mikage-dev/source/memory.h
2024-03-08 10:54:13 +01:00

612 lines
21 KiB
C++

/**
* @file Memory interface used to represent and access emulated memory and
* MMIO devices.
*/
#pragma once
#include <spdlog/fmt/fmt.h>
#include <boost/endian/conversion.hpp>
#include <array>
#include <cassert>
#include <cstdint>
#include <memory>
#include <vector>
class LogManager;
class PicaContext;
class InputSource;
namespace EmuDisplay {
struct EmuDisplay;
}
/**
* Memory namespace
*/
namespace Memory {
// TODO: Change this to a strongly typed enum to aid the compiler optimizer in pointer analysis
using EmulatedMemory = uint8_t;
using PAddr = uint32_t;
struct HostMemoryBackedPage {
// nullptr if no memory backed page exists
EmulatedMemory* data = nullptr;
explicit operator bool() const {
return (data != nullptr);
}
};
// Set of contiguous pages in memory backed by host RAM
struct HostMemoryBackedPages {
EmulatedMemory* data = nullptr;
uint32_t num_bytes = 0;
explicit operator bool() const {
return (data != nullptr);
}
};
/**
* Type representing a the physical address range of a memory bus.
*/
template<uint32_t PAddrStart, uint32_t Size>
struct Bus {
static constexpr uint32_t start = PAddrStart;
static constexpr uint32_t size = Size;
static constexpr uint32_t end = start + size;
uint8_t Read8(uint32_t address);
uint16_t Read16(uint32_t address);
uint32_t Read32(uint32_t address);
void Write8(uint32_t address, uint8_t value);
void Write16(uint32_t address, uint16_t value);
void Write32(uint32_t address, uint32_t value);
static_assert(start < static_cast<uint32_t>(start + size), "End address wrapped due to overflow... wrong template parameters?");
};
enum class HookKind {
Read,
Write,
ReadWrite
};
constexpr bool HasReadHook(HookKind kind) noexcept {
return (kind == HookKind::Read || kind == HookKind::ReadWrite);
}
constexpr bool HasWriteHook(HookKind kind) noexcept {
return (kind == HookKind::Write || kind == HookKind::ReadWrite);
}
constexpr HookKind AddReadHook(HookKind kind) noexcept {
return (kind == HookKind::Write) ? HookKind::ReadWrite : HookKind::Read;
}
constexpr HookKind AddWriteHook(HookKind kind) noexcept {
return (kind == HookKind::Read) ? HookKind::ReadWrite : HookKind::Write;
}
template<HookKind>
struct Hook;
using PAddr = uint32_t;
struct MemoryRange {
PAddr start;
uint32_t num_bytes;
};
struct HookBase {
// Actual memory range this hook is active for
MemoryRange range;
// Other hook contained in this same page
// Guaranteed to be non-overlapping and to cover only memory *after* this hook
std::unique_ptr<HookBase> next {};
};
template<HookKind>
struct HookHandler;
template<> struct HookHandler<HookKind::Read> {
virtual void OnRead(PAddr addr, uint32_t num_bytes) = 0;
};
template<> struct HookHandler<HookKind::Write> {
virtual void OnWrite(PAddr addr, uint32_t num_bytes, uint32_t value) = 0;
};
using ReadHandler = HookHandler<HookKind::Read>;
using WriteHandler = HookHandler<HookKind::Write>;
// Arguments: Address and value size
template<>
struct Hook<HookKind::Read> : HookBase {
Hook(MemoryRange range, ReadHandler& handler_) : HookBase { range }, handler(handler_) {}
ReadHandler& handler;
};
// Arguments: Address, value, and value size
template<>
struct Hook<HookKind::Write> : HookBase {
Hook(MemoryRange range, WriteHandler& handler_) : HookBase { range }, handler(handler_) {}
WriteHandler& handler;
};
using ReadHook = Hook<HookKind::Read>;
using WriteHook = Hook<HookKind::Write>;
// TODO: Find optimal alignment (check VEC_SIZE in glibc? Might just be 64 for AVX2). Having any alignment at all helps the compiler generate better memset()s for initialization
template<uint32_t PAddrStart, uint32_t Size>
struct alignas(512) MemoryBus : Bus<PAddrStart, Size> {
// NOTE: If we over-allocate this array (by adding 3 more entries than strictly necessary), we can avoid needing range checks! (or at least we can reshuffle them past the actual writes to benefit from speculative execution)
uint8_t data[Size];
std::array<std::unique_ptr<HookBase>, (Size >> 12)> write_hooks;
std::array<std::unique_ptr<HookBase>, (Size >> 12)> read_hooks;
// TODO: When no hooks are set, callers should always use direct memory
// access instead of calling the Read/Write* functions. Currently,
// ReadLegacy/WriteLegacy is used in many places still, but once
// that is deprecated we should assert that a hook is set when
// using Write*.
