pineapple-src/src/common/bounded_threadsafe_queue.h

421 lines
12 KiB
C
Raw Normal View History

2023-03-19 11:35:25 +01:00
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2022-11-05 13:58:44 +01:00
#pragma once
#include <atomic>
#include <condition_variable>
2023-03-19 11:35:25 +01:00
#include <cstddef>
2022-11-05 13:58:44 +01:00
#include <mutex>
#include <new>
2023-03-19 11:35:25 +01:00
#include <version>
2022-11-05 13:58:44 +01:00
2023-03-18 19:22:01 +01:00
#include "common/polyfill_thread.h"
2022-11-05 13:58:44 +01:00
namespace Common {
2023-03-19 11:35:25 +01:00
namespace detail {
constexpr size_t DefaultCapacity = 0x1000;
} // namespace detail
template <typename T, size_t Capacity = detail::DefaultCapacity>
class SPSCQueue {
static_assert((Capacity & (Capacity - 1)) == 0, "Capacity must be a power of two.");
2022-11-05 13:58:44 +01:00
public:
2023-03-19 11:35:25 +01:00
bool TryPush(T&& t) {
2023-03-19 22:38:32 +01:00
return Push<PushMode::Try>(std::move(t));
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
template <typename... Args>
bool TryEmplace(Args&&... args) {
return Emplace<PushMode::Try>(std::forward<Args>(args)...);
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
void PushWait(T&& t) {
Push<PushMode::Wait>(std::move(t));
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
template <typename... Args>
void EmplaceWait(Args&&... args) {
Emplace<PushMode::Wait>(std::forward<Args>(args)...);
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
void PushOverwrite(T&& t) {
Push<PushMode::Overwrite>(std::move(t));
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
template <typename... Args>
void EmplaceOverwrite(Args&&... args) {
Emplace<PushMode::Overwrite>(std::forward<Args>(args)...);
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
bool TryPop(T& t) {
return Pop<PopMode::Try>(t);
2023-03-19 11:35:25 +01:00
}
2023-03-19 22:38:32 +01:00
void PopWait(T& t) {
Pop<PopMode::Wait>(t);
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
void PopWait(T& t, std::stop_token stop_token) {
Pop<PopMode::WaitWithStopToken>(t, stop_token);
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
T PopWait() {
T t;
Pop<PopMode::Wait>(t);
return t;
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
T PopWait(std::stop_token stop_token) {
T t;
Pop<PopMode::WaitWithStopToken>(t, stop_token);
return t;
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
void Clear() {
while (!Empty()) {
Pop();
}
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
bool Empty() const {
return m_read_index.load() == m_write_index.load();
}
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
size_t Size() const {
return m_write_index.load() - m_read_index.load();
2023-03-19 11:35:25 +01:00
}
2023-03-19 22:38:32 +01:00
private:
enum class PushMode {
Try,
Wait,
Overwrite,
Count,
};
enum class PopMode {
Try,
Wait,
WaitWithStopToken,
Count,
};
template <PushMode Mode>
bool Push(T&& t) {
2023-03-19 11:35:25 +01:00
const size_t write_index = m_write_index.load();
2023-03-19 22:38:32 +01:00
if constexpr (Mode == PushMode::Try) {
// Check if we have free slots to write to.
if ((write_index - m_read_index.load()) == Capacity) {
return false;
}
} else if constexpr (Mode == PushMode::Wait) {
// Wait until we have free slots to write to.
std::unique_lock lock{producer_cv_mutex};
producer_cv.wait(lock, [this, write_index] {
return (write_index - m_read_index.load()) < Capacity;
});
} else if constexpr (Mode == PushMode::Overwrite) {
// Check if we have free slots to write to.
if ((write_index - m_read_index.load()) == Capacity) {
// If we don't, increment the read index. This is effectively a pop operation.
++m_read_index;
}
} else {
static_assert(Mode < PushMode::Count, "Invalid PushMode.");
2022-11-05 13:58:44 +01:00
}
2023-03-19 11:35:25 +01:00
// Determine the position to write to.
const size_t pos = write_index % Capacity;
// Push into the queue.
m_data[pos] = std::move(t);
// Increment the write index.
++m_write_index;
// Notify the consumer that we have pushed into the queue.
