pineapple-src/externals/ffmpeg/libavcodec/x86/xvididct.asm
2021-02-09 04:25:58 +01:00

983 lines
32 KiB
NASM
Executable file

; XVID MPEG-4 VIDEO CODEC
;
; Conversion from gcc syntax to x264asm syntax with modifications
; by Christophe Gisquet <christophe.gisquet@gmail.com>
;
; =========== SSE2 inverse discrete cosine transform ===========
;
; Copyright(C) 2003 Pascal Massimino <skal@planet-d.net>
;
; Conversion to gcc syntax with modifications
; by Alexander Strange <astrange@ithinksw.com>
;
; Originally from dct/x86_asm/fdct_sse2_skal.asm in Xvid.
;
; Vertical pass is an implementation of the scheme:
; Loeffler C., Ligtenberg A., and Moschytz C.S.:
; Practical Fast 1D DCT Algorithm with Eleven Multiplications,
; Proc. ICASSP 1989, 988-991.
;
; Horizontal pass is a double 4x4 vector/matrix multiplication,
; (see also Intel's Application Note 922:
; http://developer.intel.com/vtune/cbts/strmsimd/922down.htm
; Copyright (C) 1999 Intel Corporation)
;
; More details at http://skal.planet-d.net/coding/dct.html
;
; ======= MMX and XMM forward discrete cosine transform =======
;
; Copyright(C) 2001 Peter Ross <pross@xvid.org>
;
; Originally provided by Intel at AP-922
; http://developer.intel.com/vtune/cbts/strmsimd/922down.htm
; (See more app notes at http://developer.intel.com/vtune/cbts/strmsimd/appnotes.htm)
; but in a limited edition.
; New macro implements a column part for precise iDCT
; The routine precision now satisfies IEEE standard 1180-1990.
;
; Copyright(C) 2000-2001 Peter Gubanov <peter@elecard.net.ru>
; Rounding trick Copyright(C) 2000 Michel Lespinasse <walken@zoy.org>
;
; http://www.elecard.com/peter/idct.html
; http://www.linuxvideo.org/mpeg2dec/
;
; These examples contain code fragments for first stage iDCT 8x8
; (for rows) and first stage DCT 8x8 (for columns)
;
; conversion to gcc syntax by Michael Niedermayer
;
; ======================================================================
;
; This file is part of FFmpeg.
;
; FFmpeg is free software; you can redistribute it and/or
; modify it under the terms of the GNU Lesser General Public
; License as published by the Free Software Foundation; either
; version 2.1 of the License, or (at your option) any later version.
;
; FFmpeg is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; Lesser General Public License for more details.
;
; You should have received a copy of the GNU Lesser General Public License
; along with FFmpeg; if not, write to the Free Software Foundation,
; Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
%include "libavutil/x86/x86util.asm"
SECTION_RODATA
; Similar to tg_1_16 in MMX code
tan1: times 8 dw 13036
tan2: times 8 dw 27146
tan3: times 8 dw 43790
sqrt2: times 8 dw 23170
; SSE2 tables
iTab1: dw 0x4000, 0x539f, 0xc000, 0xac61, 0x4000, 0xdd5d, 0x4000, 0xdd5d
dw 0x4000, 0x22a3, 0x4000, 0x22a3, 0xc000, 0x539f, 0x4000, 0xac61
dw 0x3249, 0x11a8, 0x4b42, 0xee58, 0x11a8, 0x4b42, 0x11a8, 0xcdb7
dw 0x58c5, 0x4b42, 0xa73b, 0xcdb7, 0x3249, 0xa73b, 0x4b42, 0xa73b
iTab2: dw 0x58c5, 0x73fc, 0xa73b, 0x8c04, 0x58c5, 0xcff5, 0x58c5, 0xcff5
dw 0x58c5, 0x300b, 0x58c5, 0x300b, 0xa73b, 0x73fc, 0x58c5, 0x8c04
dw 0x45bf, 0x187e, 0x6862, 0xe782, 0x187e, 0x6862, 0x187e, 0xba41
dw 0x7b21, 0x6862, 0x84df, 0xba41, 0x45bf, 0x84df, 0x6862, 0x84df
iTab3: dw 0x539f, 0x6d41, 0xac61, 0x92bf, 0x539f, 0xd2bf, 0x539f, 0xd2bf
dw 0x539f, 0x2d41, 0x539f, 0x2d41, 0xac61, 0x6d41, 0x539f, 0x92bf
dw 0x41b3, 0x1712, 0x6254, 0xe8ee, 0x1712, 0x6254, 0x1712, 0xbe4d
dw 0x73fc, 0x6254, 0x8c04, 0xbe4d, 0x41b3, 0x8c04, 0x6254, 0x8c04
iTab4: dw 0x4b42, 0x6254, 0xb4be, 0x9dac, 0x4b42, 0xd746, 0x4b42, 0xd746
dw 0x4b42, 0x28ba, 0x4b42, 0x28ba, 0xb4be, 0x6254, 0x4b42, 0x9dac
dw 0x3b21, 0x14c3, 0x587e, 0xeb3d, 0x14c3, 0x587e, 0x14c3, 0xc4df
dw 0x6862, 0x587e, 0x979e, 0xc4df, 0x3b21, 0x979e, 0x587e, 0x979e
%if ARCH_X86_32
; -----------------------------------------------------------------------------
;
; The first stage iDCT 8x8 - inverse DCTs of rows
;
; -----------------------------------------------------------------------------
; The 8-point inverse DCT direct algorithm
; -----------------------------------------------------------------------------
;
; static const short w[32] = {
; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
;
; #define DCT_8_INV_ROW(x, y)
; {
; int a0, a1, a2, a3, b0, b1, b2, b3;
;
; a0 = x[0] * w[0] + x[2] * w[1] + x[4] * w[2] + x[6] * w[3];
; a1 = x[0] * w[4] + x[2] * w[5] + x[4] * w[6] + x[6] * w[7];
; a2 = x[0] * w[8] + x[2] * w[9] + x[4] * w[10] + x[6] * w[11];
; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
;
; y[0] = SHIFT_ROUND(a0 + b0);
; y[1] = SHIFT_ROUND(a1 + b1);
; y[2] = SHIFT_ROUND(a2 + b2);
; y[3] = SHIFT_ROUND(a3 + b3);
; y[4] = SHIFT_ROUND(a3 - b3);
; y[5] = SHIFT_ROUND(a2 - b2);
; y[6] = SHIFT_ROUND(a1 - b1);
; y[7] = SHIFT_ROUND(a0 - b0);
; }
;
; -----------------------------------------------------------------------------
;
; In this implementation the outputs of the iDCT-1D are multiplied
; for rows 0,4 - by cos_4_16,
; for rows 1,7 - by cos_1_16,
; for rows 2,6 - by cos_2_16,
; for rows 3,5 - by cos_3_16
; and are shifted to the left for better accuracy.