uint8_t Read8(uint32_t address) {
assert(address < this->end);
if (auto* hook = LookupReadHookFor(address)) {
hook->handler.OnRead(address, sizeof(uint8_t));
} else {
// TODO: See above
}
return data[address - PAddrStart];
}
uint16_t Read16(uint32_t address) {
if (auto* hook = LookupReadHookFor(address)) {
hook->handler.OnRead(address, sizeof(uint16_t));
} else {
// TODO: See above
}
// TODO: Endianness
uint16_t ret;
memcpy(&ret, &data[address - PAddrStart], sizeof(ret));
return ret;
}
uint32_t Read32(uint32_t address) {
if (auto* hook = LookupReadHookFor(address)) {
hook->handler.OnRead(address, sizeof(uint32_t));
} else {
// TODO: See above
}
// TODO: Endianness
uint32_t ret;
memcpy(&ret, &data[address - PAddrStart], sizeof(ret));
return ret;
}
void Write8(uint32_t address, uint8_t value) {
assert(address < this->end);
if (auto* hook = LookupWriteHookFor(address)) {
hook->handler.OnWrite(address, sizeof(value), value);
} else {
// TODO: See above
}
data[address - PAddrStart] = value;
}
void Write16(uint32_t address, uint16_t value) {
if (auto* hook = LookupWriteHookFor(address)) {
hook->handler.OnWrite(address, sizeof(value), value);
} else {
// TODO: See above
}
// TODO: Endianness
memcpy(&data[address - PAddrStart], &value, sizeof(value));
}
void Write32(uint32_t address, uint32_t value) {
if (auto* hook = LookupWriteHookFor(address)) {
hook->handler.OnWrite(address, sizeof(value), value);
} else {
// TODO: See above
}
// TODO: Endianness
memcpy(&data[address - PAddrStart], &value, sizeof(value));
}
private:
friend HostMemoryBackedPages LookupContiguousMemoryBackedPage(struct PhysicalMemory&, PAddr, uint32_t);
template<HookKind AccessMode>
friend HostMemoryBackedPages LookupContiguousMemoryBackedPage(struct PhysicalMemory&, PAddr, uint32_t);
WriteHook* LookupWriteHookFor(uint32_t address) noexcept {
return static_cast<WriteHook*>(write_hooks[(address - PAddrStart) >> 12].get());
}
ReadHook* LookupReadHookFor(uint32_t address) noexcept {
return static_cast<ReadHook*>(read_hooks[(address - PAddrStart) >> 12].get());
}
};
struct MemoryAccessHandler {
uint8_t Read8(uint32_t offset);
uint16_t Read16(uint32_t offset);
uint32_t Read32(uint32_t offset);
void Write8(uint32_t offset, uint8_t value);
void Write16(uint32_t offset, uint16_t value);
void Write32(uint32_t offset, uint32_t value);
};
/**
* Proxy bus descriptor structure that forwards all reads and writes to a
* handler given by T. This allows us to define MMIO handlers in external
* translation units and forward-declaring them in this file instead of
* defining them all in this header.
* @tparam T handler structure to forward Read/Write function calls to. Must be a base of MemoryAccessHandler
*/
template<typename T, uint32_t PAddrStart, uint32_t Size>
struct ProxyBus : MemoryBus<PAddrStart, Size> {
std::unique_ptr<T> handler;
// Constructors and destructors are defined outside the header since T is
// not a complete type in most translation units (which is necessary to
// implement this destructor).
ProxyBus(std::unique_ptr<T> handler);
ProxyBus(ProxyBus&& bus);
~ProxyBus();
uint8_t Read8(uint32_t address);
uint16_t Read16(uint32_t address);
uint32_t Read32(uint32_t address);
void Write8(uint32_t address, uint8_t value);
void Write16(uint32_t address, uint16_t value);
void Write32(uint32_t address, uint32_t value);
};
struct MPCorePrivate;
struct HID;
struct LCD;
struct AXIHandler;
struct GPU;
struct HASH;
struct GPIO;
struct SPI;
struct CONFIG11;
struct DSPMMIO;
struct DSPMemory;
using VRAM = MemoryBus<0x18000000, 0x00600000>;
//using DSP = MemoryBus<0x1ff00000, 0x00080000>;
using DSP = ProxyBus<DSPMemory, 0x1ff00000, 0x00080000>;
using AXI = MemoryBus<0x1ff80000, 0x00080000>;
//using FCRAM = MemoryBus<0x20000000, 0x08000000>;
// Upper 0x08000000 bytes only available on New3DS!
