mikage-dev/source/processes/ns.cpp

416 lines
20 KiB
C++

#include "ns.hpp"
#include "os.hpp"
#include <loader/gamecard.hpp>
#include <processes/pxi_fs.hpp> // TODO: Get rid of this dependency..
#include <platform/file_formats/ncch.hpp>
#include "../platform/fs.hpp"
#include "../platform/ns.hpp"
#include "../platform/sm.hpp"
#include "../platform/file_formats/bcfnt.hpp"
#include "processes/pxi.hpp"
#include <framework/exceptions.hpp>
#include <boost/algorithm/cxx11/any_of.hpp>
#include <boost/endian/arithmetic.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/range/adaptor/sliced.hpp>
#include <boost/range/algorithm/copy.hpp>
#include <boost/range/algorithm/fill.hpp>
#include <boost/scope_exit.hpp>
#include <range/v3/algorithm/equal.hpp>
#include <range/v3/algorithm/search.hpp>
#include <bitset>
#include <fstream>
#include <functional>
#include <sstream>
#include <iomanip>
namespace FS = Platform::FS;
namespace SM = Platform::SM;
namespace HLE {
namespace OS {
using Platform::NS::AppId;
using Platform::NS::AppletAttr;
using Platform::NS::AppletCommand;
using Platform::NS::AppletPos;
using Platform::PXI::PM::ProgramInfo;
template<typename RangeIn>
static uint32_t GetDecompressedLZSSDataSize(const RangeIn& compressed_reverse) {
// Reverse the input buffer
auto compressed = compressed_reverse | boost::adaptors::reversed;
// Get difference between compressed and uncompressed size from the last word in the input buffer
uint32_t size_delta = compressed[3] | (static_cast<uint32_t>(compressed[2]) << 8)
| (static_cast<uint32_t>(compressed[1]) << 16) | (static_cast<uint32_t>(compressed[0]) << 24);
return boost::size(compressed) + size_delta;
}
template<typename RangeIn, typename RangeOut>
static void DecompressLZSSData(const RangeIn& compressed_reverse, const RangeOut& decompressed_reverse) {
// Sanity checks
if (boost::size(compressed_reverse) < 8)
std::runtime_error("Invalid input: Smaller than 8 bytes");
if (boost::size(decompressed_reverse) < boost::size(compressed_reverse))
throw std::runtime_error("Decompressed buffer is smaller than compressed one!");
// Copy the raw compressed buffer into the output buffer
boost::fill(decompressed_reverse, 0);
boost::copy(compressed_reverse, boost::begin(decompressed_reverse));
// Reverse the input buffer
auto compressed = compressed_reverse | boost::adaptors::reversed;
const uint32_t begin = compressed[4];
const uint32_t end = compressed[7] | (compressed[6] << 8) | (compressed[5] << 16);
if (end > boost::size(compressed))
throw std::runtime_error("Invalid size given");
auto working_set = compressed | boost::adaptors::sliced(begin, end); // "begin" and "end" inclusive
auto input_it = std::begin(working_set);
// TODO: Working with the reversed decompressed buffer would be more readable, but I couldn't really get it working...
// auto decompressed = decompressed_reverse | boost::adaptors::reversed;
// auto output_it = boost::begin(decompressed);
auto output_it = boost::end(decompressed_reverse);
for (;;) {
auto input_bytes_left = std::distance(input_it, boost::end(working_set));
if (input_bytes_left <= 1)
break;
const auto compression_mask = *input_it++;
for (unsigned i = 0; i < 8; ++i) {
input_bytes_left = std::distance(input_it, boost::end(working_set));
auto output_bytes_left = std::distance(boost::begin(decompressed_reverse), output_it);
if (compression_mask & (0x80 >> i)) {
// compressed section
// TODO: Figure out if this could actually be a valid input
if (input_bytes_left < 2) {
// Make sure to terminate the loop if we haven't already reached the end
input_it = boost::end(working_set);
throw std::runtime_error("Unexpected end of file");
}
auto offset = 2 + (((input_it[0] & 0xF) << 8) | input_it[1]);
auto size = 3 + (input_it[0] >> 4);
input_it += 2;
if (output_bytes_left < size)
throw std::runtime_error("No output bytes left");
// NOTE: These ranges may overlap, hence using <algorithm> may yield undefined behavior.