;
; For the constants used,
; FIX(float_const) = (short) (float_const * (1 << 15) + 0.5)
;
; -----------------------------------------------------------------------------
; -----------------------------------------------------------------------------
; Tables for mmx processors
; -----------------------------------------------------------------------------
; Table for rows 0,4 - constants are multiplied by cos_4_16
tab_i_04_mmx: dw 16384, 16384, 16384, -16384
dw 21407, 8867, 8867, -21407 ; w07 w05 w03 w01
dw 16384, -16384, 16384, 16384 ; w14 w12 w10 w08
dw -8867, 21407, -21407, -8867 ; w15 w13 w11 w09
dw 22725, 12873, 19266, -22725 ; w22 w20 w18 w16
dw 19266, 4520, -4520, -12873 ; w23 w21 w19 w17
dw 12873, 4520, 4520, 19266 ; w30 w28 w26 w24
dw -22725, 19266, -12873, -22725 ; w31 w29 w27 w25
; Table for rows 1,7 - constants are multiplied by cos_1_16
dw 22725, 22725, 22725, -22725 ; movq-> w06 w04 w02 w00
dw 29692, 12299, 12299, -29692 ; w07 w05 w03 w01
dw 22725, -22725, 22725, 22725 ; w14 w12 w10 w08
dw -12299, 29692, -29692, -12299 ; w15 w13 w11 w09
dw 31521, 17855, 26722, -31521 ; w22 w20 w18 w16
dw 26722, 6270, -6270, -17855 ; w23 w21 w19 w17
dw 17855, 6270, 6270, 26722 ; w30 w28 w26 w24
dw -31521, 26722, -17855, -31521 ; w31 w29 w27 w25
; Table for rows 2,6 - constants are multiplied by cos_2_16
dw 21407, 21407, 21407, -21407 ; movq-> w06 w04 w02 w00
dw 27969, 11585, 11585, -27969 ; w07 w05 w03 w01
dw 21407, -21407, 21407, 21407 ; w14 w12 w10 w08
dw -11585, 27969, -27969, -11585 ; w15 w13 w11 w09
dw 29692, 16819, 25172, -29692 ; w22 w20 w18 w16
dw 25172, 5906, -5906, -16819 ; w23 w21 w19 w17
dw 16819, 5906, 5906, 25172 ; w30 w28 w26 w24
dw -29692, 25172, -16819, -29692 ; w31 w29 w27 w25
; Table for rows 3,5 - constants are multiplied by cos_3_16
dw 19266, 19266, 19266, -19266 ; movq-> w06 w04 w02 w00
dw 25172, 10426, 10426, -25172 ; w07 w05 w03 w01
dw 19266, -19266, 19266, 19266 ; w14 w12 w10 w08
dw -10426, 25172, -25172, -10426 ; w15 w13 w11 w09
dw 26722, 15137, 22654, -26722 ; w22 w20 w18 w16
dw 22654, 5315, -5315, -15137 ; w23 w21 w19 w17
dw 15137, 5315, 5315, 22654 ; w30 w28 w26 w24
dw -26722, 22654, -15137, -26722 ; w31 w29 w27 w25
; -----------------------------------------------------------------------------
; Tables for xmm processors
; -----------------------------------------------------------------------------
; %3 for rows 0,4 - constants are multiplied by cos_4_16
tab_i_04_xmm: dw 16384, 21407, 16384, 8867 ; movq-> w05 w04 w01 w00
dw 16384, 8867, -16384, -21407 ; w07 w06 w03 w02
dw 16384, -8867, 16384, -21407 ; w13 w12 w09 w08
dw -16384, 21407, 16384, -8867 ; w15 w14 w11 w10
dw 22725, 19266, 19266, -4520 ; w21 w20 w17 w16
dw 12873, 4520, -22725, -12873 ; w23 w22 w19 w18
dw 12873, -22725, 4520, -12873 ; w29 w28 w25 w24
dw 4520, 19266, 19266, -22725 ; w31 w30 w27 w26
; %3 for rows 1,7 - constants are multiplied by cos_1_16
dw 22725, 29692, 22725, 12299 ; movq-> w05 w04 w01 w00
