suyu/src/input_common/gcadapter/gc_adapter.cpp

512 lines
17 KiB
C++
Raw Normal View History

2020-06-21 18:36:28 +02:00
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
2020-06-21 21:31:57 +02:00
2020-06-22 04:58:53 +02:00
#include <chrono>
#include <thread>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4200) // nonstandard extension used : zero-sized array in struct/union
#endif
#include <libusb.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
2020-06-21 18:36:28 +02:00
#include "common/logging/log.h"
2020-09-02 01:17:59 +02:00
#include "common/param_package.h"
2020-06-21 18:36:28 +02:00
#include "input_common/gcadapter/gc_adapter.h"
2020-09-02 01:17:59 +02:00
#include "input_common/settings.h"
2020-06-21 18:36:28 +02:00
namespace GCAdapter {
Adapter::Adapter() {
if (usb_adapter_handle != nullptr) {
return;
}
LOG_INFO(Input, "GC Adapter Initialization started");
2020-06-21 18:36:28 +02:00
2020-07-08 19:19:33 +02:00
const int init_res = libusb_init(&libusb_ctx);
if (init_res == LIBUSB_SUCCESS) {
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
2020-07-08 19:19:33 +02:00
} else {
LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res);
}
}
2020-06-21 18:36:28 +02:00
Adapter::~Adapter() {
Reset();
}
void Adapter::AdapterInputThread() {
LOG_DEBUG(Input, "GC Adapter input thread started");
s32 payload_size{};
AdapterPayload adapter_payload{};
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
}
while (adapter_input_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
static_cast<s32>(adapter_payload.size()), &payload_size, 16);
if (IsPayloadCorrect(adapter_payload, payload_size)) {
UpdateControllers(adapter_payload);
UpdateVibrations();
}
std::this_thread::yield();
}
2020-06-21 18:36:28 +02:00
if (restart_scan_thread) {
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
restart_scan_thread = false;
}
}
bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) {
if (payload_size != static_cast<s32>(adapter_payload.size()) ||
adapter_payload[0] != LIBUSB_DT_HID) {
LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size,
adapter_payload[0]);
if (input_error_counter++ > 20) {
LOG_ERROR(Input, "GC adapter timeout, Is the adapter connected?");
adapter_input_thread_running = false;
restart_scan_thread = true;
}
return false;
}
input_error_counter = 0;
return true;
}
void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) {
for (std::size_t port = 0; port < pads.size(); ++port) {
const std::size_t offset = 1 + (9 * port);
const auto type = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
UpdatePadType(port, type);
if (DeviceConnected(port)) {
const u8 b1 = adapter_payload[offset + 1];
const u8 b2 = adapter_payload[offset + 2];
UpdateStateButtons(port, b1, b2);
UpdateStateAxes(port, adapter_payload);
if (configuring) {
UpdateYuzuSettings(port);
}
}
}
}
void Adapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) {
if (pads[port].type == pad_type) {
return;
}
// Device changed reset device and set new type
ResetDevice(port);
pads[port].type = pad_type;
}
void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) {
if (port >= pads.size()) {
return;
}
2020-06-21 18:36:28 +02:00
static constexpr std::array<PadButton, 8> b1_buttons{
PadButton::ButtonA, PadButton::ButtonB, PadButton::ButtonX, PadButton::ButtonY,
PadButton::ButtonLeft, PadButton::ButtonRight, PadButton::ButtonDown, PadButton::ButtonUp,
};
2020-06-21 18:36:28 +02:00
static constexpr std::array<PadButton, 4> b2_buttons{
PadButton::ButtonStart,
PadButton::TriggerZ,
PadButton::TriggerR,
PadButton::TriggerL,
};
pads[port].buttons = 0;
for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b1_buttons[i]));
pads[port].last_button = b1_buttons[i];
}
}
2020-06-21 18:36:28 +02:00
for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
if ((b2 & (1U << j)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b2_buttons[j]));
pads[port].last_button = b2_buttons[j];
}
}
}
void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) {
if (port >= pads.size()) {
return;
}
const std::size_t offset = 1 + (9 * port);
2020-07-16 19:00:04 +02:00
static constexpr std::array<PadAxes, 6> axes{
PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX,
PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight,
};
for (const PadAxes axis : axes) {
const auto index = static_cast<std::size_t>(axis);
const u8 axis_value = adapter_payload[offset + 3 + index];