// TODO: Double-check the guarantees given by std::copy/copy_backward to see whether we may use it here
auto end = output_it + offset - size;
for (auto temp_it = output_it + offset; temp_it != end; temp_it--)
*--output_it = *temp_it;
} else {
// uncompressed byte
// NOTE: This is not an error; there is no explicit "EOF" indicator
if (input_bytes_left < 1)
break;
if (output_bytes_left < 1)
throw std::runtime_error("No output bytes left");
*--output_it = *input_it++;
}
}
}
}
HandleTable::Entry<Process> LoadProcessFromFile(FakeThread& source,
bool from_firm,
const FileFormat::ExHeader& exheader,
std::unique_ptr<HLE::PXI::FS::File> file, bool is_exefs) {
HLE::PXI::FS::FileContext file_context { *source.GetLogger() };
if (!is_exefs) {
// Read ExeFS
uint8_t code[8] = { '.', 'c', 'o', 'd', 'e' };
auto input_file = PXI::FS::NCCHOpenExeFSSection(*source.GetLogger(), file_context,
source.GetParentProcess().interpreter_setup.keydb,
std::move(file), 1, std::basic_string_view<uint8_t>(code, sizeof(code)));
if (std::get<0>(input_file->OpenReadOnly(file_context)) != RESULT_OK) {
// TODO: Better error message
throw std::runtime_error("Could not launch title from emulated NAND.");
}
file = std::move(input_file);
}
auto& input_file = file;
// Load process data into CodeSet based on contents of the ExeFs ".code" section.
// The actual program binary may be compressed, so decompress it along the way.
HandleTable::Entry<CodeSet> codeset;
source.GetLogger()->info("{}: {}", __FUNCTION__, __LINE__);
const uint32_t page_size = 0x1000;
uint32_t total_size_aligned = (exheader.section_text.size_pages + exheader.section_ro.size_pages + exheader.section_data.size_pages) * page_size;
// TODO: Check if we still need the following line. It used to be necessary for loading SM, but I never figured out why!
// auto code_buffer = parent_process.AllocateBuffer(decompressed_size + /*0x300*/0);
auto& parent_process = source.GetParentProcess();
auto code_buffer = parent_process.AllocateBuffer(total_size_aligned);
auto [result, code_size] = input_file->GetSize(file_context);
if (exheader.flags.compress_exefs_code()()) {
auto compressed_code_buffer = parent_process.AllocateBuffer(code_size);
uint32_t bytes_read;
std::tie(result, bytes_read) = input_file->Read(file_context, 0, code_size, HLE::PXI::FS::FileBufferInHostMemory(compressed_code_buffer.second, code_size));
if (result != RESULT_OK || bytes_read != code_size) {
throw std::runtime_error("Failed to read code section from ExeFS");
}
// The last word in the compressed stream denotes the difference between compressed and decompressed buffer size
auto compressed_buffer_range = boost::iterator_range<uint8_t*>(compressed_code_buffer.second, compressed_code_buffer.second + code_size);
uint32_t decompressed_size = GetDecompressedLZSSDataSize(compressed_buffer_range);
if (decompressed_size > total_size_aligned)
throw std::runtime_error("Decompressed size exceeds virtual memory size. Corrupt ROM?");
// TODO: Handle exceptions thrown by this function!
