pineapple-src/src/core/hle/kernel/process_capability.cpp
2021-02-19 02:26:25 +01:00

387 lines
13 KiB
C++
Executable file

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <bit>
#include "common/bit_util.h"
#include "common/logging/log.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/svc_results.h"
namespace Kernel {
namespace {
// clang-format off
// Shift offsets for kernel capability types.
enum : u32 {
CapabilityOffset_PriorityAndCoreNum = 3,
CapabilityOffset_Syscall = 4,
CapabilityOffset_MapPhysical = 6,
CapabilityOffset_MapIO = 7,
CapabilityOffset_Interrupt = 11,
CapabilityOffset_ProgramType = 13,
CapabilityOffset_KernelVersion = 14,
CapabilityOffset_HandleTableSize = 15,
CapabilityOffset_Debug = 16,
};
// Combined mask of all parameters that may be initialized only once.
constexpr u32 InitializeOnceMask = (1U << CapabilityOffset_PriorityAndCoreNum) |
(1U << CapabilityOffset_ProgramType) |
(1U << CapabilityOffset_KernelVersion) |
(1U << CapabilityOffset_HandleTableSize) |
(1U << CapabilityOffset_Debug);
// Packed kernel version indicating 10.4.0
constexpr u32 PackedKernelVersion = 0x520000;
// Indicates possible types of capabilities that can be specified.
enum class CapabilityType : u32 {
Unset = 0U,
PriorityAndCoreNum = (1U << CapabilityOffset_PriorityAndCoreNum) - 1,
Syscall = (1U << CapabilityOffset_Syscall) - 1,
MapPhysical = (1U << CapabilityOffset_MapPhysical) - 1,
MapIO = (1U << CapabilityOffset_MapIO) - 1,
Interrupt = (1U << CapabilityOffset_Interrupt) - 1,
ProgramType = (1U << CapabilityOffset_ProgramType) - 1,
KernelVersion = (1U << CapabilityOffset_KernelVersion) - 1,
HandleTableSize = (1U << CapabilityOffset_HandleTableSize) - 1,
Debug = (1U << CapabilityOffset_Debug) - 1,
Ignorable = 0xFFFFFFFFU,
};
// clang-format on
constexpr CapabilityType GetCapabilityType(u32 value) {
return static_cast<CapabilityType>((~value & (value + 1)) - 1);
}
u32 GetFlagBitOffset(CapabilityType type) {
const auto value = static_cast<u32>(type);
return static_cast<u32>(Common::BitSize<u32>() - static_cast<u32>(std::countl_zero(value)));
}
} // Anonymous namespace
ResultCode ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities,
std::size_t num_capabilities,
KPageTable& page_table) {
Clear();
// Allow all cores and priorities.
core_mask = 0xF;
priority_mask = 0xFFFFFFFFFFFFFFFF;
kernel_version = PackedKernelVersion;
return ParseCapabilities(capabilities, num_capabilities, page_table);
}
ResultCode ProcessCapabilities::InitializeForUserProcess(const u32* capabilities,
std::size_t num_capabilities,
KPageTable& page_table) {
Clear();
return ParseCapabilities(capabilities, num_capabilities, page_table);
}
void ProcessCapabilities::InitializeForMetadatalessProcess() {
// Allow all cores and priorities
core_mask = 0xF;
priority_mask = 0xFFFFFFFFFFFFFFFF;
kernel_version = PackedKernelVersion;
// Allow all system calls and interrupts.
svc_capabilities.set();
interrupt_capabilities.set();
// Allow using the maximum possible amount of handles
handle_table_size = static_cast<s32>(HandleTable::MAX_COUNT);
// Allow all debugging capabilities.
is_debuggable = true;
can_force_debug = true;
}
ResultCode ProcessCapabilities::ParseCapabilities(const u32* capabilities,
std::size_t num_capabilities,
KPageTable& page_table) {
u32 set_flags = 0;
u32 set_svc_bits = 0;
for (std::size_t i = 0; i < num_capabilities; ++i) {
const u32 descriptor = capabilities[i];
const auto type = GetCapabilityType(descriptor);
if (type == CapabilityType::MapPhysical) {
i++;
// The MapPhysical type uses two descriptor flags for its parameters.
