/* * Copyright (c) 2010, Google, Inc. * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AV1 encoder support via libaom */ #define AOM_DISABLE_CTRL_TYPECHECKS 1 #include <aom/aom_encoder.h> #include <aom/aomcx.h> #include "libavutil/avassert.h" #include "libavutil/base64.h" #include "libavutil/common.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "av1.h" #include "avcodec.h" #include "internal.h" #include "packet_internal.h" #include "profiles.h" /* * Portion of struct aom_codec_cx_pkt from aom_encoder.h. * One encoded frame returned from the library. */ struct FrameListData { void *buf; /**< compressed data buffer */ size_t sz; /**< length of compressed data */ int64_t pts; /**< time stamp to show frame (in timebase units) */ unsigned long duration; /**< duration to show frame (in timebase units) */ uint32_t flags; /**< flags for this frame */ uint64_t sse[4]; int have_sse; /**< true if we have pending sse[] */ uint64_t frame_number; struct FrameListData *next; }; typedef struct AOMEncoderContext { AVClass *class; AVBSFContext *bsf; struct aom_codec_ctx encoder; struct aom_image rawimg; struct aom_fixed_buf twopass_stats; struct FrameListData *coded_frame_list; int cpu_used; int auto_alt_ref; int arnr_max_frames; int arnr_strength; int aq_mode; int lag_in_frames; int error_resilient; int crf; int static_thresh; int drop_threshold; int denoise_noise_level; int denoise_block_size; uint64_t sse[4]; int have_sse; /**< true if we have pending sse[] */ uint64_t frame_number; int rc_undershoot_pct; int rc_overshoot_pct; int minsection_pct; int maxsection_pct; int frame_parallel; int tile_cols, tile_rows; int tile_cols_log2, tile_rows_log2; aom_superblock_size_t superblock_size; int uniform_tiles; int row_mt; int enable_cdef; int enable_global_motion; int enable_intrabc; int enable_restoration; int usage; int tune; int enable_rect_partitions; int enable_1to4_partitions; int enable_ab_partitions; int enable_angle_delta; int enable_cfl_intra; int enable_paeth_intra; int enable_smooth_intra; int enable_intra_edge_filter; int enable_palette; int enable_filter_intra; } AOMContext; static const char *const ctlidstr[] = { [AOME_SET_CPUUSED] = "AOME_SET_CPUUSED", [AOME_SET_CQ_LEVEL] = "AOME_SET_CQ_LEVEL", [AOME_SET_ENABLEAUTOALTREF] = "AOME_SET_ENABLEAUTOALTREF", [AOME_SET_ARNR_MAXFRAMES] = "AOME_SET_ARNR_MAXFRAMES", [AOME_SET_ARNR_STRENGTH] = "AOME_SET_ARNR_STRENGTH", [AOME_SET_STATIC_THRESHOLD] = "AOME_SET_STATIC_THRESHOLD", [AV1E_SET_COLOR_RANGE] = "AV1E_SET_COLOR_RANGE", [AV1E_SET_COLOR_PRIMARIES] = "AV1E_SET_COLOR_PRIMARIES", [AV1E_SET_MATRIX_COEFFICIENTS] = "AV1E_SET_MATRIX_COEFFICIENTS", [AV1E_SET_TRANSFER_CHARACTERISTICS] = "AV1E_SET_TRANSFER_CHARACTERISTICS", [AV1E_SET_AQ_MODE] = "AV1E_SET_AQ_MODE", [AV1E_SET_FRAME_PARALLEL_DECODING] = "AV1E_SET_FRAME_PARALLEL_DECODING", [AV1E_SET_SUPERBLOCK_SIZE] = "AV1E_SET_SUPERBLOCK_SIZE", [AV1E_SET_TILE_COLUMNS] = "AV1E_SET_TILE_COLUMNS", [AV1E_SET_TILE_ROWS] = "AV1E_SET_TILE_ROWS", [AV1E_SET_ENABLE_RESTORATION] = "AV1E_SET_ENABLE_RESTORATION", #ifdef AOM_CTRL_AV1E_SET_ROW_MT [AV1E_SET_ROW_MT] = "AV1E_SET_ROW_MT", #endif #ifdef AOM_CTRL_AV1E_SET_DENOISE_NOISE_LEVEL [AV1E_SET_DENOISE_NOISE_LEVEL] = "AV1E_SET_DENOISE_NOISE_LEVEL", #endif #ifdef AOM_CTRL_AV1E_SET_DENOISE_BLOCK_SIZE [AV1E_SET_DENOISE_BLOCK_SIZE] = "AV1E_SET_DENOISE_BLOCK_SIZE", #endif #ifdef AOM_CTRL_AV1E_SET_MAX_REFERENCE_FRAMES [AV1E_SET_MAX_REFERENCE_FRAMES] = "AV1E_SET_MAX_REFERENCE_FRAMES", #endif #ifdef AOM_CTRL_AV1E_SET_ENABLE_GLOBAL_MOTION [AV1E_SET_ENABLE_GLOBAL_MOTION] = "AV1E_SET_ENABLE_GLOBAL_MOTION", #endif #ifdef AOM_CTRL_AV1E_SET_ENABLE_INTRABC [AV1E_SET_ENABLE_INTRABC] = "AV1E_SET_ENABLE_INTRABC", #endif [AV1E_SET_ENABLE_CDEF] = "AV1E_SET_ENABLE_CDEF", [AOME_SET_TUNING] = "AOME_SET_TUNING", #if AOM_ENCODER_ABI_VERSION >= 22 [AV1E_SET_ENABLE_1TO4_PARTITIONS] = "AV1E_SET_ENABLE_1TO4_PARTITIONS", [AV1E_SET_ENABLE_AB_PARTITIONS] = "AV1E_SET_ENABLE_AB_PARTITIONS", [AV1E_SET_ENABLE_RECT_PARTITIONS] = "AV1E_SET_ENABLE_RECT_PARTITIONS", [AV1E_SET_ENABLE_ANGLE_DELTA] = "AV1E_SET_ENABLE_ANGLE_DELTA", [AV1E_SET_ENABLE_CFL_INTRA] = "AV1E_SET_ENABLE_CFL_INTRA", [AV1E_SET_ENABLE_FILTER_INTRA] = "AV1E_SET_ENABLE_FILTER_INTRA", [AV1E_SET_ENABLE_INTRA_EDGE_FILTER] = "AV1E_SET_ENABLE_INTRA_EDGE_FILTER", [AV1E_SET_ENABLE_PAETH_INTRA] = "AV1E_SET_ENABLE_PAETH_INTRA", [AV1E_SET_ENABLE_SMOOTH_INTRA] = "AV1E_SET_ENABLE_SMOOTH_INTRA", [AV1E_SET_ENABLE_PALETTE] = "AV1E_SET_ENABLE_PALETTE", #endif }; static av_cold void log_encoder_error(AVCodecContext *avctx, const char *desc) { AOMContext *ctx = avctx->priv_data; const char *error = aom_codec_error(&ctx->encoder); const char *detail = aom_codec_error_detail(&ctx->encoder); av_log(avctx, AV_LOG_ERROR, "%s: %s\n", desc, error); if (detail) av_log(avctx, AV_LOG_ERROR, " Additional information: %s\n", detail); } static av_cold void dump_enc_cfg(AVCodecContext *avctx, const struct aom_codec_enc_cfg *cfg) { int width = -30; int level = AV_LOG_DEBUG; av_log(avctx, level, "aom_codec_enc_cfg\n"); av_log(avctx, level, "generic settings\n" " %*s%u\n %*s%u\n %*s%u\n %*s%u\n %*s%u\n" " %*s%u\n %*s%u\n" " %*s{%u/%u}\n %*s%u\n %*s%d\n %*s%u\n", width, "g_usage:", cfg->g_usage, width, "g_threads:", cfg->g_threads, width, "g_profile:", cfg->g_profile, width, "g_w:", cfg->g_w, width, "g_h:", cfg->g_h, width, "g_bit_depth:", cfg->g_bit_depth, width, "g_input_bit_depth:", cfg->g_input_bit_depth, width, "g_timebase:", cfg->g_timebase.num, cfg->g_timebase.den, width, "g_error_resilient:", cfg->g_error_resilient, width, "g_pass:", cfg->g_pass, width, "g_lag_in_frames:", cfg->g_lag_in_frames); av_log(avctx, level, "rate control settings\n" " %*s%u\n %*s%d\n %*s%p(%"SIZE_SPECIFIER")\n %*s%u\n", width, "rc_dropframe_thresh:", cfg->rc_dropframe_thresh, width, "rc_end_usage:", cfg->rc_end_usage, width, "rc_twopass_stats_in:", cfg->rc_twopass_stats_in.buf, cfg->rc_twopass_stats_in.sz, width, "rc_target_bitrate:", cfg->rc_target_bitrate); av_log(avctx, level, "quantizer settings\n" " %*s%u\n %*s%u\n", width, "rc_min_quantizer:", cfg->rc_min_quantizer, width, "rc_max_quantizer:", cfg->rc_max_quantizer); av_log(avctx, level, "bitrate tolerance\n" " %*s%u\n %*s%u\n", width, "rc_undershoot_pct:", cfg->rc_undershoot_pct, width, "rc_overshoot_pct:", cfg->rc_overshoot_pct); av_log(avctx, level, "decoder buffer model\n" " %*s%u\n %*s%u\n %*s%u\n", width, "rc_buf_sz:", cfg->rc_buf_sz, width, "rc_buf_initial_sz:", cfg->rc_buf_initial_sz, width, "rc_buf_optimal_sz:", cfg->rc_buf_optimal_sz); av_log(avctx, level, "2 pass rate control settings\n" " %*s%u\n %*s%u\n %*s%u\n", width, "rc_2pass_vbr_bias_pct:", cfg->rc_2pass_vbr_bias_pct, width, "rc_2pass_vbr_minsection_pct:", cfg->rc_2pass_vbr_minsection_pct, width, "rc_2pass_vbr_maxsection_pct:", cfg->rc_2pass_vbr_maxsection_pct); av_log(avctx, level, "keyframing settings\n" " %*s%d\n %*s%u\n %*s%u\n", width, "kf_mode:", cfg->kf_mode, width, "kf_min_dist:", cfg->kf_min_dist, width, "kf_max_dist:", cfg->kf_max_dist); av_log(avctx, level, "tile settings\n" " %*s%d\n %*s%d\n", width, "tile_width_count:", cfg->tile_width_count, width, "tile_height_count:", cfg->tile_height_count); av_log(avctx, level, "\n"); } static void coded_frame_add(void *list, struct FrameListData *cx_frame) { struct FrameListData **p = list; while (*p) p = &(*p)->next; *p = cx_frame; cx_frame->next = NULL; } static av_cold void free_coded_frame(struct FrameListData *cx_frame) { av_freep(&cx_frame->buf); av_freep(&cx_frame); } static av_cold void free_frame_list(struct FrameListData *list) { struct FrameListData *p = list; while (p) { list = list->next; free_coded_frame(p); p = list; } } static av_cold int codecctl_int(AVCodecContext *avctx, #ifdef UENUM1BYTE aome_enc_control_id id, #else enum aome_enc_control_id id, #endif int val) { AOMContext *ctx = avctx->priv_data; char buf[80]; int width = -30; int res; snprintf(buf, sizeof(buf), "%s:", ctlidstr[id]); av_log(avctx, AV_LOG_DEBUG, " %*s%d\n", width, buf, val); res = aom_codec_control(&ctx->encoder, id, val); if (res != AOM_CODEC_OK) { snprintf(buf, sizeof(buf), "Failed to set %s codec control", ctlidstr[id]); log_encoder_error(avctx, buf); return AVERROR(EINVAL); } return 0; } static av_cold int aom_free(AVCodecContext *avctx) { AOMContext *ctx = avctx->priv_data; aom_codec_destroy(&ctx->encoder); av_freep(&ctx->twopass_stats.buf); av_freep(&avctx->stats_out); free_frame_list(ctx->coded_frame_list); av_bsf_free(&ctx->bsf); return 0; } static int set_pix_fmt(AVCodecContext *avctx, aom_codec_caps_t codec_caps, struct aom_codec_enc_cfg *enccfg, aom_codec_flags_t *flags, aom_img_fmt_t *img_fmt) { AOMContext av_unused *ctx = avctx->priv_data; enccfg->g_bit_depth = enccfg->g_input_bit_depth = 8; switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV420P: enccfg->g_profile = FF_PROFILE_AV1_MAIN; *img_fmt = AOM_IMG_FMT_I420; return 0; case AV_PIX_FMT_YUV422P: enccfg->g_profile = FF_PROFILE_AV1_PROFESSIONAL; *img_fmt = AOM_IMG_FMT_I422; return 0; case AV_PIX_FMT_YUV444P: enccfg->g_profile = FF_PROFILE_AV1_HIGH; *img_fmt = AOM_IMG_FMT_I444; return 0; case AV_PIX_FMT_YUV420P10: case AV_PIX_FMT_YUV420P12: if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) { enccfg->g_bit_depth = enccfg->g_input_bit_depth = avctx->pix_fmt == AV_PIX_FMT_YUV420P10 ? 10 : 12; enccfg->g_profile = enccfg->g_bit_depth == 10 ? FF_PROFILE_AV1_MAIN : FF_PROFILE_AV1_PROFESSIONAL; *img_fmt = AOM_IMG_FMT_I42016; *flags |= AOM_CODEC_USE_HIGHBITDEPTH; return 0; } break; case AV_PIX_FMT_YUV422P10: case AV_PIX_FMT_YUV422P12: if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) { enccfg->g_bit_depth = enccfg->g_input_bit_depth = avctx->pix_fmt == AV_PIX_FMT_YUV422P10 ? 10 : 12; enccfg->g_profile = FF_PROFILE_AV1_PROFESSIONAL; *img_fmt = AOM_IMG_FMT_I42216; *flags |= AOM_CODEC_USE_HIGHBITDEPTH; return 0; } break; case AV_PIX_FMT_YUV444P10: case AV_PIX_FMT_YUV444P12: if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) { enccfg->g_bit_depth = enccfg->g_input_bit_depth = avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ? 