dw 22725, 12299, -22725, -29692 ; w07 w06 w03 w02
dw 22725, -12299, 22725, -29692 ; w13 w12 w09 w08
dw -22725, 29692, 22725, -12299 ; w15 w14 w11 w10
dw 31521, 26722, 26722, -6270 ; w21 w20 w17 w16
dw 17855, 6270, -31521, -17855 ; w23 w22 w19 w18
dw 17855, -31521, 6270, -17855 ; w29 w28 w25 w24
dw 6270, 26722, 26722, -31521 ; w31 w30 w27 w26
; %3 for rows 2,6 - constants are multiplied by cos_2_16
dw 21407, 27969, 21407, 11585 ; movq-> w05 w04 w01 w00
dw 21407, 11585, -21407, -27969 ; w07 w06 w03 w02
dw 21407, -11585, 21407, -27969 ; w13 w12 w09 w08
dw -21407, 27969, 21407, -11585 ; w15 w14 w11 w10
dw 29692, 25172, 25172, -5906 ; w21 w20 w17 w16
dw 16819, 5906, -29692, -16819 ; w23 w22 w19 w18
dw 16819, -29692, 5906, -16819 ; w29 w28 w25 w24
dw 5906, 25172, 25172, -29692 ; w31 w30 w27 w26
; %3 for rows 3,5 - constants are multiplied by cos_3_16
dw 19266, 25172, 19266, 10426 ; movq-> w05 w04 w01 w00
dw 19266, 10426, -19266, -25172 ; w07 w06 w03 w02
dw 19266, -10426, 19266, -25172 ; w13 w12 w09 w08
dw -19266, 25172, 19266, -10426 ; w15 w14 w11 w10
dw 26722, 22654, 22654, -5315 ; w21 w20 w17 w16
dw 15137, 5315, -26722, -15137 ; w23 w22 w19 w18
dw 15137, -26722, 5315, -15137 ; w29 w28 w25 w24
dw 5315, 22654, 22654, -26722 ; w31 w30 w27 w26
%endif ; ~ARCH_X86_32
; Similar to rounder_0 in MMX code
; 4 first similar, then: 4*8->6*16 5*8->4*16 6/7*8->5*16
walkenIdctRounders: times 4 dd 65536
times 4 dd 3597
times 4 dd 2260
times 4 dd 1203
times 4 dd 120
times 4 dd 512
times 2 dd 0
pb_127: times 8 db 127
SECTION .text
; Temporary storage before the column pass
%define ROW1 xmm6
%define ROW3 xmm4
%define ROW5 xmm5
%define ROW7 xmm7
%macro CLEAR_ODD 1
pxor %1, %1
%endmacro
%macro PUT_ODD 1
pshufhw %1, xmm2, 0x1B
%endmacro
%macro MOV32 2
%if ARCH_X86_32
movdqa %2, %1
%endif
%endmacro
%macro CLEAR_EVEN 1
%if ARCH_X86_64
CLEAR_ODD %1
%endif
%endmacro
%macro PUT_EVEN 1
%if ARCH_X86_64
PUT_ODD %1
%else
pshufhw xmm2, xmm2, 0x1B
movdqa %1, xmm2
%endif
%endmacro
%if ARCH_X86_64
%define ROW0 xmm8
%define REG0 ROW0
%define ROW2 xmm9
%define REG2 ROW2
%define ROW4 xmm10
%define REG4 ROW4
%define ROW6 xmm11
%define REG6 ROW6
%define XMMS xmm12
%define SREG2 REG2
%define TAN3 xmm13
%define TAN1 xmm14
%else
%define ROW0 [BLOCK + 0*16]
%define REG0 xmm4
%define ROW2 [BLOCK + 2*16]
%define REG2 xmm4
%define ROW4 [BLOCK + 4*16]
%define REG4 xmm6
%define ROW6 [BLOCK + 6*16]
%define REG6 xmm6
%define XMMS xmm2
%define SREG2 xmm7
%define TAN3 xmm0
%define TAN1 xmm2
%endif
%macro JZ 2
test %1, %1
jz .%2
%endmacro
%macro JNZ 2
test %1, %1
jnz .%2
%endmacro
%macro TEST_ONE_ROW 4 ; src, reg, clear, arg
%3 %4
movq mm1, [%1]
por mm1, [%1 + 8]
paddusb mm1, mm0
pmovmskb %2, mm1
%endmacro
;row1, row2, reg1, reg2, clear1, arg1, clear2, arg2
%macro TEST_TWO_ROWS 8
%5 %6
%7 %8
movq mm1, [%1 + 0]
por mm1, [%1 + 8]
movq mm2, [%2 + 0]
por mm2, [%2 + 8]
paddusb mm1, mm0
paddusb mm2, mm0
pmovmskb %3, mm1
pmovmskb %4, mm2
%endmacro
; IDCT pass on rows.
