mikage-dev/source/platform/gpu/pica.hpp

1323 lines
50 KiB
C++

#pragma once
#include "float.hpp"
#include <array>
#include <cstddef>
#include <cmath>
#include <initializer_list>
#include <map>
#include <vector>
#include <framework/bit_field_new.hpp>
#include <framework/image_format.hpp>
#include <framework/meta_tools.hpp>
#include <video_core/src/support/common/bit_field.h>
namespace Pica {
// helper macro to properly align structure members.
// Calling INSERT_PADDING_WORDS will add a new member variable with a name like "pad121",
// depending on the current source line to make sure variable names are unique.
#define INSERT_PADDING_WORDS_HELPER1(x, y) x ## y
#define INSERT_PADDING_WORDS_HELPER2(x, y) INSERT_PADDING_WORDS_HELPER1(x, y)
#define INSERT_PADDING_WORDS(num_words) uint32_t INSERT_PADDING_WORDS_HELPER2(pad, __LINE__)[(num_words)]
enum class CullMode : uint32_t {
// Select which polygons are considered to be "frontfacing".
KeepAll = 0,
KeepClockWise = 1,
KeepCounterClockWise = 2,
// TODO: What does the third value imply?
};
struct AlphaTest {
enum class Function : uint32_t {
Always = 1,
NotEqual = 3,
GreaterThan = 6,
GreaterThanOrEqual = 7,
};
uint32_t storage;
auto enable() const { return BitField::v3::MakeFlagOn<0>(this); }
auto function() const { return BitField::v3::MakeFieldOn<4, 3, Function>(this); }
auto reference() const { return BitField::v3::MakeFieldOn<8, 8>(this); }
};
struct StencilTest {
uint32_t raw1;
uint32_t raw2;
enum class CompareFunc {
Never = 0,
Always = 1,
Equal = 2,
NotEqual = 3,
LessThan = 4,
LessThanOrEqual = 5,
GreaterThan = 6,
GreaterThanOrEqual = 7
};
enum class Op {
Keep = 0,
Zero = 1,
Replace = 2,
IncrementAndClamp = 3,
DecrementAndClamp = 4,
Invert = 5,
IncrementAndWrap = 6,
DecrementAndWrap = 7
};
auto enabled() const { return BitField::v3::MakeFlagOn<&StencilTest::raw1, 0>(this); }
auto compare_function() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 4, 3, CompareFunc>(this); }
auto reference() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 16, 8>(this); }
// Masks for compare stencil op outputs and stencil function inputs, respectively
auto mask_out() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 8, 8>(this); }
auto mask_in() const { return BitField::v3::MakeFieldOn<&StencilTest::raw1, 24, 8>(this); }
auto op_fail_stencil() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 0, 3, Op>(this); }
auto op_pass_stencil_fail_depth() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 4, 3, Op>(this); }
auto op_pass_both() const { return BitField::v3::MakeFieldOn<&StencilTest::raw2, 8, 3, Op>(this); }
};
enum class DepthFunc : uint32_t {
Never = 0,
Always = 1,
LessThan = 4,
LessThanOrEqual = 5,
GreaterThan = 6,
GreaterThanOrEqual = 7,
};
enum class AlphaBlendEquation : uint32_t {
Add = 0,
ReverseSubtract = 2,
};
enum class AlphaBlendFactor : uint32_t {
Zero = 0,
One = 1,
SourceColor = 2,
DestinationColor = 4,
SourceAlpha = 6,
OneMinusSourceAlpha = 7,
DestinationAlpha = 8,
OneMinusDestinationAlpha = 9,
ConstantColor = 0xa,
OneMinusConstantColor = 0xb,
ConstantAlpha = 0xc,
OneMinusConstantAlpha = 0xd,
SourceAlphaSaturate = 0xe,
};
enum class LogicOp : uint32_t {
Copy = 3,
Set = 4,
Noop = 6,
};
enum class TexFilter : uint32_t {
Nearest = 0,
Linear = 1
};
enum class TexWrapMode : uint32_t {
ClampToEdge = 0,
ClampToBorder = 1,
Repeat = 2,
MirroredRepeat = 3,
};
enum class LightLutIndex : uint32_t {
D0 = 0,
D1 = 1,
FR = 3, // Fresnel
RB = 4, // Reflect Blue
RG = 5, // Reflect Green
RR = 6, // Reflect Red
// Spot light
SP0 = 8,
// 9-15: SP1-SP7
// Distance attenuation
DA0 = 16,
// 17-23: DA1-DA7
};
enum class LightLutInput : uint32_t {
NH = 0,
VH = 1,
NV = 2,
LN = 3,
SP = 4, // Spot light
CP = 5, // (cos φ)
};
enum class LightLutScale : uint32_t {
x1 = 0,
x2 = 1,
x4 = 2,
x8 = 3,
x0_25 = 6,
x0_5 = 7,
};
struct FramebufferColorFormat {
uint32_t raw;
static constexpr std::array<GenericImageFormat, 5> format_map = {{
GenericImageFormat::RGBA8,
GenericImageFormat::RGB8,
GenericImageFormat::RGBA5551,
GenericImageFormat::RGB565,
GenericImageFormat::RGBA4
}};
};
struct FramebufferDepthStencilFormat {
uint32_t raw;
static constexpr std::array<GenericImageFormat, 4> format_map = {{
GenericImageFormat::D16,
GenericImageFormat::Unknown,
GenericImageFormat::D24,
GenericImageFormat::D24S8
}};
};
struct LightingColor {
uint32_t storage;
constexpr auto blue() const { return BitField::v3::MakeFieldOn<0, 10>(this); }
constexpr auto green() const { return BitField::v3::MakeFieldOn<10, 10>(this); }
constexpr auto red() const { return BitField::v3::MakeFieldOn<20, 10>(this); }
};
struct TextureConfig {
struct {
uint32_t storage;
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
} border_color;
union {
BitFieldLegacy< 0, 16, uint32_t> height;
BitFieldLegacy<16, 16, uint32_t> width;
};
union {
BitFieldLegacy< 1, 1, TexFilter> mag_filter;
BitFieldLegacy< 2, 1, TexFilter> min_filter;
BitFieldLegacy< 8, 2, TexWrapMode> wrap_t;
BitFieldLegacy<12, 2, TexWrapMode> wrap_s;
BitFieldLegacy<24, 1, TexFilter> mip_filter;
};
INSERT_PADDING_WORDS(0x1);
uint32_t address_raw;
uint32_t GetPhysicalAddress() const {
return address_raw * 8;
}
// texture1 and texture2 store the texture format directly after the address
// whereas texture0 inserts some additional flags inbetween.