10 : 12; enccfg->g_profile = enccfg->g_bit_depth == 10 ? FF_PROFILE_AV1_HIGH : FF_PROFILE_AV1_PROFESSIONAL; *img_fmt = AOM_IMG_FMT_I44416; *flags |= AOM_CODEC_USE_HIGHBITDEPTH; return 0; } break; default: break; } av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format.\n"); return AVERROR_INVALIDDATA; } static void set_color_range(AVCodecContext *avctx) { aom_color_range_t aom_cr; switch (avctx->color_range) { case AVCOL_RANGE_UNSPECIFIED: case AVCOL_RANGE_MPEG: aom_cr = AOM_CR_STUDIO_RANGE; break; case AVCOL_RANGE_JPEG: aom_cr = AOM_CR_FULL_RANGE; break; default: av_log(avctx, AV_LOG_WARNING, "Unsupported color range (%d)\n", avctx->color_range); return; } codecctl_int(avctx, AV1E_SET_COLOR_RANGE, aom_cr); } static int count_uniform_tiling(int dim, int sb_size, int tiles_log2) { int sb_dim = (dim + sb_size - 1) / sb_size; int tile_dim = (sb_dim + (1 << tiles_log2) - 1) >> tiles_log2; av_assert0(tile_dim > 0); return (sb_dim + tile_dim - 1) / tile_dim; } static int choose_tiling(AVCodecContext *avctx, struct aom_codec_enc_cfg *enccfg) { AOMContext *ctx = avctx->priv_data; int sb_128x128_possible, sb_size, sb_width, sb_height; int uniform_rows, uniform_cols; int uniform_64x64_possible, uniform_128x128_possible; int tile_size, rounding, i; if (ctx->tile_cols_log2 >= 0) ctx->tile_cols = 1 << ctx->tile_cols_log2; if (ctx->tile_rows_log2 >= 0) ctx->tile_rows = 1 << ctx->tile_rows_log2; if (ctx->tile_cols == 0) { ctx->tile_cols = (avctx->width + AV1_MAX_TILE_WIDTH - 1) / AV1_MAX_TILE_WIDTH; if (ctx->tile_cols > 1) { av_log(avctx, AV_LOG_DEBUG, "Automatically using %d tile " "columns to fill width.\n", ctx->tile_cols); } } av_assert0(ctx->tile_cols > 0); if (ctx->tile_rows == 0) { int max_tile_width = FFALIGN((FFALIGN(avctx->width, 128) + ctx->tile_cols - 1) / ctx->tile_cols, 128); ctx->tile_rows = (max_tile_width * FFALIGN(avctx->height, 128) + AV1_MAX_TILE_AREA - 1) / AV1_MAX_TILE_AREA; if (ctx->tile_rows > 1) { av_log(avctx, AV_LOG_DEBUG, "Automatically using %d tile " "rows to fill area.\n", ctx->tile_rows); } } av_assert0(ctx->tile_rows > 0); if ((avctx->width + 63) / 64 < ctx->tile_cols || (avctx->height + 63) / 64 < ctx->tile_rows) { av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: frame not " "large enough to fit specified tile arrangement.\n"); return AVERROR(EINVAL); } if (ctx->tile_cols > AV1_MAX_TILE_COLS || ctx->tile_rows > AV1_MAX_TILE_ROWS) { av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: AV1 does " "not allow more than %dx%d tiles.\n", AV1_MAX_TILE_COLS, AV1_MAX_TILE_ROWS); return AVERROR(EINVAL); } if (avctx->width / ctx->tile_cols > AV1_MAX_TILE_WIDTH) { av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: AV1 does " "not allow tiles of width greater than %d.\n", AV1_MAX_TILE_WIDTH); return AVERROR(EINVAL); } ctx->superblock_size = AOM_SUPERBLOCK_SIZE_DYNAMIC; if (ctx->tile_cols == 1 && ctx->tile_rows == 1) { av_log(avctx, AV_LOG_DEBUG, "Using a single tile.\n"); return 0; } sb_128x128_possible = (avctx->width + 127) / 128 >= ctx->tile_cols && (avctx->height + 127) / 128 >= ctx->tile_rows; ctx->tile_cols_log2 = ctx->tile_cols == 1 ? 0 : av_log2(ctx->tile_cols - 1) + 1; ctx->tile_rows_log2 = ctx->tile_rows == 1 ? 0 : av_log2(ctx->tile_rows - 1) + 1; uniform_cols = count_uniform_tiling(avctx->width, 64, ctx->tile_cols_log2); uniform_rows = count_uniform_tiling(avctx->height, 64, ctx->tile_rows_log2); av_log(avctx, AV_LOG_DEBUG, "Uniform with 64x64 superblocks " "-> %dx%d tiles.\n", uniform_cols, uniform_rows); uniform_64x64_possible = uniform_cols == ctx->tile_cols && uniform_rows == ctx->tile_rows; if (sb_128x128_possible) { uniform_cols = count_uniform_tiling(avctx->width, 128, ctx->tile_cols_log2); uniform_rows = count_uniform_tiling(avctx->height, 128, ctx->tile_rows_log2); av_log(avctx, AV_LOG_DEBUG, "Uniform with 128x128 superblocks " "-> %dx%d tiles.\n", uniform_cols, uniform_rows); uniform_128x128_possible = uniform_cols == ctx->tile_cols && uniform_rows == ctx->tile_rows; } else { av_log(avctx, AV_LOG_DEBUG, "128x128 superblocks not possible.\n"); uniform_128x128_possible = 0; } ctx->uniform_tiles = 1; if (uniform_64x64_possible && uniform_128x128_possible) { av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with dynamic " "superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n", ctx->tile_cols_log2, ctx->tile_rows_log2); return 0; } if (uniform_64x64_possible && !sb_128x128_possible) { av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with 64x64 " "superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n", ctx->tile_cols_log2, ctx->tile_rows_log2); ctx->superblock_size = AOM_SUPERBLOCK_SIZE_64X64; return 0; } if (uniform_128x128_possible) { av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with 128x128 " "superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n", ctx->tile_cols_log2, ctx->tile_rows_log2); ctx->superblock_size = AOM_SUPERBLOCK_SIZE_128X128; return 0; } ctx->uniform_tiles = 0; if (sb_128x128_possible) { sb_size = 128; ctx->superblock_size = AOM_SUPERBLOCK_SIZE_128X128; } else { sb_size = 64; ctx->superblock_size = AOM_SUPERBLOCK_SIZE_64X64; } av_log(avctx, AV_LOG_DEBUG, "Using fixed tiling with %dx%d " "superblocks (tile_cols = %d, tile_rows = %d).