// using FCRAM = MemoryBus<0x20000000, 0x10000000>;
using FCRAM = MemoryBus<0x20000000, 0x0800'0000>;
using IO_HASH = ProxyBus<HASH, 0x10101000, 0x1000>;
using IO_DSP1 = ProxyBus<DSPMMIO, 0x10103000, 0x1000>; // TODO: Actually CSND registers
using IO_CONFIG11 = ProxyBus<CONFIG11, 0x10140000, 0x2000>;
using IO_SPIBUS2 = ProxyBus<SPI, 0x10142000, 0x1000>; // SPI devices 3/4/5
using IO_SPIBUS3 = ProxyBus<SPI, 0x10143000, 0x1000>; // SPI device 6
using IO_HID = ProxyBus<HID, 0x10146000, 0x1000>;
using IO_GPIO = ProxyBus<GPIO, 0x10147000, 0x1000>;
using IO_SPIBUS1 = ProxyBus<SPI, 0x10160000, 0x1000>; // SPI devices 0/1/2 (3/4/5 at 0x10142000, 6 at 0x10143000)
using IO_LCD = ProxyBus<LCD, 0x10202000, 0x1000>;
using IO_DSP2 = ProxyBus<DSPMMIO, 0x10203000, 0x1000>; // TODO: Is this indeed just a mirror of 0x10103000? TODO: Actually the real DSP registers
using IO_AXI = ProxyBus<AXIHandler, 0x1020F000, 0x1000>;
using IO_HASH2 = ProxyBus<HASH, 0x10301000, 0x1000>; // NOTE: This is *NOT* just a mirror of 0x10101000 ... (3dbrew erratum)
using IO_GPU = ProxyBus<GPU, 0x10400000, 0x2000>;
using MPCorePrivateBus = ProxyBus<MPCorePrivate, 0x17e00000, 0x00002000>;
struct PhysicalMemorySubscriber;
struct PhysicalMemory {
using Busses = std::tuple<FCRAM, VRAM, DSP, AXI, IO_HID, IO_LCD, IO_AXI,
IO_GPU, IO_HASH,
IO_CONFIG11, IO_DSP1,
IO_SPIBUS2, IO_SPIBUS3,
IO_HASH2, IO_GPIO, IO_SPIBUS1,
IO_DSP2, MPCorePrivateBus>;
Busses memory;
std::vector<PhysicalMemorySubscriber*> subscribers;
/**
* @note This constructor leaves the memory system in a partially
* unintialized state. To finalize initialization, some of the busses
* need to be connected to their respective end points.
*/
PhysicalMemory(LogManager& log_manager);
void InjectDependency(PicaContext& pica);
void InjectDependency(InputSource&);
};
struct PhysicalMemorySubscriber {
PhysicalMemorySubscriber(PhysicalMemory& mem_) : mem(mem_) {
mem.subscribers.push_back(this);
}
PhysicalMemory& mem;
virtual ~PhysicalMemorySubscriber() {
for (auto it = mem.subscribers.begin(); it != mem.subscribers.end(); ++it) {
if (*it == this) {
mem.subscribers.erase(it);
break;
}
}
}
// Called when a MemoryBus in PhysicalMemory transitions from
// "not backed by host memory" to "backed by host memory" state
virtual void OnBackedByHostMemory(HostMemoryBackedPage page, uint32_t address) {
// Do nothing by default
}
// Called when a MemoryBus in PhysicalMemory transitions from
// "backed by host memory" to "not backed by host memory" state
virtual void OnUnbackedByHostMemory(uint32_t address) {
// Do nothing by default
}
};
struct IsInside {
uint32_t address;
template<typename Bus>
bool operator()(const Bus& bus) const {
return address >= bus.start && address < bus.end;
}
};
namespace detail {
/// Utility functor to call the appropriate Read8/Read16/Read32 variant based on the given data type
template<typename DataType>
struct BusReader {
uint32_t address;
template<typename Bus>
DataType operator()(Bus& bus) const {
static_assert(std::is_same_v<DataType, uint8_t> || std::is_same_v<DataType, uint16_t> || std::is_same_v<DataType, uint32_t>, "Invalid DataType");
if constexpr (std::is_same<DataType, uint8_t>::value) {
return bus.Read8(address);
} else if constexpr (std::is_same<DataType, uint16_t>::value) {
return bus.Read16(address);
} else if constexpr (std::is_same<DataType, uint32_t>::value) {