// Hence, we store the format separately so that all other parameters can be described
// in a single structure.
};
struct TextureFormat {
uint32_t raw;
static constexpr std::array<GenericImageFormat, 14> format_map = {{
GenericImageFormat::RGBA8,
GenericImageFormat::RGB8,
GenericImageFormat::RGBA5551,
GenericImageFormat::RGB565,
GenericImageFormat::RGBA4,
GenericImageFormat::IA8,
GenericImageFormat::RG8,
GenericImageFormat::I8,
GenericImageFormat::A8,
GenericImageFormat::IA4,
GenericImageFormat::I4,
GenericImageFormat::A4,
GenericImageFormat::ETC1,
GenericImageFormat::ETC1A4,
}};
};
struct FullTextureConfig {
bool enabled;
TextureConfig config;
TextureFormat format;
};
// Returns index corresponding to the Regs member labeled by field_name
// TODO: Due to Visual studio bug 209229, offsetof does not return constant expressions
// when used with array elements (e.g. PICA_REG_INDEX(vs_uniform_setup.set_value[1])).
// For details cf. https://connect.microsoft.com/VisualStudio/feedback/details/209229/offsetof-does-not-produce-a-constant-expression-for-array-members
// Hopefully, this will be fixed sometime in the future.
// For lack of better alternatives, we currently hardcode the offsets when constant
// expressions are needed via PICA_REG_INDEX_WORKAROUND (on sane compilers, static_asserts
// will then make sure the offsets indeed match the automatically calculated ones).
#define PICA_REG_INDEX(field_name) (offsetof(Pica::Regs, field_name) / sizeof(uint32_t))
#if defined(_MSC_VER)
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) (backup_workaround_index)
#else
// NOTE: Yeah, hacking in a static_assert here just to workaround the lacking MSVC compiler
// really is this annoying. This macro just forwards its first argument to PICA_REG_INDEX
// and then performs a (no-op) cast to size_t iff the second argument matches the expected
// field offset. Otherwise, the compiler will fail to compile this code.
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) \
((typename std::enable_if<backup_workaround_index == PICA_REG_INDEX(field_name), size_t>::type)PICA_REG_INDEX(field_name))
#endif // _MSC_VER
struct Regs {
INSERT_PADDING_WORDS(0x10);
uint32_t trigger_irq;
INSERT_PADDING_WORDS(0x2f);
union {
BitFieldLegacy<0, 2, CullMode> cull_mode;
};
// NOTE: This is actually half the viewport width
BitFieldLegacy<0, 24, uint32_t> viewport_size_x;
INSERT_PADDING_WORDS(0x1);
// NOTE: This is actually half the viewport height
BitFieldLegacy<0, 24, uint32_t> viewport_size_y;
INSERT_PADDING_WORDS(0x9);
BitFieldLegacy<0, 24, uint32_t> viewport_depth_range; // float24
BitFieldLegacy<0, 24, uint32_t> viewport_depth_far_plane; // float24
/**
* Total number of attributes output by the final shader stage and sent to
* the post-shader-pipeline.
*
* Note that this is unrelated to the set of output registers accessible
* by shaders, which is indicated by gs/vs_output_register_mask instead.
* In particular, the shader output registers may have indexes higher
* than the number of shader output attributes: Output attributes are
* tightly packed, whereas there may be "gaps" of unused output registers.
*/
BitFieldLegacy<0, 3, uint32_t> shader_num_output_attributes;
union VSOutputAttributes {
// Maps components of output vertex attributes to semantics
enum Semantic : uint32_t
{
POSITION_X = 0,
POSITION_Y = 1,
POSITION_Z = 2,
POSITION_W = 3,
// This quaternion encodes a rotation from the orthonormal triad into the (normal, tangent, bitangent) coordinate system
QUATERNION_X = 4,
QUATERNION_Y = 5,
QUATERNION_Z = 6,
QUATERNION_W = 7,
COLOR_R = 8,
COLOR_G = 9,
COLOR_B = 10,
COLOR_A = 11,
TEXCOORD0_U = 12,
TEXCOORD0_V = 13,
TEXCOORD1_U = 14,
TEXCOORD1_V = 15,
TEXCOORD0_W = 16, // For projection texture (texture unit 0, only)
TEXCOORD2_U = 22,
TEXCOORD2_V = 23,
VIEW_X = 18,
VIEW_Y = 19,
VIEW_Z = 20,
INVALID = 31,
};
BitFieldLegacy< 0, 5, Semantic> map_x;
BitFieldLegacy< 8, 5, Semantic> map_y;
BitFieldLegacy<16, 5, Semantic> map_z;
BitFieldLegacy<24, 5, Semantic> map_w;
};
std::array<VSOutputAttributes, 7> shader_output_semantics;
INSERT_PADDING_WORDS(0xf);
uint32_t scissor_pos;
uint32_t scissor_size;
union {
uint32_t raw;
BitFieldLegacy< 0, 10, int32_t> x;
BitFieldLegacy<16, 10, int32_t> y;
} viewport_corner;
INSERT_PADDING_WORDS(0x17);
union {
BitFieldLegacy< 0, 1, uint32_t> texture0_enable;
BitFieldLegacy< 1, 1, uint32_t> texture1_enable;
BitFieldLegacy< 2, 1, uint32_t> texture2_enable;
};
TextureConfig texture0;
INSERT_PADDING_WORDS(0x8);
struct TextureFormatRegister {
uint32_t storage;
auto value() const { return BitField::v3::MakeFieldOn<0, 4, TextureFormat>(this); }
operator TextureFormat() const {
return value()();
}
};
TextureFormatRegister texture0_format;
INSERT_PADDING_WORDS(0x2);
TextureConfig texture1;
TextureFormatRegister texture1_format;
INSERT_PADDING_WORDS(0x2);
TextureConfig texture2;
TextureFormatRegister texture2_format;
INSERT_PADDING_WORDS(0x21);
const std::array<FullTextureConfig, 3> GetTextures() const {
return {{
{ texture0_enable.ToBool(), texture0, texture0_format },
{ texture1_enable.ToBool(), texture1, texture1_format },
{ texture2_enable.ToBool(), texture2, texture2_format }
}};
}
// 0xc0-0xff: Texture Combiner (akin to glTexEnv)
struct TevStageConfig {
enum class Source : uint32_t {
PrimaryColor = 0x0,
PrimaryFragmentColor = 0x1,
SecondaryFragmentColor = 0x2,
Texture0 = 0x3,
Texture1 = 0x4,
Texture2 = 0x5,
Texture3 = 0x6,
// 0x7-0xc = primary color??
