suyu/src/common/x64/abi.cpp

681 lines
18 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "abi.h"
#include "emitter.h"
using namespace Gen;
// Shared code between Win64 and Unix64
// Sets up a __cdecl function.
void XEmitter::ABI_EmitPrologue(int maxCallParams)
{
#ifdef _M_IX86
// Don't really need to do anything
#elif defined(ARCHITECTURE_x86_64)
#if _WIN32
int stacksize = ((maxCallParams + 1) & ~1) * 8 + 8;
// Set up a stack frame so that we can call functions
// TODO: use maxCallParams
SUB(64, R(RSP), Imm8(stacksize));
#endif
#else
#error Arch not supported
#endif
}
void XEmitter::ABI_EmitEpilogue(int maxCallParams)
{
#ifdef _M_IX86
RET();
#elif defined(ARCHITECTURE_x86_64)
#ifdef _WIN32
int stacksize = ((maxCallParams+1)&~1)*8 + 8;
ADD(64, R(RSP), Imm8(stacksize));
#endif
RET();
#else
#error Arch not supported
#endif
}
#ifdef _M_IX86 // All32
// Shared code between Win32 and Unix32
void XEmitter::ABI_CallFunction(const void *func) {
ABI_AlignStack(0);
CALL(func);
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
ABI_AlignStack(1 * 2);
PUSH(16, Imm16(param1));
CALL(func);
ABI_RestoreStack(1 * 2);
}
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
ABI_AlignStack(1 * 2 + 1 * 4);
PUSH(16, Imm16(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 2 + 1 * 4);
}
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
ABI_AlignStack(1 * 4);
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
ABI_AlignStack(3 * 4);
PUSH(32, ImmPtr(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4) {
ABI_AlignStack(4 * 4);
PUSH(32, ImmPtr(param4));
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(4 * 4);
}
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
ABI_AlignStack(1 * 4);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
ABI_AlignStack(2 * 4);
PUSH(32, arg2);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
ABI_AlignStack(3 * 4);
PUSH(32, arg3);
PUSH(32, arg2);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, ImmPtr(param2));
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
ABI_AlignStack(1 * 4);
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(const void *func, Gen::X64Reg reg1, Gen::X64Reg reg2)
{
ABI_AlignStack(2 * 4);
PUSH(32, R(reg2));
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
{
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
{
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
{
ABI_AlignStack(1 * 4);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
{
ABI_AlignStack(2 * 4);
PUSH(32, arg2);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
// Note: 4 * 4 = 16 bytes, so alignment is preserved.
PUSH(EBP);
PUSH(EBX);
PUSH(ESI);
PUSH(EDI);
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
POP(EDI);
POP(ESI);
POP(EBX);
POP(EBP);
}
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
frameSize += 4; // reserve space for return address
unsigned int alignedSize =
#ifdef __GNUC__
(frameSize + 15) & -16;
#else
(frameSize + 3) & -4;
#endif
return alignedSize;
}
void XEmitter::ABI_AlignStack(unsigned int frameSize) {
// Mac OS X requires the stack to be 16-byte aligned before every call.
// Linux requires the stack to be 16-byte aligned before calls that put SSE
// vectors on the stack, but since we do not keep track of which calls do that,
// it is effectively every call as well.
// Windows binaries compiled with MSVC do not have such a restriction*, but I
// expect that GCC on Windows acts the same as GCC on Linux in this respect.
// It would be nice if someone could verify this.
// *However, the MSVC optimizing compiler assumes a 4-byte-aligned stack at times.
unsigned int fillSize =
ABI_GetAlignedFrameSize(frameSize) - (frameSize + 4);
if (fillSize != 0) {
SUB(32, R(ESP), Imm8(fillSize));
}
}
void XEmitter::ABI_RestoreStack(unsigned int frameSize) {
unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize);
alignedSize -= 4; // return address is POPped at end of call
if (alignedSize != 0) {
ADD(32, R(ESP), Imm8(alignedSize));
}
}
#else //64bit
// Common functions
void XEmitter::ABI_CallFunction(const void *func) {
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), ImmPtr(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
MOV(64, R(ABI_PARAM4), ImmPtr(param4));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
if (!arg3.IsSimpleReg(ABI_PARAM3))
MOV(32, R(ABI_PARAM3), arg3);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
MOV(64, R(ABI_PARAM2), ImmPtr(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
if (reg1 != ABI_PARAM1)
MOV(32, R(ABI_PARAM1), R(reg1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
if (reg2 != ABI_PARAM1) {
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
} else {
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
}
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), Imm64(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
return frameSize;
}
#ifdef _WIN32
// The Windows x64 ABI requires XMM6 - XMM15 to be callee saved. 10 regs.
// But, not saving XMM4 and XMM5 breaks things in VS 2010, even though they are volatile regs.
// Let's just save all 16.
const int XMM_STACK_SPACE = 16 * 16;
// Win64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
//we only want to do this once
PUSH(RBX);
PUSH(RSI);
PUSH(RDI);
PUSH(RBP);
PUSH(R12);
PUSH(R13);
PUSH(R14);
PUSH(R15);
ABI_AlignStack(0);
// Do this after aligning, because before it's offset by 8.
SUB(64, R(RSP), Imm32(XMM_STACK_SPACE));
for (int i = 0; i < 16; ++i)
MOVAPS(MDisp(RSP, i * 16), (X64Reg)(XMM0 + i));
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
for (int i = 0; i < 16; ++i)
MOVAPS((X64Reg)(XMM0 + i), MDisp(RSP, i * 16));
ADD(64, R(RSP), Imm32(XMM_STACK_SPACE));
ABI_RestoreStack(0);
POP(R15);
POP(R14);
POP(R13);
POP(R12);
POP(RBP);
POP(RDI);
POP(RSI);
POP(RBX);
}
// Win64 Specific Code
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
PUSH(RCX);
PUSH(RDX);
PUSH(RSI);
PUSH(RDI);
PUSH(R8);
PUSH(R9);
PUSH(R10);
PUSH(R11);
// TODO: Callers preserve XMM4-5 (XMM0-3 are args.)
ABI_AlignStack(0);
}
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
ABI_RestoreStack(0);
POP(R11);
POP(R10);
POP(R9);
POP(R8);
POP(RDI);
POP(RSI);
POP(RDX);
POP(RCX);
}
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
SUB(64, R(RSP), Imm8(0x28));
}
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
ADD(64, R(RSP), Imm8(0x28));
}
#else
// Unix64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
PUSH(RBX);
PUSH(RBP);
PUSH(R12);
PUSH(R13);
PUSH(R14);
PUSH(R15);
PUSH(R15); //just to align stack. duped push/pop doesn't hurt.
// TODO: XMM?
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
POP(R15);
POP(R15);
POP(R14);
POP(R13);
POP(R12);
POP(RBP);
POP(RBX);
}
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
PUSH(RCX);
PUSH(RDX);
PUSH(RSI);
PUSH(RDI);
PUSH(R8);
PUSH(R9);
PUSH(R10);
PUSH(R11);
PUSH(R11);
}
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
POP(R11);
POP(R11);
POP(R10);
POP(R9);
POP(R8);
POP(RDI);
POP(RSI);
POP(RDX);
POP(RCX);
}
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
SUB(64, R(RSP), Imm8(0x08));
}
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
ADD(64, R(RSP), Imm8(0x08));
}
#endif // WIN32
#endif // 32bit