DecompressLZSSData(compressed_buffer_range,
boost::iterator_range<uint8_t*>(code_buffer.second, code_buffer.second + decompressed_size));
parent_process.FreeBuffer(compressed_code_buffer.first);
} else {
if (code_size > total_size_aligned) {
throw std::runtime_error("Code section size exceeds virtual memory size. Corrupt ROM?");
}
uint32_t bytes_read;
std::tie(result, bytes_read) = input_file->Read(file_context, 0, code_size, HLE::PXI::FS::FileBufferInHostMemory(code_buffer.second, code_size));
if (result != RESULT_OK || bytes_read != code_size) {
throw std::runtime_error("Failed to read code section from ExeFS");
}
}
auto kernel_flags = Meta::invoke([&]() {
for (auto cap : exheader.aci.arm11_kernel_capabilities) {
auto flags = FileFormat::ExHeader::ARM11KernelCapabilityDescriptor::KernelFlags { cap.storage };
if (flags.id_field() == flags.id_field_ref()) {
return flags;
}
}
throw Mikage::Exceptions::Invalid("ExHeader did not specify kernel flags");
});
uint32_t code_buffer2;
std::tie(result, code_buffer2) = source.CallSVC(&OS::SVCControlMemory, 0, 0, total_size_aligned, 3 /* COMMIT */ | (kernel_flags.memory_type() << 8), 3 /* RW */);
if (result != RESULT_OK) {
throw std::runtime_error("Failed to allocate memory for program");
}
for (uint32_t offset = 0; offset < total_size_aligned; ++offset) {
source.WriteMemory(code_buffer2 + offset, *(code_buffer.second + offset));
}
parent_process.FreeBuffer(code_buffer.first);
// NOTE: The decompressed buffer need not be aligned to page size, hence the distinction between size_bytes and size_pages is critical!
VAddr text_vaddr = code_buffer2;
VAddr ro_vaddr;
VAddr data_vaddr;
VAddr data_vaddr_end;
if (from_firm) {
// Apparently, only modules loaded from FIRM take the true size in bytes (TODOTEST)
ro_vaddr = text_vaddr + exheader.section_text.size_bytes;
data_vaddr = ro_vaddr + exheader.section_ro.size_bytes;
data_vaddr_end = data_vaddr + exheader.section_data.size_bytes;
} else {
// Modules loaded "normally" align each source section to pages.
ro_vaddr = text_vaddr + exheader.section_text.size_pages * page_size;
data_vaddr = ro_vaddr + exheader.section_ro.size_pages * page_size;
data_vaddr_end = data_vaddr + exheader.section_data.size_pages * page_size;
}
if (data_vaddr_end - text_vaddr > total_size_aligned)
throw std::runtime_error("Text size exceeds virtual memory size. Corrupt ROM?");
// TODO: Chances are the "size_bytes" fields are actually page sizes!
CodeSetInfo codesetinfo{};
codesetinfo.text_start = exheader.section_text.address;
codesetinfo.text_pages = (exheader.section_text.size_bytes + page_size - 1) >> 12;
codesetinfo.text_size = exheader.section_text.size_pages;
codesetinfo.ro_start = exheader.section_ro.address;
codesetinfo.ro_pages = (exheader.section_ro.size_bytes + page_size - 1) >> 12;
codesetinfo.ro_size = exheader.section_ro.size_pages;
codesetinfo.data_start = exheader.section_data.address;
// NOTE: The data size in the exheader is exclusive of the bss region, while the kernel expects an inclusive size.
// Hence, we just add the two together and round the result up to the page size.
// TODO: Should data_pages be inclusive or exclusive of bss?
codesetinfo.data_pages = (exheader.section_data.size_bytes + page_size - 1) >> 12;
codesetinfo.data_size = exheader.section_data.size_pages + (exheader.bss_size + page_size - 1) / page_size;
memcpy(codesetinfo.app_name.data(), exheader.application_title.data(), sizeof(exheader.application_title));
std::tie(result,codeset) = source.CallSVC(&OS::SVCCreateCodeSet, codesetinfo, text_vaddr, ro_vaddr, data_vaddr);
if (result != RESULT_OK)
throw std::runtime_error("LaunchTitle failed to SVCCreateCodeSet");
// Create the actual process
HandleTable::Entry<Process> process;
// TODO: Avoid cast...
