format6, format7,
|
|
format8, format9, format10, format11
|
|
};
|
|
return formats[n];
|
|
}
|
|
|
|
inline int GetNumElements(int n) const {
|
|
uint64_t sizes[] = {
|
|
size0, size1, size2, size3,
|
|
size4, size5, size6, size7,
|
|
size8, size9, size10, size11
|
|
};
|
|
return (int)sizes[n]+1;
|
|
}
|
|
|
|
inline int GetElementSizeInBytes(int n) const {
|
|
return (GetFormat(n) == Format::FLOAT) ? 4 :
|
|
(GetFormat(n) == Format::SHORT) ? 2 : 1;
|
|
}
|
|
|
|
inline int GetStride(int n) const {
|
|
return GetNumElements(n) * GetElementSizeInBytes(n);
|
|
}
|
|
|
|
inline uint32_t GetNumTotalAttributes() const {
|
|
return static_cast<uint32_t>(num_extra_attributes + 1);
|
|
}
|
|
|
|
// Attribute loaders map the source vertex data to input attributes
|
|
// This e.g. allows to load different attributes from different memory locations
|
|
struct {
|
|
// Source attribute data offset from the base address
|
|
uint32_t data_offset;
|
|
|
|
union {
|
|
BitFieldLegacy< 0, 4, uint64_t> comp0;
|
|
BitFieldLegacy< 4, 4, uint64_t> comp1;
|
|
BitFieldLegacy< 8, 4, uint64_t> comp2;
|
|
BitFieldLegacy<12, 4, uint64_t> comp3;
|
|
BitFieldLegacy<16, 4, uint64_t> comp4;
|
|
BitFieldLegacy<20, 4, uint64_t> comp5;
|
|
BitFieldLegacy<24, 4, uint64_t> comp6;
|
|
BitFieldLegacy<28, 4, uint64_t> comp7;
|
|
BitFieldLegacy<32, 4, uint64_t> comp8;
|
|
BitFieldLegacy<36, 4, uint64_t> comp9;
|
|
BitFieldLegacy<40, 4, uint64_t> comp10;
|
|
BitFieldLegacy<44, 4, uint64_t> comp11;
|
|
|
|
// bytes for a single vertex in this loader
|
|
BitFieldLegacy<48, 8, uint64_t> byte_count;
|
|
|
|
BitFieldLegacy<60, 4, uint64_t> component_count;
|
|
};
|
|
|
|
inline int GetComponent(int n) const {
|
|
uint64_t components[] = {
|
|
comp0, comp1, comp2, comp3,
|
|
comp4, comp5, comp6, comp7,
|
|
comp8, comp9, comp10, comp11
|
|
};
|
|
return (int)components[n];
|
|
}
|
|
} attribute_loaders[12];
|
|
} vertex_attributes;
|
|
|
|
struct {
|
|
enum IndexFormat : uint32_t {
|
|
BYTE = 0,
|
|
SHORT = 1,
|
|
};
|
|
|
|
union {
|
|
BitFieldLegacy<0, 31, uint32_t> offset; // relative to base attribute address
|
|
BitFieldLegacy<31, 1, IndexFormat> format;
|
|
};
|
|
} index_array;
|
|
|
|
// Number of vertices to render
|
|
uint32_t num_vertices;
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
// Vertex offset to apply for non-indexed rendering
|
|
uint32_t vertex_offset;
|
|
|
|
INSERT_PADDING_WORDS(0x3);
|
|
|
|
// These two trigger rendering of triangles
|
|
uint32_t trigger_draw;
|
|
uint32_t trigger_draw_indexed;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
struct {
|
|
bool IsImmediateSubmission() const {
|
|
return (index == 0xf);
|
|
}
|
|
|
|
// Selects which attribute to set up the default attribute to.
|
|
// Alternatively enables immediate mode vertex submission if set to 0xf.