CombinerBuffer = 0xd,
Constant = 0xe,
Previous = 0xf,
};
enum class ColorModifier : uint32_t {
SourceColor = 0,
OneMinusSourceColor = 1,
SourceAlpha = 2,
OneMinusSourceAlpha = 3,
// Non-standard extensions:
SourceRed = 4,
OneMinusSourceRed = 5,
SourceGreen = 8,
OneMinusSourceGreen = 9,
SourceBlue = 12,
OneMinusSourceBlue = 13,
};
enum class AlphaModifier : uint32_t {
SourceAlpha = 0,
OneMinusSourceAlpha = 1,
// Non-standard extensions:
SourceRed = 2,
OneMinusSourceRed = 3,
SourceGreen = 4,
OneMinusSourceGreen = 5,
SourceBlue = 6,
OneMinusSourceBlue = 7,
};
enum class Operation : uint32_t {
Replace = 0,
Modulate = 1,
Add = 2,
AddSigned = 3,
Lerp = 4,
Subtract = 5,
Dot3RGB = 6, // Dot product of first and second input, each offset by the median value (0.5/127.5)
Dot3RGBA = 7, // Like Dot3, but the scalar result is written to all components rather than just the RGB ones
MultiplyThenAdd = 8,
AddThenMultiply = 9,
};
uint32_t storage[5];
auto color_source1() const { return BitField::v3::MakeFieldOn<0, 4, Source>(&storage[0]); }
auto color_source2() const { return BitField::v3::MakeFieldOn<4, 4, Source>(&storage[0]); }
auto color_source3() const { return BitField::v3::MakeFieldOn<8, 4, Source>(&storage[0]); }
auto alpha_source1() const { return BitField::v3::MakeFieldOn<16, 4, Source>(&storage[0]); }
auto alpha_source2() const { return BitField::v3::MakeFieldOn<20, 4, Source>(&storage[0]); }
auto alpha_source3() const { return BitField::v3::MakeFieldOn<24, 4, Source>(&storage[0]); }
auto color_modifier1() const { return BitField::v3::MakeFieldOn<0, 4, ColorModifier>(&storage[1]); }
auto color_modifier2() const { return BitField::v3::MakeFieldOn<4, 4, ColorModifier>(&storage[1]); }
auto color_modifier3() const { return BitField::v3::MakeFieldOn<8, 4, ColorModifier>(&storage[1]); }
auto alpha_modifier1() const { return BitField::v3::MakeFieldOn<12, 3, AlphaModifier>(&storage[1]); }
auto alpha_modifier2() const { return BitField::v3::MakeFieldOn<16, 3, AlphaModifier>(&storage[1]); }
auto alpha_modifier3() const { return BitField::v3::MakeFieldOn<20, 3, AlphaModifier>(&storage[1]); }
auto color_op() const { return BitField::v3::MakeFieldOn<0, 4, Operation>(&storage[2]); }
auto alpha_op() const { return BitField::v3::MakeFieldOn<16, 4, Operation>(&storage[2]); }
auto const_r() const { return BitField::v3::MakeFieldOn<0, 8, uint8_t>(&storage[3]); }
auto const_g() const { return BitField::v3::MakeFieldOn<8, 8, uint8_t>(&storage[3]); }
auto const_b() const { return BitField::v3::MakeFieldOn<16, 8, uint8_t>(&storage[3]); }
auto const_a() const { return BitField::v3::MakeFieldOn<24, 8, uint8_t>(&storage[3]); }
// Access these through the convenience getters below
auto multiplier_exp_rgb() const { return BitField::v3::MakeFieldOn<0, 2>(&storage[4]); }
auto multiplier_exp_a() const { return BitField::v3::MakeFieldOn<16, 2>(&storage[4]); }
uint32_t GetMultiplierRGB() const {
if (multiplier_exp_rgb() == 3) {
throw std::runtime_error("Invalid RGB scaling exponent 3");
}
return (1 << multiplier_exp_rgb());
}
uint32_t GetMultiplierA() const {
if (multiplier_exp_a() == 3) {
throw std::runtime_error("Invalid alpha scaling exponent 3");
}
return (1 << multiplier_exp_a());
}
};
TevStageConfig tev_stage0;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage1;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage2;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage3;
INSERT_PADDING_WORDS(0x3);
struct {
uint32_t storage;
auto update_mask_rgb() const { return BitField::v3::MakeFieldOn<8, 4>(this); }
auto update_mask_a() const { return BitField::v3::MakeFieldOn<12, 4>(this); }
bool TevStageUpdatesRGB(std::size_t index) const {
return 0 != ((update_mask_rgb() >> index) & 1);
}
bool TevStageUpdatesA(std::size_t index) const {
return 0 != ((update_mask_a() >> index) & 1);
}
} combiner_buffer;
INSERT_PADDING_WORDS(0xf);
TevStageConfig tev_stage4;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage5;
// Value used to initialize the tev combiner buffer
struct {
uint32_t storage;
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
} combiner_buffer_init;
INSERT_PADDING_WORDS(0x2);
const std::array<Regs::TevStageConfig,6> GetTevStages() const {
return { tev_stage0, tev_stage1,
tev_stage2, tev_stage3,
tev_stage4, tev_stage5 };
}
struct OutputMerger {
union {
// If false, logic blending is used
BitFieldLegacy<8, 1, uint32_t> alphablend_enable;
};
union {
uint32_t raw;
BitFieldLegacy< 0, 8, AlphaBlendEquation> blend_equation_rgb;
BitFieldLegacy< 8, 8, AlphaBlendEquation> blend_equation_a;
BitFieldLegacy<16, 4, AlphaBlendFactor> factor_source_rgb;
BitFieldLegacy<20, 4, AlphaBlendFactor> factor_dest_rgb;
BitFieldLegacy<24, 4, AlphaBlendFactor> factor_source_a;
BitFieldLegacy<28, 4, AlphaBlendFactor> factor_dest_a;
} alpha_blending;
union {
BitFieldLegacy<0, 4, LogicOp> op;
} logic_op;
struct {
uint32_t storage;
auto r() const { return BitField::v3::MakeFieldOn< 0, 8>(this); }
auto g() const { return BitField::v3::MakeFieldOn< 8, 8>(this); }
auto b() const { return BitField::v3::MakeFieldOn<16, 8>(this); }
auto a() const { return BitField::v3::MakeFieldOn<24, 8>(this); }
} blend_constant;
AlphaTest alpha_test;
StencilTest stencil_test;
union {
BitFieldLegacy< 0, 1, uint32_t> depth_test_enable;
BitFieldLegacy< 4, 3, DepthFunc> depth_test_func;
BitFieldLegacy< 8, 1, uint32_t> color_write_enable_r;
BitFieldLegacy< 9, 1, uint32_t> color_write_enable_g;
BitFieldLegacy<10, 1, uint32_t> color_write_enable_b;
BitFieldLegacy<11, 1, uint32_t> color_write_enable_a;
BitFieldLegacy<12, 1, uint32_t> depth_write_enable;
};
INSERT_PADDING_WORDS(0x8);
} output_merger;
struct {
INSERT_PADDING_WORDS(0x2);
uint32_t raw_access_flags_color[2];
uint32_t raw_access_flags_depth_stencil[2];
// These fields look like bitmasks, but they control access to all components at once.