// If there's only one, then there's a problem.
if (i >= num_capabilities) {
LOG_ERROR(Kernel, "Invalid combination! i={}", i);
return ResultInvalidCombination;
}
const auto size_flags = capabilities[i];
if (GetCapabilityType(size_flags) != CapabilityType::MapPhysical) {
LOG_ERROR(Kernel, "Invalid capability type! size_flags={}", size_flags);
return ResultInvalidCombination;
}
const auto result = HandleMapPhysicalFlags(descriptor, size_flags, page_table);
if (result.IsError()) {
LOG_ERROR(Kernel, "Failed to map physical flags! descriptor={}, size_flags={}",
descriptor, size_flags);
return result;
}
} else {
const auto result =
ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, page_table);
if (result.IsError()) {
LOG_ERROR(
Kernel,
"Failed to parse capability flag! set_flags={}, set_svc_bits={}, descriptor={}",
set_flags, set_svc_bits, descriptor);
return result;
}
}
}
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits,
u32 flag, KPageTable& page_table) {
const auto type = GetCapabilityType(flag);
if (type == CapabilityType::Unset) {
return ResultInvalidCapabilityDescriptor;
}
// Bail early on ignorable entries, as one would expect,
// ignorable descriptors can be ignored.
if (type == CapabilityType::Ignorable) {
return RESULT_SUCCESS;
}
// Ensure that the give flag hasn't already been initialized before.
// If it has been, then bail.
const u32 flag_length = GetFlagBitOffset(type);
const u32 set_flag = 1U << flag_length;
if ((set_flag & set_flags & InitializeOnceMask) != 0) {
LOG_ERROR(Kernel,
"Attempted to initialize flags that may only be initialized once. set_flags={}",
set_flags);
return ResultInvalidCombination;
}
set_flags |= set_flag;
switch (type) {
case CapabilityType::PriorityAndCoreNum:
return HandlePriorityCoreNumFlags(flag);
case CapabilityType::Syscall:
return HandleSyscallFlags(set_svc_bits, flag);
case CapabilityType::MapIO:
return HandleMapIOFlags(flag, page_table);
case CapabilityType::Interrupt:
return HandleInterruptFlags(flag);
case CapabilityType::ProgramType:
return HandleProgramTypeFlags(flag);
case CapabilityType::KernelVersion:
return HandleKernelVersionFlags(flag);
case CapabilityType::HandleTableSize:
return HandleHandleTableFlags(flag);
case CapabilityType::Debug:
return HandleDebugFlags(flag);
default:
break;
}
LOG_ERROR(Kernel, "Invalid capability type! type={}", type);
return ResultInvalidCapabilityDescriptor;
}
void ProcessCapabilities::Clear() {
svc_capabilities.reset();
interrupt_capabilities.reset();
core_mask = 0;
priority_mask = 0;
handle_table_size = 0;
kernel_version = 0;
program_type = ProgramType::SysModule;
is_debuggable = false;
can_force_debug = false;
}
ResultCode ProcessCapabilities::HandlePriorityCoreNumFlags(u32 flags) {
if (priority_mask != 0 || core_mask != 0) {
LOG_ERROR(Kernel, "Core or priority mask are not zero! priority_mask={}, core_mask={}",
priority_mask, core_mask);
return ResultInvalidCapabilityDescriptor;
}
const u32 core_num_min = (flags >> 16) & 0xFF;
const u32 core_num_max = (flags >> 24) & 0xFF;
if (core_num_min > core_num_max) {
LOG_ERROR(Kernel, "Core min is greater than core max! core_num_min={}, core_num_max={}",
core_num_min, core_num_max);
return ResultInvalidCombination;
}
const u32 priority_min = (flags >> 10) & 0x3F;
const u32 priority_max = (flags >> 4) & 0x3F;
if (priority_min > priority_max) {
LOG_ERROR(Kernel,
"Priority min is greater than priority max! priority_min={}, priority_max={}",
core_num_min, priority_max);
return ResultInvalidCombination;
}
// The switch only has 4 usable cores.