std::tie(result,process) = source.CallSVC(&OS::SVCCreateProcess, codeset.first, (HLE::OS::OS::KernelCapability*)exheader.aci.arm11_kernel_capabilities.data(), std::size(exheader.aci.arm11_kernel_capabilities));
if (result != RESULT_OK)
throw std::runtime_error("LaunchTitle failed to SVCCreateProcess");
// Clean up
codeset.second.reset();
source.CallSVC(&OS::SVCCloseHandle, codeset.first);
return process;
}
OS::ResultAnd<ProcessId> LaunchTitleInternal(FakeThread& source, bool from_firm, uint64_t title_id, uint32_t flags /* (currently unused) */) {
// TODO: This is fairly ad-hoc currently, i.e. all logic in here is
// just done so that we can get any system processes up and running
// at all for now.
// Normally, this would go through filesystem, loader, and other
// services instead.
// Read ExHeader
ProgramInfo info { title_id, !title_id ? uint8_t { 2 } : uint8_t { 0 } };
auto exheader = HLE::PXI::GetExtendedHeader(source, info);
// Read ExeFS
uint8_t code[8] = { '.', 'c', 'o', 'd', 'e' };
auto input_file = PXI::FS::OpenNCCHSubFile(source, info, 0, 1, std::basic_string_view<uint8_t>(code, sizeof(code)), source.GetOS().setup.gamecard.get());
HLE::PXI::FS::FileContext file_context { *source.GetLogger() };
if (std::get<0>(input_file->OpenReadOnly(file_context)) != RESULT_OK) {
throw std::runtime_error(fmt::format( "Tried to launch non-existing title {:#x} from emulated NAND.\n\nPlease dump the title from your 3DS and install it manually to this path:\n{}",
title_id, "filename" /* TODO */));
}
OS::Result result;
auto process = LoadProcessFromFile(source, from_firm, exheader, std::move(input_file), true);
auto& parent_process = source.GetParentProcess();
ProcessId process_id;
std::tie(result, process_id) = source.CallSVC(&OS::SVCGetProcessId, *process.second);
if (result != RESULT_OK)
throw std::runtime_error("LaunchTitle failed to SVCGetProcessId");
HandleTable::Entry<ClientSession> srv_session = { HANDLE_INVALID, nullptr };
bool needs_services = !from_firm;
if (needs_services) {
std::tie(result,srv_session) = source.CallSVC(&OS::SVCConnectToPort, "srv:");
if (result != RESULT_OK)
throw std::runtime_error("LaunchTitle failed to SVCConnectToPort");
IPC::SendIPCRequest<SM::SRV::RegisterClient>(source, srv_session.first, IPC::EmptyValue{});
}
// Register the created process to srv:pm
// TODO: Enable this code...
// TODO: Now that we fixed SM HLE, WE REALLY NEED TO DO THIS PROPERLY INSTEAD. I.e. have loader do this, and have loader register these via pm
auto not_null = [](auto letter) { return letter != 0; };
auto nonempty_entry = [&](const auto& service) { return boost::algorithm::any_of(service, not_null); };
// bool needs_services = boost::algorithm::any_of(exheader.service_access_list, nonempty_entry);
if (false && needs_services) {
// Register process through "srv:pm"
// TODO: srv:pm is a service for firmwares higher than 7.0.0
// Handle srvpm_handle = IPC::SendIPCRequest<SM::SRV::GetServiceHandle>(source, srv_session.first,
// SM::PortName("srv:pm"), 0);
HandleTable::Entry<ClientSession> srvpm_session;
// TODO: On system version 7.0.0 and up, srv:pm is a service!