%macro iMTX_MULT 4-5 ; src, table, put, arg, rounder
movdqa xmm3, [%1]
movdqa xmm0, xmm3
pshufd xmm1, xmm3, 0x11 ; 4602
punpcklqdq xmm0, xmm0 ; 0246
pmaddwd xmm0, [%2]
pmaddwd xmm1, [%2+16]
pshufd xmm2, xmm3, 0xBB ; 5713
punpckhqdq xmm3, xmm3 ; 1357
pmaddwd xmm2, [%2+32]
pmaddwd xmm3, [%2+48]
paddd xmm0, xmm1
paddd xmm2, xmm3
%if %0 == 5
paddd xmm0, [walkenIdctRounders+%5]
%endif
movdqa xmm3, xmm2
paddd xmm2, xmm0
psubd xmm0, xmm3
psrad xmm2, 11
psrad xmm0, 11
packssdw xmm2, xmm0
%3 %4
%endmacro
%macro iLLM_HEAD 0
movdqa TAN3, [tan3]
movdqa TAN1, [tan1]
%endmacro
%macro FIRST_HALF 2 ; %1=dct %2=type(normal,add,put)
psraw xmm5, 6
psraw REG0, 6
psraw TAN3, 6
psraw xmm3, 6
; dct coeffs must still be written for AC prediction
%if %2 == 0
movdqa [%1+1*16], TAN3
movdqa [%1+2*16], xmm3
movdqa [%1+5*16], REG0
movdqa [%1+6*16], xmm5
%else
; Must now load args as gprs are no longer used for masks
; DEST is set to where address of dest was loaded
%if ARCH_X86_32
%if %2 == 2 ; Not enough xmms, store
movdqa [%1+1*16], TAN3
movdqa [%1+2*16], xmm3
movdqa [%1+5*16], REG0
movdqa [%1+6*16], xmm5
%endif
%xdefine DEST r2q ; BLOCK is r0, stride r1
movifnidn DEST, destm
movifnidn strideq, stridem
%else
%xdefine DEST r0q
%endif
lea r3q, [3*strideq]
%if %2 == 1
packuswb TAN3, xmm3
packuswb xmm5, REG0
movq [DEST + strideq], TAN3
movhps [DEST + 2*strideq], TAN3
; REG0 and TAN3 are now available (and likely used in second half)
%endif
%endif
%endmacro
%macro SECOND_HALF 6 ; %1=dct %2=type(normal,add,put) 3-6: xmms
psraw %3, 6
psraw %4, 6
psraw %5, 6
psraw %6, 6
; dct coeffs must still be written for AC prediction
%if %2 == 0
movdqa [%1+0*16], %3
movdqa [%1+3*16], %5
movdqa [%1+4*16], %6
movdqa [%1+7*16], %4
%elif %2 == 1
packuswb %3, %5
packuswb %6, %4
; address of dest may have been loaded
movq [DEST], %3
movhps [DEST + r3q], %3
lea DEST, [DEST + 4*strideq]
movq [DEST], %6
movhps [DEST + r3q], %6
; and now write remainder of first half
movq [DEST + 2*strideq], xmm5
movhps [DEST + strideq], xmm5
%elif %2 == 2
pxor xmm0, xmm0
%if ARCH_X86_32
; free: m3 REG0=m4 m5
; input: m1, m7, m2, m6
movq xmm3, [DEST+0*strideq]
movq xmm4, [DEST+1*strideq]
punpcklbw xmm3, xmm0
punpcklbw xmm4, xmm0
paddsw xmm3, %3
paddsw xmm4, [%1 + 1*16]
movq %3, [DEST+2*strideq]
movq xmm5, [DEST+ r3q]
punpcklbw %3, xmm0
punpcklbw xmm5, xmm0
paddsw %3, [%1 + 2*16]
paddsw xmm5, %5
packuswb xmm3, xmm4
packuswb %3, xmm5
movq [DEST+0*strideq], xmm3
movhps [DEST+1*strideq], xmm3
movq [DEST+2*strideq], %3
movhps [DEST+ r3q], %3
lea DEST, [DEST+4*strideq]
movq xmm3, [DEST+0*strideq]
movq xmm4, [DEST+1*strideq]
movq %3, [DEST+2*strideq]
movq xmm5, [DEST+ r3q]
punpcklbw xmm3, xmm0
punpcklbw xmm4, xmm0
punpcklbw %3, xmm0
punpcklbw xmm5, xmm0
paddsw xmm3, %6
paddsw xmm4, [%1 + 5*16]
paddsw %3, [%1 + 6*16]
paddsw xmm5, %4
packuswb xmm3, xmm4
packuswb %3, xmm5
movq [DEST+0*strideq], xmm3
movhps [DEST+1*strideq], xmm3
movq [DEST+2*strideq], %3
movhps [DEST+ r3q], %3
%else
; l1:TAN3=m13 l2:m3 l5:REG0=m8 l6=m5
; input: m1, m7/SREG2=m9, TAN1=m14, REG4=m10
movq xmm2, [DEST+0*strideq]
movq xmm4, [DEST+1*strideq]
movq xmm12, [DEST+2*strideq]
movq xmm11, [DEST+ r3q]
punpcklbw xmm2, xmm0
punpcklbw xmm4, xmm0
punpcklbw xmm12, xmm0
punpcklbw xmm11, xmm0
paddsw xmm2, %3
paddsw xmm4, TAN3
paddsw xmm12, xmm3
paddsw xmm11, %5
packuswb xmm2, xmm4
packuswb xmm12, xmm11
movq [DEST+0*strideq], xmm2
movhps [DEST+1*strideq], xmm2
movq [DEST+2*strideq], xmm12
movhps [DEST+ r3q], xmm12
lea DEST, [DEST+4*strideq]
movq xmm2, [DEST+0*strideq]
movq xmm4, [DEST+1*strideq]
movq xmm12, [DEST+2*strideq]
movq xmm11, [DEST+ r3q]
punpcklbw xmm2, xmm0
punpcklbw xmm4, xmm0
punpcklbw xmm12, xmm0
punpcklbw xmm11, xmm0
paddsw xmm2, %6
paddsw xmm4, REG0
paddsw xmm12, xmm5
paddsw xmm11, %4
packuswb xmm2, xmm4
packuswb xmm12, xmm11
movq [DEST+0*strideq], xmm2
movhps [DEST+1*strideq], xmm2
movq [DEST+2*strideq], xmm12
movhps [DEST+ r3q], xmm12
%endif
%endif
%endmacro
; IDCT pass on columns.