|
|
uint32_t index;
|
|
|
|
uint32_t data[3];
|
|
} fixed_vertex_attribute_sink;
|
|
|
|
INSERT_PADDING_WORDS(2);
|
|
|
|
struct {
|
|
// Register values for the two command processor engines, respectively
|
|
|
|
uint32_t size[2]; // Number of byte octets
|
|
uint32_t address[2]; // Encoded address (divided by 8)
|
|
uint32_t trigger[2];
|
|
} command_processor;
|
|
|
|
INSERT_PADDING_WORDS(4);
|
|
uint32_t immediate_rendering_max_input_attribute_index;
|
|
INSERT_PADDING_WORDS(0x7);
|
|
uint32_t vs_output_attributes_minus_1;
|
|
INSERT_PADDING_WORDS(0x6);
|
|
uint32_t vs_output_attributes_minus_1_copy;
|
|
INSERT_PADDING_WORDS(0xc);
|
|
|
|
enum class TriangleTopology : uint32_t {
|
|
List = 0,
|
|
Strip = 1,
|
|
Fan = 2,
|
|
ListIndexed = 3, // TODO: No idea if this is correct
|
|
};
|
|
|
|
BitFieldLegacy<8, 2, TriangleTopology> triangle_topology;
|
|
|
|
INSERT_PADDING_WORDS(0x51);
|
|
|
|
BitFieldLegacy<0, 16, uint32_t> vs_bool_uniforms;
|
|
union {
|
|
BitFieldLegacy< 0, 8, uint32_t> x;
|
|
BitFieldLegacy< 8, 8, uint32_t> y;
|
|
BitFieldLegacy<16, 8, uint32_t> z;
|
|
BitFieldLegacy<24, 8, uint32_t> w;
|
|
} vs_int_uniforms[4];
|
|
|
|
INSERT_PADDING_WORDS(0x4);
|
|
uint32_t reg_0x2b9;
|
|
auto max_shader_input_attribute_index() const {
|
|
return v3::BitField::MakeFieldOn<0, 4>(®_0x2b9);
|
|
}
|
|
|
|
// Offset to shader program entry point (in words)
|
|
BitFieldLegacy<0, 16, uint32_t> vs_main_offset;
|
|
|
|
union VSInputRegisterMap {
|
|
BitFieldLegacy< 0, 32, uint64_t> low;
|
|
BitFieldLegacy<32, 32, uint64_t> high;
|
|
|
|
BitFieldLegacy< 0, 4, uint64_t> attribute0_register;
|
|
BitFieldLegacy< 4, 4, uint64_t> attribute1_register;
|
|
BitFieldLegacy< 8, 4, uint64_t> attribute2_register;
|
|
BitFieldLegacy<12, 4, uint64_t> attribute3_register;
|
|
BitFieldLegacy<16, 4, uint64_t> attribute4_register;
|
|
BitFieldLegacy<20, 4, uint64_t> attribute5_register;
|
|
BitFieldLegacy<24, 4, uint64_t> attribute6_register;
|
|
BitFieldLegacy<28, 4, uint64_t> attribute7_register;
|
|
BitFieldLegacy<32, 4, uint64_t> attribute8_register;
|
|
BitFieldLegacy<36, 4, uint64_t> attribute9_register;
|
|
BitFieldLegacy<40, 4, uint64_t> attribute10_register;
|
|
BitFieldLegacy<44, 4, uint64_t> attribute11_register;
|
|
BitFieldLegacy<48, 4, uint64_t> attribute12_register;
|
|
BitFieldLegacy<52, 4, uint64_t> attribute13_register;
|
|
BitFieldLegacy<56, 4, uint64_t> attribute14_register;
|
|
BitFieldLegacy<60, 4, uint64_t> attribute15_register;
|
|
|
|
int GetRegisterForAttribute(int attribute_index) const {
|
|
uint64_t fields[] = {
|
|
attribute0_register, attribute1_register, attribute2_register, attribute3_register,
|
|
attribute4_register, attribute5_register, attribute6_register, attribute7_register,
|
|
attribute8_register, attribute9_register, attribute10_register, attribute11_register,
|
|
attribute12_register, attribute13_register, attribute14_register, attribute15_register,
|
|
};
|
|
return (int)fields[attribute_index];
|
|
}
|
|
} vs_input_register_map;
|
|
|
|
struct {
|
|
uint32_t raw;
|
|
|
|
/**
|
|
* Mask of enabled shader output registers. This mask determines which
|
|
* output registers are writeable how by shaders and how they map to
|
|
* output attributes (as sent to the post-shader-pipeline).