\n", sb_size, sb_size, ctx->tile_cols, ctx->tile_rows); enccfg->tile_width_count = ctx->tile_cols; enccfg->tile_height_count = ctx->tile_rows; sb_width = (avctx->width + sb_size - 1) / sb_size; sb_height = (avctx->height + sb_size - 1) / sb_size; tile_size = sb_width / ctx->tile_cols; rounding = sb_width % ctx->tile_cols; for (i = 0; i < ctx->tile_cols; i++) { enccfg->tile_widths[i] = tile_size + (i < rounding / 2 || i > ctx->tile_cols - 1 - (rounding + 1) / 2); } tile_size = sb_height / ctx->tile_rows; rounding = sb_height % ctx->tile_rows; for (i = 0; i < ctx->tile_rows; i++) { enccfg->tile_heights[i] = tile_size + (i < rounding / 2 || i > ctx->tile_rows - 1 - (rounding + 1) / 2); } return 0; } static av_cold int aom_init(AVCodecContext *avctx, const struct aom_codec_iface *iface) { AOMContext *ctx = avctx->priv_data; struct aom_codec_enc_cfg enccfg = { 0 }; #ifdef AOM_FRAME_IS_INTRAONLY aom_codec_flags_t flags = (avctx->flags & AV_CODEC_FLAG_PSNR) ? AOM_CODEC_USE_PSNR : 0; #else aom_codec_flags_t flags = 0; #endif AVCPBProperties *cpb_props; int res; aom_img_fmt_t img_fmt; aom_codec_caps_t codec_caps = aom_codec_get_caps(iface); av_log(avctx, AV_LOG_INFO, "%s\n", aom_codec_version_str()); av_log(avctx, AV_LOG_VERBOSE, "%s\n", aom_codec_build_config()); if ((res = aom_codec_enc_config_default(iface, &enccfg, 0)) != AOM_CODEC_OK) { av_log(avctx, AV_LOG_ERROR, "Failed to get config: %s\n", aom_codec_err_to_string(res)); return AVERROR(EINVAL); } if (set_pix_fmt(avctx, codec_caps, &enccfg, &flags, &img_fmt)) return AVERROR(EINVAL); if(!avctx->bit_rate) if(avctx->rc_max_rate || avctx->rc_buffer_size || avctx->rc_initial_buffer_occupancy) { av_log( avctx, AV_LOG_ERROR, "Rate control parameters set without a bitrate\n"); return AVERROR(EINVAL); } dump_enc_cfg(avctx, &enccfg); enccfg.g_w = avctx->width; enccfg.g_h = avctx->height; enccfg.g_timebase.num = avctx->time_base.num; enccfg.g_timebase.den = avctx->time_base.den; enccfg.g_threads = FFMIN(avctx->thread_count ? avctx->thread_count : av_cpu_count(), 64); enccfg.g_usage = ctx->usage; if (ctx->lag_in_frames >= 0) enccfg.g_lag_in_frames = ctx->lag_in_frames; if (avctx->flags & AV_CODEC_FLAG_PASS1) enccfg.g_pass = AOM_RC_FIRST_PASS; else if (avctx->flags & AV_CODEC_FLAG_PASS2) enccfg.g_pass = AOM_RC_LAST_PASS; else enccfg.g_pass = AOM_RC_ONE_PASS; if (avctx->rc_min_rate == avctx->rc_max_rate && avctx->rc_min_rate == avctx->bit_rate && avctx->bit_rate) { enccfg.rc_end_usage = AOM_CBR; } else if (ctx->crf >= 0) { enccfg.rc_end_usage = AOM_CQ; if (!avctx->bit_rate) enccfg.rc_end_usage = AOM_Q; } if (avctx->bit_rate) { enccfg.rc_target_bitrate = av_rescale_rnd(avctx->bit_rate, 1, 1000, AV_ROUND_NEAR_INF); } else if (enccfg.rc_end_usage != AOM_Q) { enccfg.rc_end_usage = AOM_Q; ctx->crf = 32; av_log(avctx, AV_LOG_WARNING, "Neither bitrate nor constrained quality specified, using default CRF of %d\n", ctx->crf); } if (avctx->qmin >= 0) enccfg.rc_min_quantizer = avctx->qmin; if (avctx->qmax >= 0) enccfg.rc_max_quantizer = avctx->qmax; if (enccfg.rc_end_usage == AOM_CQ || enccfg.rc_end_usage == AOM_Q) { if (ctx->crf < enccfg.rc_min_quantizer || ctx->crf > enccfg.rc_max_quantizer) { av_log(avctx, AV_LOG_ERROR, "CQ level %d must be between minimum and maximum quantizer value (%d-%d)\n", ctx->crf, enccfg.rc_min_quantizer, enccfg.rc_max_quantizer); return AVERROR(EINVAL); } } enccfg.rc_dropframe_thresh = ctx->drop_threshold; // 0-100 (0 => CBR, 100 => VBR) enccfg.rc_2pass_vbr_bias_pct = round(avctx->qcompress * 100); if (ctx->minsection_pct >= 0) enccfg.rc_2pass_vbr_minsection_pct = ctx->minsection_pct; else if (avctx->bit_rate) enccfg.rc_2pass_vbr_minsection_pct = avctx->rc_min_rate * 100LL / avctx->bit_rate; if (ctx->maxsection_pct >= 0) enccfg.rc_2pass_vbr_maxsection_pct = ctx->maxsection_pct; else if (avctx->rc_max_rate) enccfg.rc_2pass_vbr_maxsection_pct = avctx->rc_max_rate * 100LL / avctx->bit_rate; if (avctx->rc_buffer_size) enccfg.rc_buf_sz = avctx->rc_buffer_size * 1000LL / avctx->bit_rate; if (avctx->rc_initial_buffer_occupancy) enccfg.rc_buf_initial_sz = avctx->rc_initial_buffer_occupancy * 1000LL / avctx->bit_rate; enccfg.rc_buf_optimal_sz = enccfg.rc_buf_sz * 5 / 6; if (ctx->rc_undershoot_pct >= 0) enccfg.rc_undershoot_pct = ctx->rc_undershoot_pct; if (ctx->rc_overshoot_pct >= 0) enccfg.rc_overshoot_pct = ctx->rc_overshoot_pct; // _enc_init() will balk if kf_min_dist differs from max w/AOM_KF_AUTO if (avctx->keyint_min >= 0 && avctx->keyint_min == avctx->gop_size) enccfg.kf_min_dist = avctx->keyint_min; if (avctx->gop_size >= 0) enccfg.kf_max_dist = avctx->gop_size; if (enccfg.g_pass == AOM_RC_FIRST_PASS) enccfg.g_lag_in_frames = 0; else if (enccfg.g_pass == AOM_RC_LAST_PASS) { int decode_size, ret; if (!avctx->stats_in) { av_log(avctx, AV_LOG_ERROR, "No stats file for second pass\n"); return AVERROR_INVALIDDATA; } ctx->twopass_stats.sz = strlen(avctx->stats_in) * 3 / 4; ret = av_reallocp(&ctx->twopass_stats.buf, ctx->twopass_stats.sz); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Stat buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n", ctx->twopass_stats.sz); ctx->twopass_stats.sz = 0; return ret; } decode_size = av_base64_decode(ctx->twopass_stats.buf, avctx->stats_in, ctx->twopass_stats.sz); if (decode_size < 0) { av_log(avctx, AV_LOG_ERROR, "Stat buffer decode failed\n"); return AVERROR_INVALIDDATA; } ctx->twopass_stats.sz = decode_size; enccfg.rc_twopass_stats_in = ctx->twopass_stats; } /* 0-3: For non-zero values the encoder increasingly optimizes for reduced * complexity playback on low powered devices at the expense of encode * quality. */ if (avctx->profile != FF_PROFILE_UNKNOWN) enccfg.g_profile = avctx->profile; enccfg.g_error_resilient = ctx->error_resilient; res = choose_tiling(avctx, &enccfg); if (res < 0) return res; dump_enc_cfg(avctx, &enccfg); /* Construct Encoder Context */ res = aom_codec_enc_init(&ctx->encoder, iface, &enccfg, flags); if (res != AOM_CODEC_OK) { log_encoder_error(avctx, "Failed to initialize encoder"); return AVERROR(EINVAL); } // codec control failures are currently treated only as warnings av_log(avctx, AV_LOG_DEBUG, "aom_codec_control\n"); codecctl_int(avctx, AOME_SET_CPUUSED, ctx->cpu_used); if (ctx->auto_alt_ref >= 0) codecctl_int(avctx, AOME_SET_ENABLEAUTOALTREF, ctx->auto_alt_ref); if (ctx->arnr_max_frames >= 0) codecctl_int(avctx, AOME_SET_ARNR_MAXFRAMES, ctx->arnr_max_frames); if (ctx->arnr_strength >= 0) codecctl_int(avctx, AOME_SET_ARNR_STRENGTH, ctx->arnr_strength); if (ctx->enable_cdef >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_CDEF, ctx->enable_cdef); if (ctx->enable_restoration >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_RESTORATION, ctx->enable_restoration); #if AOM_ENCODER_ABI_VERSION >= 22 if (ctx->enable_rect_partitions >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_RECT_PARTITIONS, ctx->enable_rect_partitions); if (ctx->enable_1to4_partitions >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_1TO4_PARTITIONS, ctx->enable_1to4_partitions); if (ctx->enable_ab_partitions >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_AB_PARTITIONS, ctx->enable_ab_partitions); if (ctx->enable_angle_delta >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_ANGLE_DELTA, ctx->enable_angle_delta); if (ctx->enable_cfl_intra >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_CFL_INTRA, ctx->enable_cfl_intra); if (ctx->enable_filter_intra >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_FILTER_INTRA, ctx->enable_filter_intra); if (ctx->enable_intra_edge_filter >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_INTRA_EDGE_FILTER, ctx->enable_intra_edge_filter); if (ctx->enable_paeth_intra >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_PAETH_INTRA, ctx->enable_paeth_intra); if (ctx->enable_smooth_intra >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_SMOOTH_INTRA, ctx->enable_smooth_intra); if (ctx->enable_palette >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_PALETTE, ctx->enable_palette); #endif codecctl_int(avctx, AOME_SET_STATIC_THRESHOLD, ctx->static_thresh); if (ctx->crf >= 0) codecctl_int(avctx, AOME_SET_CQ_LEVEL, ctx->crf); if (ctx->tune >= 0) codecctl_int(avctx, AOME_SET_TUNING, ctx->tune); codecctl_int(avctx, AV1E_SET_COLOR_PRIMARIES, avctx->color_primaries); codecctl_int(avctx, AV1E_SET_MATRIX_COEFFICIENTS, avctx->colorspace); codecctl_int(avctx, AV1E_SET_TRANSFER_CHARACTERISTICS, avctx->color_trc); if (ctx->aq_mode >= 0) codecctl_int(avctx, AV1E_SET_AQ_MODE, ctx->aq_mode); if (ctx->frame_parallel >= 0) codecctl_int(avctx, AV1E_SET_FRAME_PARALLEL_DECODING, ctx->frame_parallel); set_color_range(avctx); codecctl_int(avctx, AV1E_SET_SUPERBLOCK_SIZE, ctx->superblock_size); if (ctx->uniform_tiles) { codecctl_int(avctx, AV1E_SET_TILE_COLUMNS, ctx->tile_cols_log2); codecctl_int(avctx, AV1E_SET_TILE_ROWS, ctx->tile_rows_log2); } #ifdef AOM_CTRL_AV1E_SET_DENOISE_NOISE_LEVEL if (ctx->denoise_noise_level >= 0) codecctl_int(avctx, AV1E_SET_DENOISE_NOISE_LEVEL, ctx->denoise_noise_level); #endif #ifdef AOM_CTRL_AV1E_SET_DENOISE_BLOCK_SIZE if (ctx->denoise_block_size >= 0) codecctl_int(avctx, AV1E_SET_DENOISE_BLOCK_SIZE, ctx->denoise_block_size); #endif #ifdef AOM_CTRL_AV1E_SET_ENABLE_GLOBAL_MOTION if (ctx->enable_global_motion >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_GLOBAL_MOTION, ctx->enable_global_motion); #endif #ifdef AOM_CTRL_AV1E_SET_MAX_REFERENCE_FRAMES if (avctx->refs >= 3) { codecctl_int(avctx, AV1E_SET_MAX_REFERENCE_FRAMES, avctx->refs); } #endif #ifdef AOM_CTRL_AV1E_SET_ROW_MT if (ctx->row_mt >= 0) codecctl_int(avctx, AV1E_SET_ROW_MT, ctx->row_mt); #endif #ifdef AOM_CTRL_AV1E_SET_ENABLE_INTRABC if (ctx->enable_intrabc >= 0) codecctl_int(avctx, AV1E_SET_ENABLE_INTRABC, ctx->enable_intrabc); #endif // provide dummy value to initialize wrapper, values will be updated each _encode() aom_img_wrap(&ctx->rawimg, img_fmt, avctx->width, avctx->height, 1, (unsigned char*)1); if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) ctx->rawimg.bit_depth = enccfg.g_bit_depth; cpb_props = ff_add_cpb_side_data(avctx); if (!cpb_props) return AVERROR(ENOMEM); if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { const AVBitStreamFilter *filter = av_bsf_get_by_name("extract_extradata"); int ret; if (!filter) { av_log(avctx, AV_LOG_ERROR, "extract_extradata bitstream filter " "not found. This is a bug, please report it.