%macro iLLM_PASS 2 ; %1=dct %2=type(normal,add,put)
movdqa xmm1, TAN3
movdqa xmm3, TAN1
pmulhw TAN3, xmm4
pmulhw xmm1, xmm5
paddsw TAN3, xmm4
paddsw xmm1, xmm5
psubsw TAN3, xmm5
paddsw xmm1, xmm4
pmulhw xmm3, xmm7
pmulhw TAN1, xmm6
paddsw xmm3, xmm6
psubsw TAN1, xmm7
movdqa xmm7, xmm3
movdqa xmm6, TAN1
psubsw xmm3, xmm1
psubsw TAN1, TAN3
paddsw xmm1, xmm7
paddsw TAN3, xmm6
movdqa xmm6, xmm3
psubsw xmm3, TAN3
paddsw TAN3, xmm6
movdqa xmm4, [sqrt2]
pmulhw xmm3, xmm4
pmulhw TAN3, xmm4
paddsw TAN3, TAN3
paddsw xmm3, xmm3
movdqa xmm7, [tan2]
MOV32 ROW2, REG2
MOV32 ROW6, REG6
movdqa xmm5, xmm7
pmulhw xmm7, REG6
pmulhw xmm5, REG2
paddsw xmm7, REG2
psubsw xmm5, REG6
MOV32 ROW0, REG0
MOV32 ROW4, REG4
MOV32 TAN1, [BLOCK]
movdqa XMMS, REG0
psubsw REG0, REG4
paddsw REG4, XMMS
movdqa XMMS, REG4
psubsw REG4, xmm7
paddsw xmm7, XMMS
movdqa XMMS, REG0
psubsw REG0, xmm5
paddsw xmm5, XMMS
movdqa XMMS, xmm5
psubsw xmm5, TAN3
paddsw TAN3, XMMS
movdqa XMMS, REG0
psubsw REG0, xmm3
paddsw xmm3, XMMS
MOV32 [BLOCK], TAN1
FIRST_HALF %1, %2
movdqa xmm0, xmm7
movdqa xmm4, REG4
psubsw xmm7, xmm1
psubsw REG4, TAN1
paddsw xmm1, xmm0
paddsw TAN1, xmm4
SECOND_HALF %1, %2, xmm1, xmm7, TAN1, REG4
%endmacro
; IDCT pass on columns, assuming rows 4-7 are zero
%macro iLLM_PASS_SPARSE 2 ; %1=dct %2=type(normal,put,add)
pmulhw TAN3, xmm4
paddsw TAN3, xmm4
movdqa xmm3, xmm6
pmulhw TAN1, xmm6
movdqa xmm1, xmm4
psubsw xmm3, xmm1
paddsw xmm1, xmm6
movdqa xmm6, TAN1
psubsw TAN1, TAN3
paddsw TAN3, xmm6
movdqa xmm6, xmm3
psubsw xmm3, TAN3
paddsw TAN3, xmm6
movdqa xmm4, [sqrt2]
pmulhw xmm3, xmm4
pmulhw TAN3, xmm4
paddsw TAN3, TAN3
paddsw xmm3, xmm3
movdqa xmm5, [tan2]
MOV32 ROW2, SREG2
pmulhw xmm5, SREG2
MOV32 ROW0, REG0
movdqa xmm6, REG0
psubsw xmm6, SREG2
paddsw SREG2, REG0
MOV32 TAN1, [BLOCK]
movdqa XMMS, REG0
psubsw REG0, xmm5
paddsw xmm5, XMMS
movdqa XMMS, xmm5
psubsw xmm5, TAN3
paddsw TAN3, XMMS
movdqa XMMS, REG0
psubsw REG0, xmm3
paddsw xmm3, XMMS
MOV32 [BLOCK], TAN1
FIRST_HALF %1, %2
movdqa xmm0, SREG2
movdqa xmm4, xmm6
psubsw SREG2, xmm1
psubsw xmm6, TAN1
paddsw xmm1, xmm0
paddsw TAN1, xmm4
SECOND_HALF %1, %2, xmm1, SREG2, TAN1, xmm6
%endmacro
%macro IDCT_SSE2 1 ; 0=normal 1=put 2=add
%if %1 == 0 || ARCH_X86_32
%define GPR0 r1d
%define GPR1 r2d
%define GPR2 r3d
%define GPR3 r4d
%define NUM_GPRS 5
%else
%define GPR0 r3d
%define GPR1 r4d
%define GPR2 r5d
%define GPR3 r6d
%define NUM_GPRS 7
%endif
%if %1 == 0
cglobal xvid_idct, 1, NUM_GPRS, 8+7*ARCH_X86_64, block
%xdefine BLOCK blockq
%else
%if %1 == 1
cglobal xvid_idct_put, 0, NUM_GPRS, 8+7*ARCH_X86_64, dest, stride, block
%else
cglobal xvid_idct_add, 0, NUM_GPRS, 8+7*ARCH_X86_64, dest, stride, block
%endif
%if ARCH_X86_64
%xdefine BLOCK blockq
%else
mov r0q, blockm
%xdefine BLOCK r0q
%endif
%endif
movq mm0, [pb_127]
iMTX_MULT BLOCK + 0*16, iTab1, PUT_EVEN, ROW0, 0*16
iMTX_MULT BLOCK + 1*16, iTab2, PUT_ODD, ROW1, 1*16