return bus.Read32(address);
}
}
};
/// Utility functor to call the appropriate Read8/Read16/Read32 variant based on the given data type
template<typename DataType>
struct BusWriter {
uint32_t address;
template<typename Bus>
void operator()(Bus& bus, DataType value) const {
static_assert(std::is_same_v<DataType, uint8_t> || std::is_same_v<DataType, uint16_t> || std::is_same_v<DataType, uint32_t>, "Invalid DataType");
if (std::is_same<DataType, uint8_t>::value) {
return bus.Write8(address, value);
} else if (std::is_same<DataType, uint16_t>::value) {
return bus.Write16(address, value);
} else if (std::is_same<DataType, uint32_t>::value) {
return bus.Write32(address, value);
}
}
};
template<typename DataType, typename BusTuple, size_t... Idxs>
DataType ReadHelper(PhysicalMemory& mem, uint32_t address, std::index_sequence<Idxs...>) {
DataType data;
auto attempt_read = [&](auto&& bus) {
if (IsInside{address}(bus)) {
data = BusReader<DataType>{address}(bus);
return true;
} else {
return false;
}
};
// Using short-circuit evaluation here to keep testing until we find the right bus (but no further than that)
bool match_found = (attempt_read(std::get<Idxs>(mem.memory)) || ...);
if (!match_found)
throw std::runtime_error(fmt::format("Read from unknown physical address {:#010x}", address));
return data;
}
template<typename DataType, typename BusTuple, size_t... Idxs>
void WriteHelper(PhysicalMemory& mem, uint32_t address, DataType value, std::index_sequence<Idxs...>) {
auto attempt_write = [&](auto&& bus) {
if (IsInside{address}(bus)) {
BusWriter<DataType>{address}(bus, value);
return true;
} else {
return false;
}
};
// Using short-circuit evaluation here to keep testing until we find the right bus (but no further than that)
bool match_found = (attempt_write(std::get<Idxs>(mem.memory)) || ...);
if (!match_found)
throw std::runtime_error(fmt::format("Write to unknown physical address {:#010x}", address));
}
template<typename Bus, typename Callback>
bool ForEachMemoryBusHelper(Bus& bus, Callback& callback) {
if constexpr (std::is_base_of_v<MemoryBus<Bus::start, Bus::size>, Bus>) {
return callback(bus);
}
return false;
}
// Iterates over all MemoryBusses, calling callback on each of them until it returns true
template<typename Callback, typename... Busses>
bool ForEachMemoryBus(std::tuple<Busses...>& busses, Callback& callback) {
return (ForEachMemoryBusHelper(std::get<Busses>(busses), callback) || ...);
}
template<typename Bus>
HostMemoryBackedPage GetMemoryBackedPageFor(Bus& bus, PAddr address) {
return { bus.data + (address - bus.start) };
}
} // namespace detail
/**
* Read from PhysicalMemory under the constraint that only the address ranges on
* the BusTuple are considered.
* @throws std::runtime_error when the given address is outside any of the
* given Bus address ranges
*/
template<typename DataType, typename BusTuple = PhysicalMemory::Busses>
DataType ReadLegacy(PhysicalMemory& mem, uint32_t address) {
// TODO: Statically assert that BusTuple is a subtuple of mem.busses
// TODO: Restrict search to the given BusTuple
constexpr size_t length = std::tuple_size<BusTuple>::value;
return detail::ReadHelper<DataType, BusTuple>(mem, address, std::make_index_sequence<length>{});
}
/**
* Write to PhysicalMemory under the constraint that only the address ranges on
* the BusTuple are considered.