if (core_num_max >= 4) {
LOG_ERROR(Kernel, "Invalid max cores specified! core_num_max={}", core_num_max);
return ResultInvalidCoreId;
}
const auto make_mask = [](u64 min, u64 max) {
const u64 range = max - min + 1;
const u64 mask = (1ULL << range) - 1;
return mask << min;
};
core_mask = make_mask(core_num_min, core_num_max);
priority_mask = make_mask(priority_min, priority_max);
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleSyscallFlags(u32& set_svc_bits, u32 flags) {
const u32 index = flags >> 29;
const u32 svc_bit = 1U << index;
// If we've already set this svc before, bail.
if ((set_svc_bits & svc_bit) != 0) {
return ResultInvalidCombination;
}
set_svc_bits |= svc_bit;
const u32 svc_mask = (flags >> 5) & 0xFFFFFF;
for (u32 i = 0; i < 24; ++i) {
const u32 svc_number = index * 24 + i;
if ((svc_mask & (1U << i)) == 0) {
continue;
}
if (svc_number >= svc_capabilities.size()) {
LOG_ERROR(Kernel, "Process svc capability is out of range! svc_number={}", svc_number);
return ResultOutOfRange;
}
svc_capabilities[svc_number] = true;
}
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags,
KPageTable& page_table) {
// TODO(Lioncache): Implement once the memory manager can handle this.
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleMapIOFlags(u32 flags, KPageTable& page_table) {
// TODO(Lioncache): Implement once the memory manager can handle this.
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleInterruptFlags(u32 flags) {
constexpr u32 interrupt_ignore_value = 0x3FF;
const u32 interrupt0 = (flags >> 12) & 0x3FF;
const u32 interrupt1 = (flags >> 22) & 0x3FF;
for (u32 interrupt : {interrupt0, interrupt1}) {
if (interrupt == interrupt_ignore_value) {
continue;
}
// NOTE:
// This should be checking a generic interrupt controller value
// as part of the calculation, however, given we don't currently
// emulate that, it's sufficient to mark every interrupt as defined.
if (interrupt >= interrupt_capabilities.size()) {
LOG_ERROR(Kernel, "Process interrupt capability is out of range! svc_number={}",
interrupt);
return ResultOutOfRange;
}
interrupt_capabilities[interrupt] = true;
}
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleProgramTypeFlags(u32 flags) {
const u32 reserved = flags >> 17;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedValue;
}
program_type = static_cast<ProgramType>((flags >> 14) & 0b111);
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleKernelVersionFlags(u32 flags) {
// Yes, the internal member variable is checked in the actual kernel here.
// This might look odd for options that are only allowed to be initialized
// just once, however the kernel has a separate initialization function for
// kernel processes and userland processes. The kernel variant sets this
// member variable ahead of time.
const u32 major_version = kernel_version >> 19;
if (major_version != 0 || flags < 0x80000) {
LOG_ERROR(Kernel,
"Kernel version is non zero or flags are too small! major_version={}, flags={}",
major_version, flags);
return ResultInvalidCapabilityDescriptor;
}
kernel_version = flags;
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleHandleTableFlags(u32 flags) {
const u32 reserved = flags >> 26;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedValue;
}
handle_table_size = static_cast<s32>((flags >> 16) & 0x3FF);
return RESULT_SUCCESS;
}
ResultCode ProcessCapabilities::HandleDebugFlags(u32 flags) {
const u32 reserved = flags >> 19;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedValue;
}
is_debuggable = (flags & 0x20000) != 0;
can_force_debug = (flags & 0x40000) != 0;
return RESULT_SUCCESS;
}
} // namespace Kernel