iMTX_MULT BLOCK + 2*16, iTab3, PUT_EVEN, ROW2, 2*16
TEST_TWO_ROWS BLOCK + 3*16, BLOCK + 4*16, GPR0, GPR1, CLEAR_ODD, ROW3, CLEAR_EVEN, ROW4 ; a, c
JZ GPR0, col1
iMTX_MULT BLOCK + 3*16, iTab4, PUT_ODD, ROW3, 3*16
.col1:
TEST_TWO_ROWS BLOCK + 5*16, BLOCK + 6*16, GPR0, GPR2, CLEAR_ODD, ROW5, CLEAR_EVEN, ROW6 ; a, d
TEST_ONE_ROW BLOCK + 7*16, GPR3, CLEAR_ODD, ROW7 ; esi
iLLM_HEAD
JNZ GPR1, 2
JNZ GPR0, 3
JNZ GPR2, 4
JNZ GPR3, 5
iLLM_PASS_SPARSE BLOCK, %1
jmp .6
.2:
iMTX_MULT BLOCK + 4*16, iTab1, PUT_EVEN, ROW4
.3:
iMTX_MULT BLOCK + 5*16, iTab4, PUT_ODD, ROW5, 4*16
JZ GPR2, col2
.4:
iMTX_MULT BLOCK + 6*16, iTab3, PUT_EVEN, ROW6, 5*16
.col2:
JZ GPR3, col3
.5:
iMTX_MULT BLOCK + 7*16, iTab2, PUT_ODD, ROW7, 5*16
.col3:
%if ARCH_X86_32
iLLM_HEAD
%endif
iLLM_PASS BLOCK, %1
.6:
RET
%endmacro
INIT_XMM sse2
IDCT_SSE2 0
IDCT_SSE2 1
IDCT_SSE2 2
%if ARCH_X86_32
; %1=offset %2=tab_offset
; %3=rnd_offset where 4*8->6*16 5*8->4*16 6/7*8->5*16
%macro DCT_8_INV_ROW 3
movq mm0, [r0+16*%1+0] ; 0 ; x3 x2 x1 x0
movq mm1, [r0+16*%1+8] ; 1 ; x7 x6 x5 x4
movq mm2, mm0 ; 2 ; x3 x2 x1 x0
movq mm3, [%2+ 0] ; 3 ; w06 w04 w02 w00
%if cpuflag(mmxext)
pshufw mm0, mm0, 0x88 ; x2 x0 x2 x0
movq mm4, [%2+ 8] ; 4 ; w07 w06 w03 w02
movq mm5, mm1 ; 5 ; x7 x6 x5 x4
pmaddwd mm3, mm0 ; x2*w05+x0*w04 x2*w01+x0*w00
movq mm6, [%2+32] ; 6 ; w21 w20 w17 w16
pshufw mm1, mm1, 0x88 ; x6 x4 x6 x4
pmaddwd mm4, mm1 ; x6*w07+x4*w06 x6*w03+x4*w02
movq mm7, [%2+40] ; 7; w23 w22 w19 w18
pshufw mm2, mm2, 0xdd ; x3 x1 x3 x1
pmaddwd mm6, mm2 ; x3*w21+x1*w20 x3*w17+x1*w16
pshufw mm5, mm5, 0xdd ; x7 x5 x7 x5
pmaddwd mm7, mm5 ; x7*w23+x5*w22 x7*w19+x5*w18
paddd mm3, [walkenIdctRounders + %3] ; +%3
pmaddwd mm0, [%2+16] ; x2*w13+x0*w12 x2*w09+x0*w08
paddd mm3, mm4 ; 4 ; a1=sum(even1) a0=sum(even0)
pmaddwd mm1, [%2+24] ; x6*w15+x4*w14 x6*w11+x4*w10
movq mm4, mm3 ; 4 ; a1 a0
pmaddwd mm2, [%2+48] ; x3*w29+x1*w28 x3*w25+x1*w24
paddd mm6, mm7 ; 7 ; b1=sum(odd1) b0=sum(odd0)
pmaddwd mm5, [%2+56] ; x7*w31+x5*w30 x7*w27+x5*w26
paddd mm3, mm6 ; a1+b1 a0+b0
paddd mm0, [walkenIdctRounders + %3] ; +%3
psrad mm3, 11 ; y1=a1+b1 y0=a0+b0
paddd mm0, mm1 ; 1 ; a3=sum(even3) a2=sum(even2)
psubd mm4, mm6 ; 6 ; a1-b1 a0-b0
movq mm7, mm0 ; 7 ; a3 a2
paddd mm2, mm5 ; 5 ; b3=sum(odd3) b2=sum(odd2)
paddd mm0, mm2 ; a3+b3 a2+b2
psrad mm4, 11 ; y6=a1-b1 y7=a0-b0
psubd mm7, mm2 ; 2 ; a3-b3 a2-b2
psrad mm0, 11 ; y3=a3+b3 y2=a2+b2
psrad mm7, 11 ; y4=a3-b3 y5=a2-b2
packssdw mm3, mm0 ; 0 ; y3 y2 y1 y0
packssdw mm7, mm4 ; 4 ; y6 y7 y4 y5
movq [r0+16*%1+0], mm3 ; 3 ; save y3 y2 y1 y0
pshufw mm7, mm7, 0xb1 ; y7 y6 y5 y4
%else
punpcklwd mm0, mm1 ; x5 x1 x4 x0
movq mm5, mm0 ; 5 ; x5 x1 x4 x0
punpckldq mm0, mm0 ; x4 x0 x4 x0
movq mm4, [%2+ 8] ; 4 ; w07 w05 w03 w01
punpckhwd mm2, mm1 ; 1 ; x7 x3 x6 x2
pmaddwd mm3, mm0 ; x4*w06+x0*w04 x4*w02+x0*w00
movq mm6, mm2 ; 6 ; x7 x3 x6 x2
movq mm1, [%2+32] ; 1 ; w22 w20 w18 w16
punpckldq mm2, mm2 ; x6 x2 x6 x2
pmaddwd mm4, mm2 ; x6*w07+x2*w05 x6*w03+x2*w01