// Disabling them (i.e. setting them to 0) takes priority over the output_merger flags.
auto color_read_enabled() const { return BitField::v3::MakeFieldOn<0, 4>(&raw_access_flags_color[0]); }
auto color_write_enabled() const { return BitField::v3::MakeFieldOn<0, 4>(&raw_access_flags_color[1]); }
auto depth_stencil_read_enabled() const { return BitField::v3::MakeFieldOn<0, 2>(&raw_access_flags_depth_stencil[0]); }
auto depth_stencil_write_enabled() const { return BitField::v3::MakeFieldOn<0, 2>(&raw_access_flags_depth_stencil[1]); }
uint32_t depth_format;
BitFieldLegacy<16, 3, uint32_t> color_format;
FramebufferColorFormat GetColorFormat() const {
return { color_format.Value() };
}
FramebufferDepthStencilFormat GetDepthStencilFormat() const {
return { depth_format };
}
bool HasStencilBuffer() const {
return (FramebufferDepthStencilFormat::format_map[depth_format] == GenericImageFormat::D24S8);
}
INSERT_PADDING_WORDS(0x4);
uint32_t depth_buffer_address;
uint32_t color_buffer_address;
union {
// Apparently, the framebuffer width is stored as expected,
// while the height is stored as the actual height minus one.
// Hence, don't access these fields directly but use the accessors
// GetWidth() and GetHeight() instead.
BitFieldLegacy< 0, 11, uint32_t> width;
BitFieldLegacy<12, 10, uint32_t> height; // TODO: Does this indeed only have 10 bits?
};
INSERT_PADDING_WORDS(0x1);
inline uint32_t GetColorBufferPhysicalAddress() const {
return DecodeAddressRegister(color_buffer_address);
}
inline uint32_t GetDepthBufferPhysicalAddress() const {
return DecodeAddressRegister(depth_buffer_address);
}
inline uint32_t GetWidth() const {
return width;
}
inline uint32_t GetHeight() const {
return height + 1;
}
} framebuffer;
INSERT_PADDING_WORDS(0x20);
struct {
struct {
// The 3DS fragment lighting pipeline doesn't distinguish between
// materials and lights, so these properties are premultiplied
std::array<LightingColor, 2> specular;
LightingColor diffuse;
LightingColor ambient;
// NOTE: If is_directional() is false, these actually specify the position
std::array<uint32_t, 2> raw_light_dir;
constexpr auto raw_light_dir_x() const { return BitField::v3::MakeFieldOn< 0, 16>(&raw_light_dir[0]); }
constexpr auto raw_light_dir_y() const { return BitField::v3::MakeFieldOn<16, 16>(&raw_light_dir[0]); }
constexpr auto raw_light_dir_z() const { return BitField::v3::MakeFieldOn< 0, 16>(&raw_light_dir[1]); }
float16 get_light_dir_x() const { return float16::FromRawFloat(raw_light_dir_x()); }
float16 get_light_dir_y() const { return float16::FromRawFloat(raw_light_dir_y()); }
float16 get_light_dir_z() const { return float16::FromRawFloat(raw_light_dir_z()); }
// 13-bit signed fixed-point coordinates with 11 bits of precision
std::array<uint32_t, 2> raw_spot_dir;
constexpr auto spot_dir_x() const { return BitField::v3::MakeFieldOn< 0, 13, int32_t>(&raw_spot_dir[0]); }
constexpr auto spot_dir_y() const { return BitField::v3::MakeFieldOn<16, 13, int32_t>(&raw_spot_dir[0]); }
constexpr auto spot_dir_z() const { return BitField::v3::MakeFieldOn< 0, 13, int32_t>(&raw_spot_dir[1]); }
INSERT_PADDING_WORDS(0x1);
struct {
uint32_t storage;
constexpr auto is_directional() const { return BitField::v3::MakeFlagOn<0>(this); }
// If true, the absolute value is used for dot products. This
// unconditionally applies to the computation for diffuse
// lighting, but it affects LUT indexing only if unsigned
// indexes are used.
