// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "core/core.h" #include "core/device_memory.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_process.h" #include "core/memory.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" #include "video_core/renderer_base.h" namespace Tegra { std::atomic MemoryManager::unique_identifier_generator{}; MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 big_page_bits_, u64 page_bits_) : system{system_}, memory{system.Memory()}, device_memory{system.DeviceMemory()}, address_space_bits{address_space_bits_}, page_bits{page_bits_}, big_page_bits{big_page_bits_}, entries{}, big_entries{}, page_table{address_space_bits, address_space_bits + page_bits - 38, page_bits != big_page_bits ? page_bits : 0}, unique_identifier{unique_identifier_generator.fetch_add(1, std::memory_order_acq_rel)} { address_space_size = 1ULL << address_space_bits; page_size = 1ULL << page_bits; page_mask = page_size - 1ULL; big_page_size = 1ULL << big_page_bits; big_page_mask = big_page_size - 1ULL; const u64 page_table_bits = address_space_bits - page_bits; const u64 big_page_table_bits = address_space_bits - big_page_bits; const u64 page_table_size = 1ULL << page_table_bits; const u64 big_page_table_size = 1ULL << big_page_table_bits; page_table_mask = page_table_size - 1; big_page_table_mask = big_page_table_size - 1; big_entries.resize(big_page_table_size / 32, 0); big_page_table_cpu.resize(big_page_table_size); big_page_continous.resize(big_page_table_size / continous_bits, 0); entries.resize(page_table_size / 32, 0); } MemoryManager::~MemoryManager() = default; template MemoryManager::EntryType MemoryManager::GetEntry(size_t position) const { if constexpr (is_big_page) { position = position >> big_page_bits; const u64 entry_mask = big_entries[position / 32]; const size_t sub_index = position % 32; return static_cast((entry_mask >> (2 * sub_index)) & 0x03ULL); } else { position = position >> page_bits; const u64 entry_mask = entries[position / 32]; const size_t sub_index = position % 32; return static_cast((entry_mask >> (2 * sub_index)) & 0x03ULL); } } template void MemoryManager::SetEntry(size_t position, MemoryManager::EntryType entry) { if constexpr (is_big_page) { position = position >> big_page_bits; const u64 entry_mask = big_entries[position / 32]; const size_t sub_index = position % 32; big_entries[position / 32] = (~(3ULL << sub_index * 2) & entry_mask) | (static_cast(entry) << sub_index * 2); } else { position = position >> page_bits; const u64 entry_mask = entries[position / 32]; const size_t sub_index = position % 32; entries[position / 32] = (~(3ULL << sub_index * 2) & entry_mask) | (static_cast(entry) << sub_index * 2); } } inline bool MemoryManager::IsBigPageContinous(size_t big_page_index) const { const u64 entry_mask = big_page_continous[big_page_index / continous_bits]; const size_t sub_index = big_page_index % continous_bits; return ((entry_mask >> sub_index) & 0x1ULL) != 0; } inline void MemoryManager::SetBigPageContinous(size_t big_page_index, bool value) { const u64 continous_mask = big_page_continous[big_page_index / continous_bits]; const size_t sub_index = big_page_index % continous_bits; big_page_continous[big_page_index / continous_bits] = (~(1ULL << sub_index) & continous_mask) | (value ? 1ULL << sub_index : 0); } template GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size) { u64 remaining_size{size}; if constexpr (entry_type == EntryType::Mapped) { page_table.ReserveRange(gpu_addr, size); } for (u64 offset{}; offset < size; offset += page_size) { const GPUVAddr current_gpu_addr = gpu_addr + offset; [[maybe_unused]] const auto current_entry_type = GetEntry(current_gpu_addr); SetEntry(current_gpu_addr, entry_type); if (current_entry_type != entry_type) { rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, page_size); } if constexpr (entry_type == EntryType::Mapped) { const VAddr current_cpu_addr = cpu_addr + offset; const auto index = PageEntryIndex(current_gpu_addr); const u32 sub_value = static_cast(current_cpu_addr >> cpu_page_bits); page_table[index] = sub_value; } remaining_size -= page_size; } return gpu_addr; } template GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size) { u64 remaining_size{size}; for (u64 offset{}; offset < size; offset += big_page_size) { const GPUVAddr current_gpu_addr = gpu_addr + offset; [[maybe_unused]] const auto current_entry_type = GetEntry(current_gpu_addr); SetEntry(current_gpu_addr, entry_type); if (current_entry_type != entry_type) { rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, big_page_size); } if constexpr (entry_type == EntryType::Mapped) { const VAddr current_cpu_addr = cpu_addr + offset; const auto index = PageEntryIndex(current_gpu_addr); const u32 sub_value = static_cast(current_cpu_addr >> cpu_page_bits); big_page_table_cpu[index] = sub_value; const bool is_continous = ([&] { uintptr_t base_ptr{ reinterpret_cast(memory.GetPointerSilent(current_cpu_addr))}; if (base_ptr == 0) { return false; } for (VAddr start_cpu = current_cpu_addr + page_size; start_cpu < current_cpu_addr + big_page_size; start_cpu += page_size) { base_ptr += page_size; auto next_ptr = reinterpret_cast(memory.GetPointerSilent(start_cpu)); if (next_ptr == 0 || base_ptr != next_ptr) { return false; } } return true; })(); SetBigPageContinous(index, is_continous); } remaining_size -= big_page_size; } return gpu_addr; } void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) { rasterizer = rasterizer_; } GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size, bool is_big_pages) { if (is_big_pages) [[likely]] { return BigPageTableOp(gpu_addr, cpu_addr, size); } return PageTableOp(gpu_addr, cpu_addr, size); } GPUVAddr MemoryManager::MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages) { if (is_big_pages) [[likely]] { return BigPageTableOp(gpu_addr, 0, size); } return PageTableOp(gpu_addr, 0, size); } void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) { if (size == 0) { return; } const auto submapped_ranges = GetSubmappedRange(gpu_addr, size); for (const auto& [map_addr, map_size] : submapped_ranges) { // Flush and invalidate through the GPU interface, to be asynchronous if possible. const std::optional cpu_addr = GpuToCpuAddress(map_addr); ASSERT(cpu_addr); rasterizer->UnmapMemory(*cpu_addr, map_size); } BigPageTableOp(gpu_addr, 0, size); PageTableOp(gpu_addr, 0, size); } std::optional MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const { if (!IsWithinGPUAddressRange(gpu_addr)) [[unlikely]] { return std::nullopt; } if (GetEntry(gpu_addr) != EntryType::Mapped) [[unlikely]] { if (GetEntry(gpu_addr) != EntryType::Mapped) { return std::nullopt; } const VAddr cpu_addr_base = static_cast(page_table[PageEntryIndex(gpu_addr)]) << cpu_page_bits; return cpu_addr_base + (gpu_addr & page_mask); } const VAddr cpu_addr_base = static_cast(big_page_table_cpu[PageEntryIndex(gpu_addr)]) << cpu_page_bits; return cpu_addr_base + (gpu_addr & big_page_mask); } std::optional MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const { size_t page_index{addr >> page_bits}; const size_t page_last{(addr + size + page_size - 1) >> page_bits}; while (page_index < page_last) { const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (page_addr) { return page_addr; } ++page_index; } return std::nullopt; } template T MemoryManager::Read(GPUVAddr addr) const { if (auto page_pointer{GetPointer(addr)}; page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, page_pointer, sizeof(T)); return value; } ASSERT(false); return {}; } template void MemoryManager::Write(GPUVAddr addr, T data) { if (auto page_pointer{GetPointer(addr)}; page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(page_pointer, &data, sizeof(T)); return; } ASSERT(false); } template u8 MemoryManager::Read(GPUVAddr addr) const; template u16 MemoryManager::Read(GPUVAddr addr) const; template u32 MemoryManager::Read(GPUVAddr addr) const; template u64 MemoryManager::Read(GPUVAddr addr) const; template void MemoryManager::Write(GPUVAddr addr, u8 data); template void MemoryManager::Write(GPUVAddr addr, u16 data); template void MemoryManager::Write(GPUVAddr addr, u32 data); template void MemoryManager::Write(GPUVAddr addr, u64 data); u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) { const auto address{GpuToCpuAddress(gpu_addr)}; if (!address) { return {}; } return memory.GetPointer(*address); } const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const { const auto address{GpuToCpuAddress(gpu_addr)}; if (!address) { return {}; } return memory.GetPointer(*address); } #ifdef _MSC_VER // no need for gcc / clang but msvc's compiler is more conservative with inlining. #pragma inline_recursion(on) #endif template inline void MemoryManager::MemoryOperation(GPUVAddr gpu_src_addr, std::size_t size, FuncMapped&& func_mapped, FuncReserved&& func_reserved, FuncUnmapped&& func_unmapped) const { static constexpr bool BOOL_BREAK_MAPPED = std::is_same_v; static constexpr bool BOOL_BREAK_RESERVED = std::is_same_v; static constexpr bool BOOL_BREAK_UNMAPPED = std::is_same_v; u64 used_page_size; u64 used_page_mask; u64 used_page_bits; if constexpr (is_big_pages) { used_page_size = big_page_size; used_page_mask = big_page_mask; used_page_bits = big_page_bits; } else { used_page_size = page_size; used_page_mask = page_mask; used_page_bits = page_bits; } std::size_t remaining_size{size}; std::size_t page_index{gpu_src_addr >> used_page_bits}; std::size_t page_offset{gpu_src_addr & used_page_mask}; GPUVAddr current_address = gpu_src_addr; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast(used_page_size) - page_offset, remaining_size)}; auto entry = GetEntry(current_address); if (entry == EntryType::Mapped) [[likely]] { if constexpr (BOOL_BREAK_MAPPED) { if (func_mapped(page_index, page_offset, copy_amount)) { return; } } else { func_mapped(page_index, page_offset, copy_amount); } } else if (entry == EntryType::Reserved) { if constexpr (BOOL_BREAK_RESERVED) { if (func_reserved(page_index, page_offset, copy_amount)) { return; } } else { func_reserved(page_index, page_offset, copy_amount); } } else [[unlikely]] { if constexpr (BOOL_BREAK_UNMAPPED) { if (func_unmapped(page_index, page_offset, copy_amount)) { return; } } else { func_unmapped(page_index, page_offset, copy_amount); } } page_index++; page_offset = 0; remaining_size -= copy_amount; current_address += copy_amount; } } template void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const { auto set_to_zero = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, std::size_t copy_amount) { std::memset(dest_buffer, 0, copy_amount); dest_buffer = static_cast(dest_buffer) + copy_amount; }; auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; if constexpr (is_safe) { rasterizer->FlushRegion(cpu_addr_base, copy_amount); } u8* physical = memory.GetPointer(cpu_addr_base); std::memcpy(dest_buffer, physical, copy_amount); dest_buffer = static_cast(dest_buffer) + copy_amount; }; auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; if constexpr (is_safe) { rasterizer->FlushRegion(cpu_addr_base, copy_amount); } if (!IsBigPageContinous(page_index)) [[unlikely]] { memory.ReadBlockUnsafe(cpu_addr_base, dest_buffer, copy_amount); } else { u8* physical = memory.GetPointer(cpu_addr_base); std::memcpy(dest_buffer, physical, copy_amount); } dest_buffer = static_cast(dest_buffer) + copy_amount; }; auto read_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, mapped_normal, set_to_zero, set_to_zero); }; MemoryOperation(gpu_src_addr, size, mapped_big, set_to_zero, read_short_pages); } void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const { ReadBlockImpl(gpu_src_addr, dest_buffer, size); } void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer, const std::size_t size) const { ReadBlockImpl(gpu_src_addr, dest_buffer, size); } template void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) { auto just_advance = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, std::size_t copy_amount) { src_buffer = static_cast(src_buffer) + copy_amount; }; auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; if constexpr (is_safe) { rasterizer->InvalidateRegion(cpu_addr_base, copy_amount); } u8* physical = memory.GetPointer(cpu_addr_base); std::memcpy(physical, src_buffer, copy_amount); src_buffer = static_cast(src_buffer) + copy_amount; }; auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; if constexpr (is_safe) { rasterizer->InvalidateRegion(cpu_addr_base, copy_amount); } if (!IsBigPageContinous(page_index)) [[unlikely]] { memory.WriteBlockUnsafe(cpu_addr_base, src_buffer, copy_amount); } else { u8* physical = memory.GetPointer(cpu_addr_base); std::memcpy(physical, src_buffer, copy_amount); } src_buffer = static_cast(src_buffer) + copy_amount; }; auto write_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, mapped_normal, just_advance, just_advance); }; MemoryOperation(gpu_dest_addr, size, mapped_big, just_advance, write_short_pages); } void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) { WriteBlockImpl(gpu_dest_addr, src_buffer, size); } void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) { WriteBlockImpl(gpu_dest_addr, src_buffer, size); } void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size) const { auto do_nothing = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) {}; auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; rasterizer->FlushRegion(cpu_addr_base, copy_amount); }; auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; rasterizer->FlushRegion(cpu_addr_base, copy_amount); }; auto flush_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, mapped_normal, do_nothing, do_nothing); }; MemoryOperation(gpu_addr, size, mapped_big, do_nothing, flush_short_pages); } bool MemoryManager::IsMemoryDirty(GPUVAddr gpu_addr, size_t size) const { bool result = false; auto do_nothing = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) { return false; }; auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount); return result; }; auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount); return result; }; auto check_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, mapped_normal, do_nothing, do_nothing); return result; }; MemoryOperation(gpu_addr, size, mapped_big, do_nothing, check_short_pages); return result; } size_t MemoryManager::MaxContinousRange(GPUVAddr gpu_addr, size_t size) const { std::optional old_page_addr{}; size_t range_so_far = 0; bool result{false}; auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, std::size_t copy_amount) { result = true; return true; }; auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; if (old_page_addr && *old_page_addr != cpu_addr_base) { result = true; return true; } range_so_far += copy_amount; old_page_addr = {cpu_addr_base + copy_amount}; return false; }; auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; if (old_page_addr && *old_page_addr != cpu_addr_base) { return true; } range_so_far += copy_amount; old_page_addr = {cpu_addr_base + copy_amount}; return false; }; auto check_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, short_check, fail, fail); return result; }; MemoryOperation(gpu_addr, size, big_check, fail, check_short_pages); return range_so_far; } void MemoryManager::InvalidateRegion(GPUVAddr gpu_addr, size_t size) const { auto do_nothing = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) {}; auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; rasterizer->InvalidateRegion(cpu_addr_base, copy_amount); }; auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; rasterizer->InvalidateRegion(cpu_addr_base, copy_amount); }; auto invalidate_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, mapped_normal, do_nothing, do_nothing); }; MemoryOperation(gpu_addr, size, mapped_big, do_nothing, invalidate_short_pages); } void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) { std::vector tmp_buffer(size); ReadBlock(gpu_src_addr, tmp_buffer.data(), size); // The output block must be flushed in case it has data modified from the GPU. // Fixes NPC geometry in Zombie Panic in Wonderland DX FlushRegion(gpu_dest_addr, size); WriteBlock(gpu_dest_addr, tmp_buffer.data(), size); } bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const { if (GetEntry(gpu_addr) == EntryType::Mapped) [[likely]] { size_t page_index = gpu_addr >> big_page_bits; if (IsBigPageContinous(page_index)) [[likely]] { const std::size_t page{(page_index & big_page_mask) + size}; return page <= big_page_size; } const std::size_t page{(gpu_addr & Core::Memory::PAGE_MASK) + size}; return page <= Core::Memory::PAGE_SIZE; } if (GetEntry(gpu_addr) != EntryType::Mapped) { return false; } const std::size_t page{(gpu_addr & Core::Memory::PAGE_MASK) + size}; return page <= Core::Memory::PAGE_SIZE; } bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const { std::optional old_page_addr{}; bool result{true}; auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, std::size_t copy_amount) { result = false; return true; }; auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; if (old_page_addr && *old_page_addr != cpu_addr_base) { result = false; return true; } old_page_addr = {cpu_addr_base + copy_amount}; return false; }; auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; if (old_page_addr && *old_page_addr != cpu_addr_base) { result = false; return true; } old_page_addr = {cpu_addr_base + copy_amount}; return false; }; auto check_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, short_check, fail, fail); return !result; }; MemoryOperation(gpu_addr, size, big_check, fail, check_short_pages); return result; } bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const { bool result{true}; auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) { result = false; return true; }; auto pass = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) { return false; }; auto check_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, pass, pass, fail); return !result; }; MemoryOperation(gpu_addr, size, pass, fail, check_short_pages); return result; } std::vector> MemoryManager::GetSubmappedRange( GPUVAddr gpu_addr, std::size_t size) const { std::vector> result{}; std::optional> last_segment{}; std::optional old_page_addr{}; const auto split = [&last_segment, &result]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset, [[maybe_unused]] std::size_t copy_amount) { if (last_segment) { result.push_back(*last_segment); last_segment = std::nullopt; } }; const auto extend_size_big = [this, &split, &old_page_addr, &last_segment](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(big_page_table_cpu[page_index]) << cpu_page_bits) + offset; if (old_page_addr) { if (*old_page_addr != cpu_addr_base) { split(0, 0, 0); } } old_page_addr = {cpu_addr_base + copy_amount}; if (!last_segment) { const GPUVAddr new_base_addr = (page_index << big_page_bits) + offset; last_segment = {new_base_addr, copy_amount}; } else { last_segment->second += copy_amount; } }; const auto extend_size_short = [this, &split, &old_page_addr, &last_segment](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { const VAddr cpu_addr_base = (static_cast(page_table[page_index]) << cpu_page_bits) + offset; if (old_page_addr) { if (*old_page_addr != cpu_addr_base) { split(0, 0, 0); } } old_page_addr = {cpu_addr_base + copy_amount}; if (!last_segment) { const GPUVAddr new_base_addr = (page_index << page_bits) + offset; last_segment = {new_base_addr, copy_amount}; } else { last_segment->second += copy_amount; } }; auto do_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) { GPUVAddr base = (page_index << big_page_bits) + offset; MemoryOperation(base, copy_amount, extend_size_short, split, split); }; MemoryOperation(gpu_addr, size, extend_size_big, split, do_short_pages); split(0, 0, 0); return result; } } // namespace Tegra