std::tie(result,srvpm_session) = source.CallSVC(&OS::SVCConnectToPort, "srv:pm");
if (result != RESULT_OK) {
throw std::runtime_error("LaunchTitle failed to connect to srv:pm");
}
// srvpm RegisterProcess
source.WriteTLS(0x80, IPC::CommandHeader::Make(0x403, 2, 2).raw);
source.WriteTLS(0x84, process_id);
auto service_acl_entry_size = sizeof(exheader.aci.service_access_list[0]);
auto service_acl_size = (sizeof(exheader.aci.service_access_list) + service_acl_entry_size - 1) / service_acl_entry_size * service_acl_entry_size;
auto service_acl_addr = parent_process.AllocateStaticBuffer(service_acl_size);
auto service_acl_numentries = service_acl_size / service_acl_entry_size;
for (auto off = 0; off < sizeof(exheader.aci.service_access_list); ++off) {
auto entry = off / service_acl_entry_size;
auto byte = off % service_acl_entry_size;
source.WriteMemory(service_acl_addr + off, exheader.aci.service_access_list[entry][byte]);
}
source.WriteTLS(0x88, service_acl_numentries);
source.WriteTLS(0x8c, IPC::TranslationDescriptor::MakeStaticBuffer(0, service_acl_size).raw);
source.WriteTLS(0x90, service_acl_addr);
std::tie(result) = source.CallSVC(&OS::SVCSendSyncRequest, srvpm_session.first);
if (result != RESULT_OK && source.ReadTLS(0x84) != RESULT_OK)
throw std::runtime_error("LaunchTitle failed to RegisterProcess to srv:pm");
parent_process.FreeStaticBuffer(service_acl_addr);
source.CallSVC(&OS::SVCCloseHandle, srvpm_session.first);
}
FS::ProgramInfo program_info{};
program_info.program_id = exheader.aci.program_id;
program_info.media_type = (title_id == 0) ? 2 : 0; // NAND or game card
// TODO: SD titles may be launched through this function too, and supposedly the title id indicates whether a title is from NAND or SD...
// Connect to fs:REG and register the new process
// NOTE: Currently, we do this for all processes other than the FS module
// itself. There probably is an exheader flag that determines when to
// do this, though!
// NOTE: Disabled for now, reflecting the recent changes in the boot
// process, due to which actual process launching will be handled in
// low-level emulated system modules anyway. TODO: NOT ANYMORE!
if (!from_firm) {
Handle fsreg_handle = IPC::SendIPCRequest<SM::SRV::GetServiceHandle>(source, srv_session.first,
SM::PortName("fs:REG"), 0);
source.GetLogger()->info("Registering to fs:REG with program id {:#018x}", program_info.program_id);
// TODO: This program handle is supposed to be retrieved from
// PxiPM::RegisterProgram, which returns the Process9-internal
// handle for the registered application. Since we don't emulate
// PxiPM currently, we just dummy-initialize this program handle
// with an incorrect (but unique) value for now.
Platform::PXI::PM::ProgramHandle program_handle = {process_id};
IPC::SendIPCRequest<FS::Reg::Register>(source, fsreg_handle,
process_id, program_handle,
program_info, FS::StorageInfo{});
source.CallSVC(&OS::SVCCloseHandle, fsreg_handle);
}
if (!from_firm)
source.CallSVC(&OS::SVCCloseHandle, srv_session.first);
source.GetLogger()->info("{} {}EXHEADER STACK SIZE: {:#x}", ThreadPrinter{source}, __LINE__, exheader.stack_size);
// Run main thread
OS::StartupInfo startup{};
startup.stack_size = exheader.stack_size;
startup.priority = exheader.aci.flags.priority();
source.GetLogger()->info("{}about to start title main thread", ThreadPrinter{source});
std::tie(result) = source.CallSVC(&OS::SVCRun, process.first, startup);
// Clean up
source.CallSVC(&OS::SVCCloseHandle, std::move(process).first);
return std::make_tuple(RESULT_OK, process_id);
}
} // namespace OS
} // namespace HLE