2023-03-19 22:38:32 +01:00
std::scoped_lock lock{consumer_cv_mutex};
consumer_cv.notify_one();
return true;
2022-11-05 13:58:44 +01:00
}
2023-03-19 22:38:32 +01:00
template <PushMode Mode, typename... Args>
bool Emplace(Args&&... args) {
2023-03-19 11:35:25 +01:00
const size_t write_index = m_write_index.load();
2023-03-19 22:38:32 +01:00
if constexpr (Mode == PushMode::Try) {
// Check if we have free slots to write to.
if ((write_index - m_read_index.load()) == Capacity) {
return false;
}
} else if constexpr (Mode == PushMode::Wait) {
// Wait until we have free slots to write to.
std::unique_lock lock{producer_cv_mutex};
producer_cv.wait(lock, [this, write_index] {
return (write_index - m_read_index.load()) < Capacity;
});
} else if constexpr (Mode == PushMode::Overwrite) {
// Check if we have free slots to write to.
if ((write_index - m_read_index.load()) == Capacity) {
// If we don't, increment the read index. This is effectively a pop operation.
++m_read_index;
}
} else {
static_assert(Mode < PushMode::Count, "Invalid PushMode.");
2023-03-19 11:35:25 +01:00
}
// Determine the position to write to.
const size_t pos = write_index % Capacity;
// Emplace into the queue.
std::construct_at(std::addressof(m_data[pos]), std::forward<Args>(args)...);
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
// Increment the write index.
++m_write_index;
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
// Notify the consumer that we have pushed into the queue.
2023-03-19 22:38:32 +01:00
std::scoped_lock lock{consumer_cv_mutex};
consumer_cv.notify_one();
2023-03-19 11:35:25 +01:00
2023-03-19 22:38:32 +01:00
return true;
2022-11-05 13:58:44 +01:00
}
2023-03-19 11:35:25 +01:00
void Pop() {
const size_t read_index = m_read_index.load();
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
// Check if the queue is empty.
if (read_index == m_write_index.load()) {
return;
2022-11-05 13:58:44 +01:00
}
2023-03-19 11:35:25 +01:00
// Determine the position to read from.
const size_t pos = read_index % Capacity;
// Pop the data off the queue, deleting it.
std::destroy_at(std::addressof(m_data[pos]));
// Increment the read index.
++m_read_index;
2023-03-19 22:38:32 +01:00
// Notify the producer that we have popped off the queue.
std::unique_lock lock{producer_cv_mutex};
producer_cv.notify_one();
2023-03-19 11:35:25 +01:00
}
2022-11-05 13:58:44 +01:00
2023-03-19 22:38:32 +01:00
template <PopMode Mode>
bool Pop(T& t, [[maybe_unused]] std::stop_token stop_token = {}) {
2023-03-19 11:35:25 +01:00
const size_t read_index = m_read_index.load();
2023-03-19 22:38:32 +01:00
if constexpr (Mode == PopMode::Try) {
// Check if the queue is empty.
if (read_index == m_write_index.load()) {
return false;
}
} else if constexpr (Mode == PopMode::Wait) {
// Wait until the queue is not empty.
std::unique_lock lock{consumer_cv_mutex};
consumer_cv.wait(lock,
[this, read_index] { return read_index != m_write_index.load(); });
} else if constexpr (Mode == PopMode::WaitWithStopToken) {
// Wait until the queue is not empty.
std::unique_lock lock{consumer_cv_mutex};
Common::CondvarWait(consumer_cv, lock, stop_token,
[this, read_index] { return read_index != m_write_index.load(); });
} else {
static_assert(Mode < PopMode::Count, "Invalid PopMode.");
2022-11-05 13:58:44 +01:00
}
2023-03-19 11:35:25 +01:00
// Determine the position to read from.
const size_t pos = read_index % Capacity;
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
// Pop the data off the queue, moving it.
t = std::move(m_data[pos]);
// Increment the read index.
++m_read_index;
2023-03-19 22:38:32 +01:00
// Notify the producer that we have popped off the queue.