constexpr auto abs_dot_products() const { return BitField::v3::MakeFlagOn<1>(this); }
constexpr auto specular0_use_geometric_factor() const { return BitField::v3::MakeFlagOn<2>(this); }
constexpr auto specular1_use_geometric_factor() const { return BitField::v3::MakeFlagOn<3>(this); }
} config;
// INSERT_PADDING_WORDS(0x1); // TODO: This ("two sided diffuse") takes the absolute of the dot product before indexing into the LUT. Not sure if it applies to all LUTs though
INSERT_PADDING_WORDS(0x6);
} lights[8]; // indexing must take light permutation into account
LightingColor global_ambient;
INSERT_PADDING_WORDS(0x1);
struct {
uint32_t storage;
constexpr auto value() const { return BitField::v3::MakeFieldOn<0, 3>(this); }
} max_light_id;
#pragma pack(4)
struct {
uint64_t storage;
constexpr auto fresnel_to_primary_alpha() const { return BitField::v3::MakeFlagOn<2>(this); }
constexpr auto fresnel_to_secondary_alpha() const { return BitField::v3::MakeFlagOn<3>(this); }
constexpr auto lut_config() const { return BitField::v3::MakeFieldOn<4, 4>(this); }
// If true, set the secondary fragment color to zero if the LN dot product is zero
constexpr auto clamp_highlights() const { return BitField::v3::MakeFlagOn<27>(this); }
// TODO: Do these control the LUTs themselves or the use of the corresponding terms in lighting calculations?
constexpr auto spot_disabled() const { return BitField::v3::MakeFieldOn<40, 8>(this); }
constexpr auto d0_disabled() const { return BitField::v3::MakeFlagOn<48>(this); }
constexpr auto d1_disabled() const { return BitField::v3::MakeFlagOn<49>(this); }
// Bit 50 doesn't seem to be used (always set 1)
constexpr auto fr_disabled() const { return BitField::v3::MakeFlagOn<51>(this); }
constexpr auto rb_disabled() const { return BitField::v3::MakeFlagOn<52>(this); }
constexpr auto rg_disabled() const { return BitField::v3::MakeFlagOn<53>(this); }
constexpr auto rr_disabled() const { return BitField::v3::MakeFlagOn<54>(this); }
constexpr auto dist_disabled() const { return BitField::v3::MakeFieldOn<56, 8>(this); }
uint32_t GetEnabledLUTMask() const {
uint32_t mask = 0;
mask |= spot_disabled()() << Meta::to_underlying(LightLutIndex::SP0);
mask |= dist_disabled()() << Meta::to_underlying(LightLutIndex::DA0);
mask |= d0_disabled() << Meta::to_underlying(LightLutIndex::D0);
mask |= d1_disabled() << Meta::to_underlying(LightLutIndex::D1);
// NOTE: LUT index 2 not used
mask |= fr_disabled() << Meta::to_underlying(LightLutIndex::FR);
mask |= rb_disabled() << Meta::to_underlying(LightLutIndex::RB);
mask |= rg_disabled() << Meta::to_underlying(LightLutIndex::RG);
mask |= rr_disabled() << Meta::to_underlying(LightLutIndex::RR);
// NOTE: LUT index 7 not used
return (~mask) & (0xffffff ^ 0b1000'0100);
}
bool LUTConfigConsistent() const {
// TODO: Check that lut_config is consistent with the disablement bits
const uint32_t enabled_masks[32] = {
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::SP0)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
(1 << Meta::to_underlying(LightLutIndex::FR)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::SP0)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::D1)) | (1 << Meta::to_underlying(LightLutIndex::RR)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
(1 << Meta::to_underlying(LightLutIndex::D0)) | (1 << Meta::to_underlying(LightLutIndex::D1)) | (1 << Meta::to_underlying(LightLutIndex::FR)) | (0xff << Meta::to_underlying(LightLutIndex::D0)),
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::FR)),
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::D1)),
0xffffff ^ (1 << Meta::to_underlying(LightLutIndex::RB)) ^ (1 << Meta::to_underlying(LightLutIndex::RG)),
0,
0xffffff,
};
auto enabled_luts_mask = enabled_masks[lut_config()];
auto used_luts_mask = GetEnabledLUTMask();
return !used_luts_mask || ((used_luts_mask & enabled_luts_mask) == used_luts_mask);
}
} config;
#pragma pack()
struct {
uint32_t storage;
constexpr auto entry_index() const { return BitField::v3::MakeFieldOn<0, 8>(this); }
constexpr auto table_selector() const { return BitField::v3::MakeFieldOn<8, 5, LightLutIndex>(this); }
} lut_write_index;
uint32_t disabled_storage;
constexpr auto disabled() const { return BitField::v3::MakeFlagOn<0>(&disabled_storage); }
INSERT_PADDING_WORDS(0x1);
// Sink register for writing LUT data to the location given by lut_write_index
struct {
uint32_t storage;
// Unsigned 0.12-bit fixed-point
constexpr auto value() const { return BitField::v3::MakeFieldOn<0, 12>(this); }
// Signed 1.0.11-bit fixed-point
constexpr auto delta() const { return BitField::v3::MakeFieldOn<12, 12>(this); }
} set_lut_data[8];
struct {
uint32_t storage_index_signs; // TODO
uint32_t storage_selectors;
uint32_t storage_scales; // TODO
// If set, the LUT index is computed by multiplying the dot product with 128 and clamping to [-128;127].
// Otherwise, it is computed by multiplying with 256 and clamping to [0;255].
// For the latter case, also consider the abs flag in the light config.