* @throws std::runtime_error when the given address is outside any of the
* given Bus address ranges
*/
template<typename DataType, typename BusTuple = PhysicalMemory::Busses>
void WriteLegacy(PhysicalMemory& mem, uint32_t address, DataType value) {
// TODO: Statically assert that BusTuple is a subtuple of mem.busses
// TODO: Restrict search to the given BusTuple
constexpr size_t length = std::tuple_size<BusTuple>::value;
detail::WriteHelper<DataType, BusTuple>(mem, address, value, std::make_index_sequence<length>{});
}
template<uint32_t PAddrStart, uint32_t Size>
inline constexpr bool IsMemoryBus(const MemoryBus<PAddrStart, Size>&) {
return true;
}
template<typename T>
inline constexpr bool IsMemoryBus(const T&) {
return false;
}
inline HostMemoryBackedPage LookupMemoryBackedPage(PhysicalMemory& mem, PAddr address) {
HostMemoryBackedPage out_page = { nullptr };
auto callback = [&](auto& bus) {
if (IsInside{address}(bus)) {
// Return null page if this is not a memory bus
// TODO: Also return null page if any hooks are set up
// if (!bus.write_hooks[(address - bus.start) >> 12] && !bus.read_hooks[(address - bus.start) >> 12]) {
if (IsMemoryBus(bus)) {
out_page = detail::GetMemoryBackedPageFor(bus, address);
}
return true;
}
return false;
};
detail::ForEachMemoryBus(mem.memory, callback);
return out_page;
}
// Deprecated since this doesn't check for or trigger any memory hooks
[[deprecated]] HostMemoryBackedPages LookupContiguousMemoryBackedPage(PhysicalMemory& mem, PAddr address, uint32_t num_bytes);
template<HookKind AccessMode>
HostMemoryBackedPages LookupContiguousMemoryBackedPage(PhysicalMemory& mem, PAddr address, uint32_t num_bytes);
template<typename DataType>
DataType Read(HostMemoryBackedPage page, uint32_t offset) noexcept {
static_assert(std::is_same_v<DataType, uint8_t> || std::is_same_v<DataType, uint16_t> || std::is_same_v<DataType, uint32_t>, "Invalid DataType");
if constexpr (std::is_same_v<DataType, uint8_t>) {
return page.data[offset];
} else {
DataType ret;
memcpy(&ret, &page.data[offset], sizeof(ret));
return boost::endian::little_to_native(ret);
}
}
template<typename DataType>
DataType Read(HostMemoryBackedPages pages, uint32_t offset) noexcept {
return Read<DataType>(HostMemoryBackedPage { pages.data }, offset);
}
template<typename DataType>
void Write(HostMemoryBackedPage page, uint32_t offset, DataType value) noexcept {
static_assert(std::is_same_v<DataType, uint8_t> || std::is_same_v<DataType, uint16_t> || std::is_same_v<DataType, uint32_t>, "Invalid DataType");
if constexpr (std::is_same_v<DataType, uint8_t>) {
page.data[offset] = value;
} else {
value = boost::endian::native_to_little(value);
memcpy(&page.data[offset], &value, sizeof(value));
}
}
template<typename DataType>
void Write(HostMemoryBackedPages pages, uint32_t offset, DataType value) noexcept {
Write(HostMemoryBackedPage { pages.data }, offset, value);
}
/**
* Assigns the given Hook to all pages in the specified address range.
*
* @pre The address range may not cross a bus boundary
*/
template<HookKind Kind>
void SetHook(PhysicalMemory&, PAddr start, uint32_t num_bytes, HookHandler<Kind>&);
template<HookKind Kind, typename F>
auto GenerateHooks(PhysicalMemory& mem, PAddr start, uint32_t num_bytes, const F& callback)
-> std::enable_if_t<std::is_invocable_r_v<HookHandler<Kind>*, F, PAddr>> {
static_assert( Kind == HookKind::Read || Kind == HookKind::Write,
"Must pick either read or write hooks");
uint32_t end_page_index = ((start & 0xfff) + 0x1000 + num_bytes - 1) >> 12;
for (uint32_t page_index = 0; page_index < end_page_index; ++page_index) {
PAddr page_start = ((start >> 12) + page_index) << 12;
// Pass 1 as the region size for SetWriteHook since it's not used for single-page assignments anyway
PAddr hook_range_start = page_index == 0 ? start : page_start;
PAddr hook_range_end = (page_index == end_page_index - 1) ? start + num_bytes : (page_start + 0x1000);
auto hook = callback(page_start);
if (hook) {
SetHook<Kind>(mem, hook_range_start, (hook_range_end - hook_range_start), *hook);
}
}
}
// TODO: Should read the expected HookHandler<Kind>& for validation
void ClearHook(PhysicalMemory& mem, HookKind kind, PAddr start, uint32_t num_bytes);
} // namespace Memory