|
|
*/
|
|
auto mask() const { return BitField::v3::MakeFieldOn<0, 16>(this); }
|
|
} vs_output_register_mask;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
struct {
|
|
enum Format : uint32_t
|
|
{
|
|
FLOAT24 = 0,
|
|
FLOAT32 = 1
|
|
};
|
|
|
|
bool IsFloat32() const {
|
|
return format == FLOAT32;
|
|
}
|
|
|
|
union {
|
|
// Index of the next uniform to write to
|
|
// TODO: ctrulib uses 8 bits for this, however that seems to yield lots of invalid indices
|
|
BitFieldLegacy<0, 7, uint32_t> index;
|
|
|
|
BitFieldLegacy<31, 1, Format> format;
|
|
};
|
|
|
|
// Writing to these registers sets the "current" uniform.
|
|
// TODO: It's not clear how the hardware stores what the "current" uniform is.
|
|
uint32_t set_value[8];
|
|
|
|
} vs_uniform_setup;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
struct {
|
|
// Offset of the next instruction to write code to.
|
|
// Incremented with each instruction write.
|
|
uint32_t offset;
|
|
|
|
// Writing to these registers sets the "current" word in the shader program.
|
|
// TODO: It's not clear how the hardware stores what the "current" word is.
|
|
uint32_t set_word[8];
|
|
} vs_program;
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
// This register group is used to load an internal table of swizzling patterns,
|
|
// which are indexed by each shader instruction to specify vector component swizzling.
|
|
struct {
|
|
// Offset of the next swizzle pattern to write code to.
|
|
// Incremented with each instruction write.
|
|
uint32_t offset;
|
|
|
|
// Writing to these registers sets the "current" swizzle pattern in the table.
|
|
// TODO: It's not clear how the hardware stores what the "current" swizzle pattern is.
|
|
uint32_t set_word[8];
|
|
} vs_swizzle_patterns;
|
|
|
|
INSERT_PADDING_WORDS(0x22);
|
|
|
|
#undef INSERT_PADDING_WORDS_HELPER1
|
|
#undef INSERT_PADDING_WORDS_HELPER2
|
|
#undef INSERT_PADDING_WORDS
|
|
|
|
// Map register indices to names readable by humans
|
|
// Used for debugging purposes, so performance is not an issue here
|
|
static std::string GetCommandName(int index) {
|
|
std::map<uint32_t, std::string> map;
|
|
|
|
#define ADD_FIELD(name) \
|
|
do { \
|
|
map.insert({PICA_REG_INDEX(name), #name}); \
|
|
for (uint32_t i = PICA_REG_INDEX(name) + 1; i < PICA_REG_INDEX(name) + sizeof(Regs().name) / 4; ++i) \
|
|