\n"); return AVERROR_BUG; } ret = av_bsf_alloc(filter, &ctx->bsf); if (ret < 0) return ret; ret = avcodec_parameters_from_context(ctx->bsf->par_in, avctx); if (ret < 0) return ret; ret = av_bsf_init(ctx->bsf); if (ret < 0) return ret; } if (enccfg.rc_end_usage == AOM_CBR || enccfg.g_pass != AOM_RC_ONE_PASS) { cpb_props->max_bitrate = avctx->rc_max_rate; cpb_props->min_bitrate = avctx->rc_min_rate; cpb_props->avg_bitrate = avctx->bit_rate; } cpb_props->buffer_size = avctx->rc_buffer_size; return 0; } static inline void cx_pktcpy(AOMContext *ctx, struct FrameListData *dst, const struct aom_codec_cx_pkt *src) { dst->pts = src->data.frame.pts; dst->duration = src->data.frame.duration; dst->flags = src->data.frame.flags; dst->sz = src->data.frame.sz; dst->buf = src->data.frame.buf; #ifdef AOM_FRAME_IS_INTRAONLY dst->have_sse = 0; dst->frame_number = ++ctx->frame_number; dst->have_sse = ctx->have_sse; if (ctx->have_sse) { /* associate last-seen SSE to the frame. */ /* Transfers ownership from ctx to dst. */ memcpy(dst->sse, ctx->sse, sizeof(dst->sse)); ctx->have_sse = 0; } #endif } /** * Store coded frame information in format suitable for return from encode2(). * * Write information from @a cx_frame to @a pkt * @return packet data size on success * @return a negative AVERROR on error */ static int storeframe(AVCodecContext *avctx, struct FrameListData *cx_frame, AVPacket *pkt) { AOMContext *ctx = avctx->priv_data; int av_unused pict_type; int ret = ff_alloc_packet2(avctx, pkt, cx_frame->sz, 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet of size %"SIZE_SPECIFIER".\n", cx_frame->sz); return ret; } memcpy(pkt->data, cx_frame->buf, pkt->size); pkt->pts = pkt->dts = cx_frame->pts; if (!!(cx_frame->flags & AOM_FRAME_IS_KEY)) { pkt->flags |= AV_PKT_FLAG_KEY; #ifdef AOM_FRAME_IS_INTRAONLY pict_type = AV_PICTURE_TYPE_I; } else if (cx_frame->flags & AOM_FRAME_IS_INTRAONLY) { pict_type = AV_PICTURE_TYPE_I; } else { pict_type = AV_PICTURE_TYPE_P; } ff_side_data_set_encoder_stats(pkt, 0, cx_frame->sse + 1, cx_frame->have_sse ? 3 : 0, pict_type); if (cx_frame->have_sse) { int i; for (i = 0; i < 3; ++i) { avctx->error[i] += cx_frame->sse[i + 1]; } cx_frame->have_sse = 0; #endif } if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { ret = av_bsf_send_packet(ctx->bsf, pkt); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "extract_extradata filter " "failed to send input packet\n"); return ret; } ret = av_bsf_receive_packet(ctx->bsf, pkt); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "extract_extradata filter " "failed to receive output packet\n"); return ret; } } return pkt->size; } /** * Queue multiple output frames from the encoder, returning the front-most. * In cases where aom_codec_get_cx_data() returns more than 1 frame append * the frame queue. Return the head frame if available. * @return Stored frame size * @return AVERROR(EINVAL) on output size error * @return AVERROR(ENOMEM) on coded frame queue data allocation error */ static int queue_frames(AVCodecContext *avctx, AVPacket *pkt_out) { AOMContext *ctx = avctx->priv_data; const struct aom_codec_cx_pkt *pkt; const void *iter = NULL; int size = 0; if (ctx->coded_frame_list) { struct FrameListData *cx_frame = ctx->coded_frame_list; /* return the leading frame if we've already begun queueing */ size = storeframe(avctx, cx_frame, pkt_out); if (size < 0) return size; ctx->coded_frame_list = cx_frame->next; free_coded_frame(cx_frame); } /* consume all available output from the encoder before returning. buffers * are only good through the next aom_codec call */ while ((pkt = aom_codec_get_cx_data(&ctx->encoder, &iter))) { switch (pkt->kind) { case AOM_CODEC_CX_FRAME_PKT: if (!size) { struct FrameListData cx_frame; /* avoid storing the frame when the list is empty and we haven't yet * provided a frame for output */ av_assert0(!ctx->coded_frame_list); cx_pktcpy(ctx, &cx_frame, pkt); size = storeframe(avctx, &cx_frame, pkt_out); if (size < 0) return size; } else { struct FrameListData *cx_frame = av_malloc(sizeof(struct FrameListData)); if (!cx_frame) { av_log(avctx, AV_LOG_ERROR, "Frame queue element alloc failed\n"); return AVERROR(ENOMEM); } cx_pktcpy(ctx, cx_frame, pkt); cx_frame->buf = av_malloc(cx_frame->sz); if (!cx_frame->buf) { av_log(avctx, AV_LOG_ERROR, "Data buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n", cx_frame->sz); av_freep(&cx_frame); return