constexpr auto index_signed_d0() const { return BitField::v3::MakeFlagOn< 1>(&storage_index_signs); }
constexpr auto index_signed_d1() const { return BitField::v3::MakeFlagOn< 5>(&storage_index_signs); }
constexpr auto index_signed_sp() const { return BitField::v3::MakeFlagOn< 9>(&storage_index_signs); }
constexpr auto index_signed_fr() const { return BitField::v3::MakeFlagOn<13>(&storage_index_signs); }
constexpr auto index_signed_rb() const { return BitField::v3::MakeFlagOn<17>(&storage_index_signs); }
constexpr auto index_signed_rg() const { return BitField::v3::MakeFlagOn<21>(&storage_index_signs); }
constexpr auto index_signed_rr() const { return BitField::v3::MakeFlagOn<25>(&storage_index_signs); }
constexpr auto selector_d0() const { return BitField::v3::MakeFieldOn< 0, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_d1() const { return BitField::v3::MakeFieldOn< 4, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_sp() const { return BitField::v3::MakeFieldOn< 8, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_fr() const { return BitField::v3::MakeFieldOn<12, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_rb() const { return BitField::v3::MakeFieldOn<16, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_rg() const { return BitField::v3::MakeFieldOn<20, 3, LightLutInput>(&storage_selectors); }
constexpr auto selector_rr() const { return BitField::v3::MakeFieldOn<24, 3, LightLutInput>(&storage_selectors); }
constexpr auto scale_d0() const { return BitField::v3::MakeFieldOn< 0, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_d1() const { return BitField::v3::MakeFieldOn< 4, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_sp() const { return BitField::v3::MakeFieldOn< 8, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_fr() const { return BitField::v3::MakeFieldOn<12, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_rb() const { return BitField::v3::MakeFieldOn<16, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_rg() const { return BitField::v3::MakeFieldOn<20, 3, LightLutScale>(&storage_scales); }
constexpr auto scale_rr() const { return BitField::v3::MakeFieldOn<24, 3, LightLutScale>(&storage_scales); }
} lut_config;
INSERT_PADDING_WORDS(0x6);
uint32_t storage_light_permutation;
// Maps light IDs (0..max_light_id) to indexes into the light config array
unsigned GetLightIndex(unsigned id) const {
return (storage_light_permutation >> (4 * id)) & 0b111;
}
INSERT_PADDING_WORDS(0x26);
} lighting;
struct VertexAttributes {
enum class Format : uint64_t {
BYTE = 0,
UBYTE = 1,
SHORT = 2,
FLOAT = 3,
};
BitFieldLegacy<0, 29, uint32_t> base_address;
uint32_t GetPhysicalBaseAddress() const {
return DecodeAddressRegister(base_address);
}
// Descriptor for internal vertex attributes
union {
BitFieldLegacy< 0, 2, Format> format0; // size of one element
BitFieldLegacy< 2, 2, uint64_t> size0; // number of elements minus 1
BitFieldLegacy< 4, 2, Format> format1;
BitFieldLegacy< 6, 2, uint64_t> size1;
BitFieldLegacy< 8, 2, Format> format2;
BitFieldLegacy<10, 2, uint64_t> size2;
BitFieldLegacy<12, 2, Format> format3;
BitFieldLegacy<14, 2, uint64_t> size3;
BitFieldLegacy<16, 2, Format> format4;
BitFieldLegacy<18, 2, uint64_t> size4;
BitFieldLegacy<20, 2, Format> format5;
BitFieldLegacy<22, 2, uint64_t> size5;
BitFieldLegacy<24, 2, Format> format6;
BitFieldLegacy<26, 2, uint64_t> size6;
BitFieldLegacy<28, 2, Format> format7;
BitFieldLegacy<30, 2, uint64_t> size7;
BitFieldLegacy<32, 2, Format> format8;
BitFieldLegacy<34, 2, uint64_t> size8;
BitFieldLegacy<36, 2, Format> format9;
BitFieldLegacy<38, 2, uint64_t> size9;
BitFieldLegacy<40, 2, Format> format10;
BitFieldLegacy<42, 2, uint64_t> size10;
BitFieldLegacy<44, 2, Format> format11;
BitFieldLegacy<46, 2, uint64_t> size11;
// If bit N in this field is set, data written to fixed_vertex_attribute_sink
// will be used as the default for uninitialized attributes.
// (Note that vertex loaders take priority over this default value)
BitFieldLegacy<48, 12, uint64_t> fixed_attribute_mask;
// number of total attributes minus 1
BitFieldLegacy<60, 4, uint64_t> num_extra_attributes;
};
inline Format GetFormat(int n) const {
Format formats[] = {
format0, format1, format2, format3,
format4, format5, format6, format7,
format8, format9, format10, format11
};
return formats[n];
}
inline int GetNumElements(int n) const {
uint64_t sizes[] = {
size0, size1, size2, size3,
size4, size5, size6, size7,
size8, size9, size10, size11
};
return (int)sizes[n]+1;
}
inline int GetElementSizeInBytes(int n) const {
return (GetFormat(n) == Format::FLOAT) ? 4 :
(GetFormat(n) == Format::SHORT) ? 2 : 1;
}
inline int GetStride(int n) const {
return GetNumElements(n) * GetElementSizeInBytes(n);
}
inline uint32_t GetNumTotalAttributes() const {
return static_cast<uint32_t>(num_extra_attributes + 1);
}
// Attribute loaders map the source vertex data to input attributes
// This e.g. allows to load different attributes from different memory locations
struct {
// Source attribute data offset from the base address
uint32_t data_offset;
union {
BitFieldLegacy< 0, 4, uint64_t> comp0;
BitFieldLegacy< 4, 4, uint64_t> comp1;
BitFieldLegacy< 8, 4, uint64_t> comp2;
BitFieldLegacy<12, 4, uint64_t> comp3;
BitFieldLegacy<16, 4, uint64_t> comp4;
BitFieldLegacy<20, 4, uint64_t> comp5;
BitFieldLegacy<24, 4, uint64_t> comp6;
BitFieldLegacy<28, 4, uint64_t> comp7;
BitFieldLegacy<32, 4, uint64_t> comp8;
BitFieldLegacy<36, 4, uint64_t> comp9;
BitFieldLegacy<40, 4, uint64_t> comp10;
BitFieldLegacy<44, 4, uint64_t> comp11;
// bytes for a single vertex in this loader
BitFieldLegacy<48, 8, uint64_t> byte_count;
BitFieldLegacy<60, 4, uint64_t> component_count;
};
inline int GetComponent(int n) const {
uint64_t components[] = {
comp0, comp1, comp2, comp3,
comp4, comp5, comp6, comp7,
comp8, comp9, comp10, comp11
};
return (int)components[n];
}
} attribute_loaders[12];
} vertex_attributes;
struct {
enum IndexFormat : uint32_t {
BYTE = 0,
SHORT = 1,
};
union {
BitFieldLegacy<0, 31, uint32_t> offset; // relative to base attribute address
BitFieldLegacy<31, 1, IndexFormat> format;
};
} index_array;
// Number of vertices to render
uint32_t num_vertices;
INSERT_PADDING_WORDS(0x1);
// Vertex offset to apply for non-indexed rendering
uint32_t vertex_offset;
INSERT_PADDING_WORDS(0x3);
// These two trigger rendering of triangles
uint32_t trigger_draw;
uint32_t trigger_draw_indexed;
INSERT_PADDING_WORDS(0x2);
struct {
bool IsImmediateSubmission() const {
return (index == 0xf);
}
// Selects which attribute to set up the default attribute to.