map.insert({i, #name + std::string("+") + std::to_string(i-PICA_REG_INDEX(name))}); \
|
|
} while(false)
|
|
|
|
ADD_FIELD(trigger_irq);
|
|
ADD_FIELD(cull_mode);
|
|
ADD_FIELD(viewport_size_x);
|
|
ADD_FIELD(viewport_size_y);
|
|
ADD_FIELD(viewport_depth_range);
|
|
ADD_FIELD(viewport_depth_far_plane);
|
|
ADD_FIELD(shader_num_output_attributes);
|
|
ADD_FIELD(viewport_corner);
|
|
ADD_FIELD(texture0_enable);
|
|
ADD_FIELD(texture0);
|
|
ADD_FIELD(texture0_format);
|
|
ADD_FIELD(texture1);
|
|
ADD_FIELD(texture1_format);
|
|
ADD_FIELD(texture2);
|
|
ADD_FIELD(texture2_format);
|
|
ADD_FIELD(tev_stage0);
|
|
ADD_FIELD(tev_stage1);
|
|
ADD_FIELD(tev_stage2);
|
|
ADD_FIELD(tev_stage3);
|
|
ADD_FIELD(combiner_buffer);
|
|
ADD_FIELD(tev_stage4);
|
|
ADD_FIELD(tev_stage5);
|
|
ADD_FIELD(combiner_buffer_init);
|
|
ADD_FIELD(output_merger);
|
|
ADD_FIELD(framebuffer);
|
|
ADD_FIELD(lighting);
|
|
ADD_FIELD(vertex_attributes);
|
|
ADD_FIELD(index_array);
|
|
ADD_FIELD(num_vertices);
|
|
ADD_FIELD(vertex_offset);
|
|
ADD_FIELD(trigger_draw);
|
|
ADD_FIELD(trigger_draw_indexed);
|
|
ADD_FIELD(triangle_topology);
|
|
ADD_FIELD(vs_bool_uniforms);
|
|
ADD_FIELD(vs_int_uniforms);
|
|
ADD_FIELD(reg_0x2b9);
|
|
ADD_FIELD(vs_main_offset);
|
|
ADD_FIELD(vs_input_register_map);
|
|
ADD_FIELD(vs_output_register_mask);
|
|
ADD_FIELD(vs_uniform_setup);
|
|
ADD_FIELD(vs_program);
|
|
ADD_FIELD(vs_swizzle_patterns);
|
|
|
|
#undef ADD_FIELD
|
|
|
|
// Return empty string if no match is found
|
|
return map[index];
|
|
}
|
|
|
|
static inline size_t NumIds() {
|
|
return sizeof(Regs) / sizeof(uint32_t);
|
|
}
|
|
|
|
uint32_t& operator [] (int index) const {
|
|
uint32_t* content = (uint32_t*)this;
|
|
return content[index];
|
|
}
|
|
|
|
uint32_t& operator [] (int index) {
|
|
uint32_t* content = (uint32_t*)this;
|
|
return content[index];
|
|
}
|
|
|
|
private:
|
|
/*
|
|
* Most physical addresses which Pica registers refer to are 8-byte aligned.
|
|
* This function should be used to get the address from a raw register value.
|
|
*/
|
|
static inline uint32_t DecodeAddressRegister(uint32_t register_value) {
|
|
return register_value * 8;
|
|
}
|
|
};
|
|
|
|
// TODO: MSVC does not support using offsetof() on non-static data members even though this
|
|
// is technically allowed since C++11. This macro should be enabled once MSVC adds
|
|
// support for that.