punpckhdq mm5, mm5 ; x5 x1 x5 x1
pmaddwd mm0, [%2+16] ; x4*w14+x0*w12 x4*w10+x0*w08
punpckhdq mm6, mm6 ; x7 x3 x7 x3
movq mm7, [%2+40] ; 7 ; w23 w21 w19 w17
pmaddwd mm1, mm5 ; x5*w22+x1*w20 x5*w18+x1*w16
paddd mm3, [walkenIdctRounders + %3] ; +%3
pmaddwd mm7, mm6 ; x7*w23+x3*w21 x7*w19+x3*w17
pmaddwd mm2, [%2+24] ; x6*w15+x2*w13 x6*w11+x2*w09
paddd mm3, mm4 ; 4 ; a1=sum(even1) a0=sum(even0)
pmaddwd mm5, [%2+48] ; x5*w30+x1*w28 x5*w26+x1*w24
movq mm4, mm3 ; 4 ; a1 a0
pmaddwd mm6, [%2+56] ; x7*w31+x3*w29 x7*w27+x3*w25
paddd mm1, mm7 ; 7 ; b1=sum(odd1) b0=sum(odd0)
paddd mm0, [walkenIdctRounders + %3] ; +%3
psubd mm3, mm1 ; a1-b1 a0-b0
psrad mm3, 11 ; y6=a1-b1 y7=a0-b0
paddd mm1, mm4 ; 4 ; a1+b1 a0+b0
paddd mm0, mm2 ; 2 ; a3=sum(even3) a2=sum(even2)
psrad mm1, 11 ; y1=a1+b1 y0=a0+b0
paddd mm5, mm6 ; 6 ; b3=sum(odd3) b2=sum(odd2)
movq mm4, mm0 ; 4 ; a3 a2
paddd mm0, mm5 ; a3+b3 a2+b2
psubd mm4, mm5 ; 5 ; a3-b3 a2-b2
psrad mm0, 11 ; y3=a3+b3 y2=a2+b2
psrad mm4, 11 ; y4=a3-b3 y5=a2-b2
packssdw mm1, mm0 ; 0 ; y3 y2 y1 y0
packssdw mm4, mm3 ; 3 ; y6 y7 y4 y5
movq mm7, mm4 ; 7 ; y6 y7 y4 y5
psrld mm4, 16 ; 0 y6 0 y4
pslld mm7, 16 ; y7 0 y5 0
movq [r0+16*%1+0], mm1 ; 1 ; save y3 y2 y1 y0
por mm7, mm4 ; 4 ; y7 y6 y5 y4
%endif
movq [r0+16*%1+8], mm7 ; 7 ; save y7 y6 y5 y4
%endmacro
; -----------------------------------------------------------------------------
;
; The first stage DCT 8x8 - forward DCTs of columns
;
; The %2puts are multiplied
; for rows 0,4 - on cos_4_16,
; for rows 1,7 - on cos_1_16,
; for rows 2,6 - on cos_2_16,
; for rows 3,5 - on cos_3_16
; and are shifted to the left for rise of accuracy
;
; -----------------------------------------------------------------------------
;
; The 8-point scaled forward DCT algorithm (26a8m)
;
; -----------------------------------------------------------------------------
;
;#define DCT_8_FRW_COL(x, y)
; {
; short t0, t1, t2, t3, t4, t5, t6, t7;
; short tp03, tm03, tp12, tm12, tp65, tm65;
; short tp465, tm465, tp765, tm765;
;
; t0 = LEFT_SHIFT(x[0] + x[7]);
; t1 = LEFT_SHIFT(x[1] + x[6]);
; t2 = LEFT_SHIFT(x[2] + x[5]);
; t3 = LEFT_SHIFT(x[3] + x[4]);
; t4 = LEFT_SHIFT(x[3] - x[4]);
; t5 = LEFT_SHIFT(x[2] - x[5]);
; t6 = LEFT_SHIFT(x[1] - x[6]);
; t7 = LEFT_SHIFT(x[0] - x[7]);
;
; tp03 = t0 + t3;
; tm03 = t0 - t3;
; tp12 = t1 + t2;
; tm12 = t1 - t2;
;
; y[0] = tp03 + tp12;
; y[4] = tp03 - tp12;
;
; y[2] = tm03 + tm12 * tg_2_16;
; y[6] = tm03 * tg_2_16 - tm12;
;
; tp65 = (t6 + t5) * cos_4_16;
; tm65 = (t6 - t5) * cos_4_16;
;
; tp765 = t7 + tp65;
; tm765 = t7 - tp65;
; tp465 = t4 + tm65;
; tm465 = t4 - tm65;
;
; y[1] = tp765 + tp465 * tg_1_16;
; y[7] = tp765 * tg_1_16 - tp465;
; y[5] = tm765 * tg_3_16 + tm465;
; y[3] = tm765 - tm465 * tg_3_16;
; }
;
; -----------------------------------------------------------------------------
; -----------------------------------------------------------------------------