// Alternatively enables immediate mode vertex submission if set to 0xf.
uint32_t index;
uint32_t data[3];
} fixed_vertex_attribute_sink;
INSERT_PADDING_WORDS(2);
struct {
// Register values for the two command processor engines, respectively
uint32_t size[2]; // Number of byte octets
uint32_t address[2]; // Encoded address (divided by 8)
uint32_t trigger[2];
} command_processor;
INSERT_PADDING_WORDS(4);
uint32_t immediate_rendering_max_input_attribute_index;
INSERT_PADDING_WORDS(0x7);
uint32_t vs_output_attributes_minus_1;
INSERT_PADDING_WORDS(0x6);
uint32_t vs_output_attributes_minus_1_copy;
INSERT_PADDING_WORDS(0xc);
enum class TriangleTopology : uint32_t {
List = 0,
Strip = 1,
Fan = 2,
ListIndexed = 3, // TODO: No idea if this is correct
};
BitFieldLegacy<8, 2, TriangleTopology> triangle_topology;
INSERT_PADDING_WORDS(0x51);
BitFieldLegacy<0, 16, uint32_t> vs_bool_uniforms;
union {
BitFieldLegacy< 0, 8, uint32_t> x;
BitFieldLegacy< 8, 8, uint32_t> y;
BitFieldLegacy<16, 8, uint32_t> z;
BitFieldLegacy<24, 8, uint32_t> w;
} vs_int_uniforms[4];
INSERT_PADDING_WORDS(0x4);
uint32_t reg_0x2b9;
auto max_shader_input_attribute_index() const {
return v3::BitField::MakeFieldOn<0, 4>(&reg_0x2b9);
}
// Offset to shader program entry point (in words)
BitFieldLegacy<0, 16, uint32_t> vs_main_offset;
union VSInputRegisterMap {
BitFieldLegacy< 0, 32, uint64_t> low;
BitFieldLegacy<32, 32, uint64_t> high;
BitFieldLegacy< 0, 4, uint64_t> attribute0_register;
BitFieldLegacy< 4, 4, uint64_t> attribute1_register;
BitFieldLegacy< 8, 4, uint64_t> attribute2_register;
BitFieldLegacy<12, 4, uint64_t> attribute3_register;
BitFieldLegacy<16, 4, uint64_t> attribute4_register;
BitFieldLegacy<20, 4, uint64_t> attribute5_register;
BitFieldLegacy<24, 4, uint64_t> attribute6_register;
BitFieldLegacy<28, 4, uint64_t> attribute7_register;
BitFieldLegacy<32, 4, uint64_t> attribute8_register;
BitFieldLegacy<36, 4, uint64_t> attribute9_register;
BitFieldLegacy<40, 4, uint64_t> attribute10_register;
BitFieldLegacy<44, 4, uint64_t> attribute11_register;
BitFieldLegacy<48, 4, uint64_t> attribute12_register;
BitFieldLegacy<52, 4, uint64_t> attribute13_register;
BitFieldLegacy<56, 4, uint64_t> attribute14_register;
BitFieldLegacy<60, 4, uint64_t> attribute15_register;
int GetRegisterForAttribute(int attribute_index) const {
uint64_t fields[] = {
attribute0_register, attribute1_register, attribute2_register, attribute3_register,
attribute4_register, attribute5_register, attribute6_register, attribute7_register,
attribute8_register, attribute9_register, attribute10_register, attribute11_register,
attribute12_register, attribute13_register, attribute14_register, attribute15_register,
};
return (int)fields[attribute_index];
}
} vs_input_register_map;
struct {
uint32_t raw;
/**
* Mask of enabled shader output registers. This mask determines which
* output registers are writeable how by shaders and how they map to
* output attributes (as sent to the post-shader-pipeline).
*/
auto mask() const { return BitField::v3::MakeFieldOn<0, 16>(this); }
} vs_output_register_mask;
INSERT_PADDING_WORDS(0x2);
struct {
enum Format : uint32_t
{
FLOAT24 = 0,
FLOAT32 = 1
};
bool IsFloat32() const {
return format == FLOAT32;
}
union {
// Index of the next uniform to write to
// TODO: ctrulib uses 8 bits for this, however that seems to yield lots of invalid indices
BitFieldLegacy<0, 7, uint32_t> index;
BitFieldLegacy<31, 1, Format> format;
};
// Writing to these registers sets the "current" uniform.
// TODO: It's not clear how the hardware stores what the "current" uniform is.
uint32_t set_value[8];
} vs_uniform_setup;
INSERT_PADDING_WORDS(0x2);
struct {
// Offset of the next instruction to write code to.
// Incremented with each instruction write.
uint32_t offset;
// Writing to these registers sets the "current" word in the shader program.
// TODO: It's not clear how the hardware stores what the "current" word is.
uint32_t set_word[8];
} vs_program;
INSERT_PADDING_WORDS(0x1);
// This register group is used to load an internal table of swizzling patterns,
// which are indexed by each shader instruction to specify vector component swizzling.
struct {
// Offset of the next swizzle pattern to write code to.
// Incremented with each instruction write.
uint32_t offset;
// Writing to these registers sets the "current" swizzle pattern in the table.
// TODO: It's not clear how the hardware stores what the "current" swizzle pattern is.