|
|
#ifndef _MSC_VER
|
|
#define ASSERT_REG_POSITION(field_name, position) static_assert(offsetof(Regs, field_name) == position * 4, "Field "#field_name" has invalid position")
|
|
|
|
ASSERT_REG_POSITION(trigger_irq, 0x10);
|
|
ASSERT_REG_POSITION(cull_mode, 0x40);
|
|
ASSERT_REG_POSITION(viewport_size_x, 0x41);
|
|
ASSERT_REG_POSITION(viewport_size_y, 0x43);
|
|
ASSERT_REG_POSITION(viewport_depth_range, 0x4d);
|
|
ASSERT_REG_POSITION(viewport_depth_far_plane, 0x4e);
|
|
ASSERT_REG_POSITION(shader_num_output_attributes, 0x4f);
|
|
ASSERT_REG_POSITION(shader_output_semantics, 0x50);
|
|
ASSERT_REG_POSITION(viewport_corner, 0x68);
|
|
ASSERT_REG_POSITION(texture0_enable, 0x80);
|
|
ASSERT_REG_POSITION(texture0, 0x81);
|
|
ASSERT_REG_POSITION(texture0_format, 0x8e);
|
|
ASSERT_REG_POSITION(texture1, 0x91);
|
|
ASSERT_REG_POSITION(texture1_format, 0x96);
|
|
ASSERT_REG_POSITION(texture2, 0x99);
|
|
ASSERT_REG_POSITION(texture2_format, 0x9e);
|
|
ASSERT_REG_POSITION(tev_stage0, 0xc0);
|
|
ASSERT_REG_POSITION(tev_stage1, 0xc8);
|
|
ASSERT_REG_POSITION(tev_stage2, 0xd0);
|
|
ASSERT_REG_POSITION(tev_stage3, 0xd8);
|
|
ASSERT_REG_POSITION(combiner_buffer, 0xe0);
|
|
ASSERT_REG_POSITION(tev_stage4, 0xf0);
|
|
ASSERT_REG_POSITION(tev_stage5, 0xf8);
|
|
ASSERT_REG_POSITION(combiner_buffer_init, 0xfd);
|
|
ASSERT_REG_POSITION(output_merger, 0x100);
|
|
ASSERT_REG_POSITION(framebuffer, 0x110);
|
|
ASSERT_REG_POSITION(lighting, 0x140);
|
|
ASSERT_REG_POSITION(vertex_attributes, 0x200);
|
|
ASSERT_REG_POSITION(index_array, 0x227);
|
|
ASSERT_REG_POSITION(num_vertices, 0x228);
|
|
ASSERT_REG_POSITION(vertex_offset, 0x22a);
|
|
ASSERT_REG_POSITION(trigger_draw, 0x22e);
|
|
ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f);
|
|
ASSERT_REG_POSITION(fixed_vertex_attribute_sink, 0x232);
|
|
ASSERT_REG_POSITION(command_processor, 0x238);
|
|
ASSERT_REG_POSITION(immediate_rendering_max_input_attribute_index, 0x242);
|
|
ASSERT_REG_POSITION(vs_output_attributes_minus_1, 0x24a);
|
|
ASSERT_REG_POSITION(vs_output_attributes_minus_1_copy, 0x251);
|
|
ASSERT_REG_POSITION(triangle_topology, 0x25e);
|
|
ASSERT_REG_POSITION(vs_bool_uniforms, 0x2b0);
|
|
ASSERT_REG_POSITION(vs_int_uniforms, 0x2b1);
|
|
ASSERT_REG_POSITION(reg_0x2b9, 0x2b9);
|
|
ASSERT_REG_POSITION(vs_main_offset, 0x2ba);
|
|
ASSERT_REG_POSITION(vs_input_register_map, 0x2bb);
|
|
ASSERT_REG_POSITION(vs_output_register_mask, 0x2bd);
|
|
ASSERT_REG_POSITION(vs_uniform_setup, 0x2c0);
|
|
ASSERT_REG_POSITION(vs_program, 0x2cb);
|
|
ASSERT_REG_POSITION(vs_swizzle_patterns, 0x2d5);
|
|
|
|
#undef ASSERT_REG_POSITION
|
|
#endif // !defined(_MSC_VER)
|
|
|
|
// The total number of registers is chosen arbitrarily, but let's make sure it's not some odd value anyway.
|
|
static_assert(sizeof(Regs) <= 0x300 * sizeof(uint32_t), "Register set structure larger than it should be");
|
|
static_assert(sizeof(Regs) >= 0x300 * sizeof(uint32_t), "Register set structure smaller than it should be");
|
|
|
|
union CommandHeader {
|
|
uint32_t hex;
|
|
|
|
BitFieldLegacy< 0, 16, uint32_t> cmd_id;
|
|
BitFieldLegacy<16, 4, uint32_t> parameter_mask;
|
|
BitFieldLegacy<20, 11, uint32_t> extra_data_length;
|
|
BitFieldLegacy<31, 1, uint32_t> group_commands;
|
|
};
|
|
|
|
} // namespace
|