; DCT_8_INV_COL_4 INP,OUT
; -----------------------------------------------------------------------------
%macro DCT_8_INV_COL 1
movq mm0, [tan3]
movq mm3, [%1+16*3]
movq mm1, mm0 ; tg_3_16
movq mm5, [%1+16*5]
pmulhw mm0, mm3 ; x3*(tg_3_16-1)
movq mm4, [tan1]
pmulhw mm1, mm5 ; x5*(tg_3_16-1)
movq mm7, [%1+16*7]
movq mm2, mm4 ; tg_1_16
movq mm6, [%1+16*1]
pmulhw mm4, mm7 ; x7*tg_1_16
paddsw mm0, mm3 ; x3*tg_3_16
pmulhw mm2, mm6 ; x1*tg_1_16
paddsw mm1, mm3 ; x3+x5*(tg_3_16-1)
psubsw mm0, mm5 ; x3*tg_3_16-x5 = tm35
movq mm3, [sqrt2]
paddsw mm1, mm5 ; x3+x5*tg_3_16 = tp35
paddsw mm4, mm6 ; x1+tg_1_16*x7 = tp17
psubsw mm2, mm7 ; x1*tg_1_16-x7 = tm17
movq mm5, mm4 ; tp17
movq mm6, mm2 ; tm17
paddsw mm5, mm1 ; tp17+tp35 = b0
psubsw mm6, mm0 ; tm17-tm35 = b3
psubsw mm4, mm1 ; tp17-tp35 = t1
paddsw mm2, mm0 ; tm17+tm35 = t2
movq mm7, [tan2]
movq mm1, mm4 ; t1
movq [%1+3*16], mm5 ; save b0
paddsw mm1, mm2 ; t1+t2
movq [%1+5*16], mm6 ; save b3
psubsw mm4, mm2 ; t1-t2
movq mm5, [%1+2*16]
movq mm0, mm7 ; tg_2_16
movq mm6, [%1+6*16]
pmulhw mm0, mm5 ; x2*tg_2_16
pmulhw mm7, mm6 ; x6*tg_2_16
pmulhw mm1, mm3 ; ocos_4_16*(t1+t2) = b1/2
movq mm2, [%1+0*16]
pmulhw mm4, mm3 ; ocos_4_16*(t1-t2) = b2/2
psubsw mm0, mm6 ; t2*tg_2_16-x6 = tm26
movq mm3, mm2 ; x0
movq mm6, [%1+4*16]
paddsw mm7, mm5 ; x2+x6*tg_2_16 = tp26
paddsw mm2, mm6 ; x0+x4 = tp04
psubsw mm3, mm6 ; x0-x4 = tm04
movq mm5, mm2 ; tp04
movq mm6, mm3 ; tm04
psubsw mm2, mm7 ; tp04-tp26 = a3
paddsw mm3, mm0 ; tm04+tm26 = a1
paddsw mm1, mm1 ; b1
paddsw mm4, mm4 ; b2
paddsw mm5, mm7 ; tp04+tp26 = a0
psubsw mm6, mm0 ; tm04-tm26 = a2
movq mm7, mm3 ; a1
movq mm0, mm6 ; a2
paddsw mm3, mm1 ; a1+b1
paddsw mm6, mm4 ; a2+b2
psraw mm3, 6 ; dst1
psubsw mm7, mm1 ; a1-b1
psraw mm6, 6 ; dst2
psubsw mm0, mm4 ; a2-b2
movq mm1, [%1+3*16] ; load b0
psraw mm7, 6 ; dst6
movq mm4, mm5 ; a0
psraw mm0, 6 ; dst5
movq [%1+1*16], mm3
paddsw mm5, mm1 ; a0+b0
movq [%1+2*16], mm6
psubsw mm4, mm1 ; a0-b0
movq mm3, [%1+5*16] ; load b3
psraw mm5, 6 ; dst0
movq mm6, mm2 ; a3
psraw mm4, 6 ; dst7
movq [%1+5*16], mm0
paddsw mm2, mm3 ; a3+b3
movq [%1+6*16], mm7
psubsw mm6, mm3 ; a3-b3
movq [%1+0*16], mm5
psraw mm2, 6 ; dst3
movq [%1+7*16], mm4
psraw mm6, 6 ; dst4
movq [%1+3*16], mm2
movq [%1+4*16], mm6
%endmacro
%macro XVID_IDCT_MMX 0
cglobal xvid_idct, 1, 1, 0, block
%if cpuflag(mmxext)
%define TAB tab_i_04_xmm
%else
%define TAB tab_i_04_mmx
%endif
; Process each row - beware of rounder offset
DCT_8_INV_ROW 0, TAB + 64 * 0, 0*16
DCT_8_INV_ROW 1, TAB + 64 * 1, 1*16
DCT_8_INV_ROW 2, TAB + 64 * 2, 2*16
DCT_8_INV_ROW 3, TAB + 64 * 3, 3*16
DCT_8_INV_ROW 4, TAB + 64 * 0, 6*16
DCT_8_INV_ROW 5, TAB + 64 * 3, 4*16
DCT_8_INV_ROW 6, TAB + 64 * 2, 5*16
DCT_8_INV_ROW 7, TAB + 64 * 1, 5*16
; Process the columns (4 at a time)
DCT_8_INV_COL r0+0
DCT_8_INV_COL r0+8
RET
%endmacro
INIT_MMX mmx
XVID_IDCT_MMX
INIT_MMX mmxext
XVID_IDCT_MMX
%endif ; ~ARCH_X86_32