uint32_t set_word[8];
} vs_swizzle_patterns;
INSERT_PADDING_WORDS(0x22);
#undef INSERT_PADDING_WORDS_HELPER1
#undef INSERT_PADDING_WORDS_HELPER2
#undef INSERT_PADDING_WORDS
// Map register indices to names readable by humans
// Used for debugging purposes, so performance is not an issue here
static std::string GetCommandName(int index) {
std::map<uint32_t, std::string> map;
#define ADD_FIELD(name) \
do { \
map.insert({PICA_REG_INDEX(name), #name}); \
for (uint32_t i = PICA_REG_INDEX(name) + 1; i < PICA_REG_INDEX(name) + sizeof(Regs().name) / 4; ++i) \
map.insert({i, #name + std::string("+") + std::to_string(i-PICA_REG_INDEX(name))}); \
} while(false)
ADD_FIELD(trigger_irq);
ADD_FIELD(cull_mode);
ADD_FIELD(viewport_size_x);
ADD_FIELD(viewport_size_y);
ADD_FIELD(viewport_depth_range);
ADD_FIELD(viewport_depth_far_plane);
ADD_FIELD(shader_num_output_attributes);
ADD_FIELD(viewport_corner);
ADD_FIELD(texture0_enable);
ADD_FIELD(texture0);
ADD_FIELD(texture0_format);
ADD_FIELD(texture1);
ADD_FIELD(texture1_format);
ADD_FIELD(texture2);
ADD_FIELD(texture2_format);
ADD_FIELD(tev_stage0);
ADD_FIELD(tev_stage1);
ADD_FIELD(tev_stage2);
ADD_FIELD(tev_stage3);
ADD_FIELD(combiner_buffer);
ADD_FIELD(tev_stage4);
ADD_FIELD(tev_stage5);
ADD_FIELD(combiner_buffer_init);
ADD_FIELD(output_merger);
ADD_FIELD(framebuffer);
ADD_FIELD(lighting);
ADD_FIELD(vertex_attributes);
ADD_FIELD(index_array);
ADD_FIELD(num_vertices);
ADD_FIELD(vertex_offset);
ADD_FIELD(trigger_draw);
ADD_FIELD(trigger_draw_indexed);
ADD_FIELD(triangle_topology);
ADD_FIELD(vs_bool_uniforms);
ADD_FIELD(vs_int_uniforms);
ADD_FIELD(reg_0x2b9);
ADD_FIELD(vs_main_offset);
ADD_FIELD(vs_input_register_map);
ADD_FIELD(vs_output_register_mask);
ADD_FIELD(vs_uniform_setup);
ADD_FIELD(vs_program);
ADD_FIELD(vs_swizzle_patterns);
#undef ADD_FIELD
// Return empty string if no match is found
return map[index];
}
static inline size_t NumIds() {
return sizeof(Regs) / sizeof(uint32_t);
}
uint32_t& operator [] (int index) const {
uint32_t* content = (uint32_t*)this;
return content[index];
}
uint32_t& operator [] (int index) {
uint32_t* content = (uint32_t*)this;
return content[index];
}
private:
/*
* Most physical addresses which Pica registers refer to are 8-byte aligned.
* This function should be used to get the address from a raw register value.
*/
static inline uint32_t DecodeAddressRegister(uint32_t register_value) {
return register_value * 8;
}
};
// TODO: MSVC does not support using offsetof() on non-static data members even though this
// is technically allowed since C++11. This macro should be enabled once MSVC adds
// support for that.
#ifndef _MSC_VER
#define ASSERT_REG_POSITION(field_name, position) static_assert(offsetof(Regs, field_name) == position * 4, "Field "#field_name" has invalid position")
ASSERT_REG_POSITION(trigger_irq, 0x10);
ASSERT_REG_POSITION(cull_mode, 0x40);
ASSERT_REG_POSITION(viewport_size_x, 0x41);
ASSERT_REG_POSITION(viewport_size_y, 0x43);
ASSERT_REG_POSITION(viewport_depth_range, 0x4d);
ASSERT_REG_POSITION(viewport_depth_far_plane, 0x4e);
ASSERT_REG_POSITION(shader_num_output_attributes, 0x4f);
ASSERT_REG_POSITION(shader_output_semantics, 0x50);
ASSERT_REG_POSITION(viewport_corner, 0x68);
ASSERT_REG_POSITION(texture0_enable, 0x80);
ASSERT_REG_POSITION(texture0, 0x81);
ASSERT_REG_POSITION(texture0_format, 0x8e);
ASSERT_REG_POSITION(texture1, 0x91);
ASSERT_REG_POSITION(texture1_format, 0x96);
ASSERT_REG_POSITION(texture2, 0x99);
ASSERT_REG_POSITION(texture2_format, 0x9e);
ASSERT_REG_POSITION(tev_stage0, 0xc0);
ASSERT_REG_POSITION(tev_stage1, 0xc8);
ASSERT_REG_POSITION(tev_stage2, 0xd0);
ASSERT_REG_POSITION(tev_stage3, 0xd8);
ASSERT_REG_POSITION(combiner_buffer, 0xe0);
ASSERT_REG_POSITION(tev_stage4, 0xf0);
ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(combiner_buffer_init, 0xfd);
ASSERT_REG_POSITION(output_merger, 0x100);
ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(lighting, 0x140);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);
ASSERT_REG_POSITION(num_vertices, 0x228);
ASSERT_REG_POSITION(vertex_offset, 0x22a);
ASSERT_REG_POSITION(trigger_draw, 0x22e);
ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f);
ASSERT_REG_POSITION(fixed_vertex_attribute_sink, 0x232);
ASSERT_REG_POSITION(command_processor, 0x238);
ASSERT_REG_POSITION(immediate_rendering_max_input_attribute_index, 0x242);
ASSERT_REG_POSITION(vs_output_attributes_minus_1, 0x24a);
ASSERT_REG_POSITION(vs_output_attributes_minus_1_copy, 0x251);
ASSERT_REG_POSITION(triangle_topology, 0x25e);
ASSERT_REG_POSITION(vs_bool_uniforms, 0x2b0);
ASSERT_REG_POSITION(vs_int_uniforms, 0x2b1);
ASSERT_REG_POSITION(reg_0x2b9, 0x2b9);
ASSERT_REG_POSITION(vs_main_offset, 0x2ba);
ASSERT_REG_POSITION(vs_input_register_map, 0x2bb);
ASSERT_REG_POSITION(vs_output_register_mask, 0x2bd);
ASSERT_REG_POSITION(vs_uniform_setup, 0x2c0);
ASSERT_REG_POSITION(vs_program, 0x2cb);
ASSERT_REG_POSITION(vs_swizzle_patterns, 0x2d5);
#undef ASSERT_REG_POSITION
#endif // !defined(_MSC_VER)
// The total number of registers is chosen arbitrarily, but let's make sure it's not some odd value anyway.
static_assert(sizeof(Regs) <= 0x300 * sizeof(uint32_t), "Register set structure larger than it should be");
static_assert(sizeof(Regs) >= 0x300 * sizeof(uint32_t), "Register set structure smaller than it should be");
union CommandHeader {
uint32_t hex;
BitFieldLegacy< 0, 16, uint32_t> cmd_id;
BitFieldLegacy<16, 4, uint32_t> parameter_mask;
BitFieldLegacy<20, 11, uint32_t> extra_data_length;
BitFieldLegacy<31, 1, uint32_t> group_commands;
};
} // namespace