std::unique_lock lock{producer_cv_mutex};
producer_cv.notify_one();
2022-11-05 13:58:44 +01:00
2023-03-19 22:38:32 +01:00
return true;
2022-11-05 13:58:44 +01:00
}
2023-03-19 11:35:25 +01:00
#ifdef __cpp_lib_hardware_interference_size
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_read_index{0};
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_write_index{0};
#else
alignas(64) std::atomic_size_t m_read_index{0};
alignas(64) std::atomic_size_t m_write_index{0};
#endif
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
std::array<T, Capacity> m_data;
2022-11-05 13:58:44 +01:00
2023-03-19 22:38:32 +01:00
std::condition_variable_any producer_cv;
std::mutex producer_cv_mutex;
std::condition_variable_any consumer_cv;
std::mutex consumer_cv_mutex;
2023-03-19 11:35:25 +01:00
};
template <typename T, size_t Capacity = detail::DefaultCapacity>
class MPSCQueue {
public:
2023-03-19 22:38:32 +01:00
bool TryPush(T&& t) {
std::scoped_lock lock{write_mutex};
return spsc_queue.TryPush(std::move(t));
}
template <typename... Args>
bool TryEmplace(Args&&... args) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
return spsc_queue.TryEmplace(std::forward<Args>(args)...);
}
void PushWait(T&& t) {
std::scoped_lock lock{write_mutex};
spsc_queue.PushWait(std::move(t));
2023-03-19 11:35:25 +01:00
}
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
template <typename... Args>
2023-03-19 22:38:32 +01:00
void EmplaceWait(Args&&... args) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.EmplaceWait(std::forward<Args>(args)...);
2023-03-19 11:35:25 +01:00
}
2022-11-05 13:58:44 +01:00
2023-03-19 22:38:32 +01:00
void PushOverwrite(T&& t) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.PushOverwrite(std::move(t));
2023-03-19 11:35:25 +01:00
}
template <typename... Args>
2023-03-19 22:38:32 +01:00
void EmplaceOverwrite(Args&&... args) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.EmplaceOverwrite(std::forward<Args>(args)...);
2023-03-19 11:35:25 +01:00
}
2022-11-05 13:58:44 +01:00
2023-03-19 11:35:25 +01:00
bool TryPop(T& t) {
return spsc_queue.TryPop(t);
}
2023-03-19 22:38:32 +01:00
void PopWait(T& t) {
spsc_queue.PopWait(t);
}
2023-03-19 11:35:25 +01:00
void PopWait(T& t, std::stop_token stop_token) {
spsc_queue.PopWait(t, stop_token);
}
2023-03-19 22:38:32 +01:00
T PopWait() {
return spsc_queue.PopWait();
}
2023-03-19 11:35:25 +01:00
T PopWait(std::stop_token stop_token) {
return spsc_queue.PopWait(stop_token);
}
void Clear() {
spsc_queue.Clear();
}
bool Empty() {
return spsc_queue.Empty();
}
size_t Size() {
return spsc_queue.Size();
}
private:
SPSCQueue<T, Capacity> spsc_queue;
std::mutex write_mutex;
};
template <typename T, size_t Capacity = detail::DefaultCapacity>
class MPMCQueue {
public:
2023-03-19 22:38:32 +01:00
bool TryPush(T&& t) {
std::scoped_lock lock{write_mutex};
return spsc_queue.TryPush(std::move(t));
}
template <typename... Args>
bool TryEmplace(Args&&... args) {
std::scoped_lock lock{write_mutex};
return spsc_queue.TryEmplace(std::forward<Args>(args)...);
}
void PushWait(T&& t) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.PushWait(std::move(t));
2023-03-19 11:35:25 +01:00
}
template <typename... Args>
2023-03-19 22:38:32 +01:00
void EmplaceWait(Args&&... args) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.EmplaceWait(std::forward<Args>(args)...);
2023-03-19 11:35:25 +01:00
}
2023-03-19 22:38:32 +01:00
void PushOverwrite(T&& t) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.PushOverwrite(std::move(t));
2023-03-19 11:35:25 +01:00
}
template <typename... Args>
2023-03-19 22:38:32 +01:00
void EmplaceOverwrite(Args&&... args) {
2023-03-19 11:35:25 +01:00
std::scoped_lock lock{write_mutex};
2023-03-19 22:38:32 +01:00
spsc_queue.EmplaceOverwrite(std::forward<Args>(args)...);
2023-03-19 11:35:25 +01:00
}
bool TryPop(T& t) {
std::scoped_lock lock{read_mutex};
return spsc_queue.TryPop(t);
}
2023-03-19 22:38:32 +01:00
void PopWait(T& t) {
std::scoped_lock lock{read_mutex};
spsc_queue.PopWait(t);
}
2023-03-19 11:35:25 +01:00
void PopWait(T& t, std::stop_token stop_token) {
std::scoped_lock lock{read_mutex};
spsc_queue.PopWait(t, stop_token);
}
2023-03-19 22:38:32 +01:00
T PopWait() {
std::scoped_lock lock{read_mutex};
return spsc_queue.PopWait();
}
2023-03-19 11:35:25 +01:00
T PopWait(std::stop_token stop_token) {
std::scoped_lock lock{read_mutex};
return spsc_queue.PopWait(stop_token);
}
void Clear() {
std::scoped_lock lock{read_mutex};
spsc_queue.Clear();
}
bool Empty() {
std::scoped_lock lock{read_mutex};
return spsc_queue.Empty();
}
size_t Size() {
std::scoped_lock lock{read_mutex};
return spsc_queue.Size();
}
private:
SPSCQueue<T, Capacity> spsc_queue;
std::mutex write_mutex;
std::mutex read_mutex;
2022-11-05 13:58:44 +01:00
};
} // namespace Common