AVERROR(ENOMEM); } memcpy(cx_frame->buf, pkt->data.frame.buf, pkt->data.frame.sz); coded_frame_add(&ctx->coded_frame_list, cx_frame); } break; case AOM_CODEC_STATS_PKT: { struct aom_fixed_buf *stats = &ctx->twopass_stats; int err; if ((err = av_reallocp(&stats->buf, stats->sz + pkt->data.twopass_stats.sz)) < 0) { stats->sz = 0; av_log(avctx, AV_LOG_ERROR, "Stat buffer realloc failed\n"); return err; } memcpy((uint8_t *)stats->buf + stats->sz, pkt->data.twopass_stats.buf, pkt->data.twopass_stats.sz); stats->sz += pkt->data.twopass_stats.sz; break; } #ifdef AOM_FRAME_IS_INTRAONLY case AOM_CODEC_PSNR_PKT: { av_assert0(!ctx->have_sse); ctx->sse[0] = pkt->data.psnr.sse[0]; ctx->sse[1] = pkt->data.psnr.sse[1]; ctx->sse[2] = pkt->data.psnr.sse[2]; ctx->sse[3] = pkt->data.psnr.sse[3]; ctx->have_sse = 1; break; } #endif case AOM_CODEC_CUSTOM_PKT: // ignore unsupported/unrecognized packet types break; } } return size; } static int aom_encode(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { AOMContext *ctx = avctx->priv_data; struct aom_image *rawimg = NULL; int64_t timestamp = 0; int res, coded_size; aom_enc_frame_flags_t flags = 0; if (frame) { rawimg = &ctx->rawimg; rawimg->planes[AOM_PLANE_Y] = frame->data[0]; rawimg->planes[AOM_PLANE_U] = frame->data[1]; rawimg->planes[AOM_PLANE_V] = frame->data[2]; rawimg->stride[AOM_PLANE_Y] = frame->linesize[0]; rawimg->stride[AOM_PLANE_U] = frame->linesize[1]; rawimg->stride[AOM_PLANE_V] = frame->linesize[2]; timestamp = frame->pts; switch (frame->color_range) { case AVCOL_RANGE_MPEG: rawimg->range = AOM_CR_STUDIO_RANGE; break; case AVCOL_RANGE_JPEG: rawimg->range = AOM_CR_FULL_RANGE; break; } if (frame->pict_type == AV_PICTURE_TYPE_I) flags |= AOM_EFLAG_FORCE_KF; } res = aom_codec_encode(&ctx->encoder, rawimg, timestamp, avctx->ticks_per_frame, flags); if (res != AOM_CODEC_OK) { log_encoder_error(avctx, "Error encoding frame"); return AVERROR_INVALIDDATA; } coded_size = queue_frames(avctx, pkt); if (!frame && avctx->flags & AV_CODEC_FLAG_PASS1) { size_t b64_size = AV_BASE64_SIZE(ctx->twopass_stats.sz); avctx->stats_out = av_malloc(b64_size); if (!avctx->stats_out) { av_log(avctx, AV_LOG_ERROR, "Stat buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n", b64_size); return AVERROR(ENOMEM); } av_base64_encode(avctx->stats_out, b64_size, ctx->twopass_stats.buf, ctx->twopass_stats.sz); } *got_packet = !!coded_size; return 0; } static const enum AVPixelFormat av1_pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat av1_pix_fmts_highbd[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_NONE }; static av_cold void av1_init_static(AVCodec *codec) { aom_codec_caps_t codec_caps = aom_codec_get_caps(aom_codec_av1_cx()); if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) codec->pix_fmts = av1_pix_fmts_highbd; else codec->pix_fmts = av1_pix_fmts; if (aom_codec_version_major() < 2) codec->capabilities |= AV_CODEC_CAP_EXPERIMENTAL; } static av_cold int av1_init(AVCodecContext *avctx) { return aom_init(avctx, aom_codec_av1_cx()); } #define OFFSET(x) offsetof(AOMContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "cpu-used", "Quality/Speed ratio modifier", OFFSET(cpu_used), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 8, VE}, { "auto-alt-ref", "Enable use of alternate reference " "frames (2-pass only)", OFFSET(auto_alt_ref), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 2, VE}, { "lag-in-frames", "Number of frames to look ahead at for " "alternate reference frame selection", OFFSET(lag_in_frames), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE}, { "arnr-max-frames", "altref noise reduction max frame count", OFFSET(arnr_max_frames), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE}, { "arnr-strength", "altref noise reduction filter strength", OFFSET(arnr_strength), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE}, { "aq-mode", "adaptive quantization mode", OFFSET(aq_mode), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 4, VE, "aq_mode"}, { "none", "Aq not used", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, 0, 0, VE, "aq_mode"}, { "variance", "Variance based Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, 0, 0, VE, "aq_mode"}, { "complexity", "Complexity based Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 2}, 0, 0, VE, "aq_mode"}, { "cyclic", "Cyclic Refresh Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 3}, 0, 0, VE, "aq_mode"}, { "error-resilience", "Error resilience configuration", OFFSET(error_resilient), AV_OPT_TYPE_FLAGS, {.i64 = 0}, INT_MIN, INT_MAX, VE, "er"}, { "default", "Improve resiliency against losses of whole frames", 0, AV_OPT_TYPE_CONST, {.i64 = AOM_ERROR_RESILIENT_DEFAULT}, 0, 0, VE, "er"}, { "crf", "Select the quality for constant quality mode", offsetof(AOMContext, crf), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 63, VE }, { "static-thresh", "A change threshold on blocks below which they will be skipped by the encoder", OFFSET(static_thresh), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE }, { "drop-threshold", "Frame drop threshold", offsetof(AOMContext, drop_threshold), AV_OPT_TYPE_INT, {.i64 = 0 }, INT_MIN, INT_MAX, VE }, { "denoise-noise-level", "Amount of noise to be removed", OFFSET(denoise_noise_level), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE}, { "denoise-block-size", "Denoise block size ", OFFSET(denoise_block_size), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE}, { "undershoot-pct", "Datarate undershoot (min) target (%)", OFFSET(rc_undershoot_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 100, VE}, { "overshoot-pct", "Datarate overshoot (max) target (%)", OFFSET(rc_overshoot_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 1000, VE}, { "minsection-pct", "GOP min bitrate (% of target)", OFFSET(minsection_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 100, VE}, { "maxsection-pct", "GOP max bitrate (% of target)", OFFSET(maxsection_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 5000, VE}, { "frame-parallel", "Enable frame parallel decodability features", OFFSET(frame_parallel), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "tiles", "Tile columns x rows", OFFSET(tile_cols), AV_OPT_TYPE_IMAGE_SIZE, { .str = NULL }, 0, 0, VE }, { "tile-columns", "Log2 of number of tile columns to use", OFFSET(tile_cols_log2), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE}, { "tile-rows", "Log2 of number of tile rows to use", OFFSET(tile_rows_log2), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE}, { "row-mt", "Enable row based multi-threading", OFFSET(row_mt), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-cdef", "Enable CDEF filtering", OFFSET(enable_cdef), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-global-motion", "Enable global motion", OFFSET(enable_global_motion), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-intrabc", "Enable intra block copy prediction mode", OFFSET(enable_intrabc), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-restoration", "Enable Loop Restoration filtering", OFFSET(enable_restoration), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "usage", "Quality and compression efficiency vs speed trade-off", OFFSET(usage), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, VE, "usage"}, { "good", "Good quality", 0, AV_OPT_TYPE_CONST, {.i64 = 0 /* AOM_USAGE_GOOD_QUALITY */}, 0, 0, VE, "usage"}, { "realtime", "Realtime encoding", 0, AV_OPT_TYPE_CONST, {.i64 = 1 /* AOM_USAGE_REALTIME */}, 0, 0, VE, "usage"}, { "tune", "The metric that the encoder tunes for. Automatically chosen by the encoder by default", OFFSET(tune), AV_OPT_TYPE_INT, {.i64 = -1}, -1, AOM_TUNE_SSIM, VE, "tune"}, { "psnr", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = AOM_TUNE_PSNR}, 0, 0, VE, "tune"}, { "ssim", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = AOM_TUNE_SSIM}, 0, 0, VE, "tune"}, FF_AV1_PROFILE_OPTS { "enable-rect-partitions", "Enable rectangular partitions", OFFSET(enable_rect_partitions), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-1to4-partitions", "Enable 1:4/4:1 partitions", OFFSET(enable_1to4_partitions), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-ab-partitions", "Enable ab shape partitions", OFFSET(enable_ab_partitions), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-angle-delta", "Enable angle delta intra prediction", OFFSET(enable_angle_delta), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-cfl-intra", "Enable chroma predicted from luma intra prediction", OFFSET(enable_cfl_intra), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-filter-intra", "Enable filter intra predictor", OFFSET(enable_filter_intra), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-intra-edge-filter", "Enable intra edge filter", OFFSET(enable_intra_edge_filter), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-smooth-intra", "Enable smooth intra prediction mode", OFFSET(enable_smooth_intra), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-paeth-intra", "Enable paeth predictor in intra prediction", OFFSET(enable_paeth_intra), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { "enable-palette", "Enable palette prediction mode", OFFSET(enable_palette), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE}, { NULL }, }; static const AVCodecDefault defaults[] = { { "b", "0" }, { "qmin", "-1" }, { "qmax", "-1" }, { "g", "-1" }, { "keyint_min", "-1" }, { NULL }, }; static const AVClass class_aom = { .class_name = "libaom-av1 encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_libaom_av1_encoder = { .name = "libaom-av1", .long_name = NULL_IF_CONFIG_SMALL("libaom AV1"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_AV1, .priv_data_size = sizeof(AOMContext), .init = av1_init, .encode2 = aom_encode, .close = aom_free, .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_AUTO_THREADS, .profiles = NULL_IF_CONFIG_SMALL(ff_av1_profiles), .priv_class = &class_aom, .defaults = defaults, .init_static_data = av1_init_static, .wrapper_name = "libaom", };