if (pads[port].axis_origin[index] == 255) {
pads[port].axis_origin[index] = axis_value;
}
pads[port].axis_values[index] =
static_cast<s16>(axis_value - pads[port].axis_origin[index]);
2020-07-07 04:09:07 +02:00
}
}
2020-07-07 04:09:07 +02:00
void Adapter::UpdateYuzuSettings(std::size_t port) {
if (port >= pads.size()) {
return;
}
2020-06-21 18:36:28 +02:00
constexpr u8 axis_threshold = 50;
GCPadStatus pad_status = {.port = port};
if (pads[port].buttons != 0) {
pad_status.button = pads[port].last_button;
pad_queue.Push(pad_status);
}
// Accounting for a threshold here to ensure an intentional press
for (std::size_t i = 0; i < pads[port].axis_values.size(); ++i) {
const s16 value = pads[port].axis_values[i];
if (value > axis_threshold || value < -axis_threshold) {
pad_status.axis = static_cast<PadAxes>(i);
pad_status.axis_value = value;
pad_status.axis_threshold = axis_threshold;
pad_queue.Push(pad_status);
}
2020-06-21 18:36:28 +02:00
}
}
void Adapter::UpdateVibrations() {
// Use 8 states to keep the switching between on/off fast enough for
// a human to not notice the difference between switching from on/off
// More states = more rumble strengths = slower update time
constexpr u8 vibration_states = 8;
2020-06-21 18:36:28 +02:00
vibration_counter = (vibration_counter + 1) % vibration_states;
2020-06-21 18:36:28 +02:00
for (GCController& pad : pads) {
const bool vibrate = pad.rumble_amplitude > vibration_counter;
vibration_changed |= vibrate != pad.enable_vibration;
pad.enable_vibration = vibrate;
2020-06-21 18:36:28 +02:00
}
SendVibrations();
2020-06-21 18:36:28 +02:00
}
void Adapter::SendVibrations() {
if (!rumble_enabled || !vibration_changed) {
2020-07-08 19:19:33 +02:00
return;
}
s32 size{};
constexpr u8 rumble_command = 0x11;
const u8 p1 = pads[0].enable_vibration;
const u8 p2 = pads[1].enable_vibration;
const u8 p3 = pads[2].enable_vibration;
const u8 p4 = pads[3].enable_vibration;
std::array<u8, 5> payload = {rumble_command, p1, p2, p3, p4};
const int err = libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, payload.data(),
static_cast<s32>(payload.size()), &size, 16);
if (err) {
LOG_DEBUG(Input, "Adapter libusb write failed: {}", libusb_error_name(err));
if (output_error_counter++ > 5) {
LOG_ERROR(Input, "GC adapter output timeout, Rumble disabled");
rumble_enabled = false;
2020-06-21 18:36:28 +02:00
}
return;
2020-06-21 18:36:28 +02:00
}
output_error_counter = 0;
vibration_changed = false;
2020-06-21 18:36:28 +02:00
}
bool Adapter::RumblePlay(std::size_t port, f32 amplitude) {
amplitude = std::clamp(amplitude, 0.0f, 1.0f);
const auto raw_amp = static_cast<u8>(amplitude * 0x8);
pads[port].rumble_amplitude = raw_amp;
return rumble_enabled;
}
void Adapter::AdapterScanThread() {
adapter_scan_thread_running = true;
adapter_input_thread_running = false;
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
ClearLibusbHandle();
ResetDevices();
while (adapter_scan_thread_running && !adapter_input_thread_running) {
Setup();
std::this_thread::sleep_for(std::chrono::seconds(1));
2020-06-21 18:36:28 +02:00
}
}
2020-06-21 18:36:28 +02:00
void Adapter::Setup() {
usb_adapter_handle = libusb_open_device_with_vid_pid(libusb_ctx, 0x057e, 0x0337);
if (usb_adapter_handle == NULL) {
return;
}
if (!CheckDeviceAccess()) {
ClearLibusbHandle();
return;
2020-06-21 18:36:28 +02:00
}
libusb_device* device = libusb_get_device(usb_adapter_handle);
LOG_INFO(Input, "GC adapter is now connected");
// GC Adapter found and accessible, registering it
if (GetGCEndpoint(device)) {
adapter_scan_thread_running = false;
adapter_input_thread_running = true;
rumble_enabled = true;
input_error_counter = 0;
output_error_counter = 0;
adapter_input_thread = std::thread(&Adapter::AdapterInputThread, this);
2020-06-21 18:36:28 +02:00
}
}
bool Adapter::CheckDeviceAccess() {
// This fixes payload problems from offbrand GCAdapters
const s32 control_transfer_error =
libusb_control_transfer(usb_adapter_handle, 0x21, 11, 0x0001, 0, nullptr, 0, 1000);
if (control_transfer_error < 0) {
LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error);
2020-06-21 18:36:28 +02:00
}
s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
if (kernel_driver_error == 1) {
kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0);
if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}",
kernel_driver_error);
2020-06-21 21:31:57 +02:00
}
2020-06-21 18:36:28 +02:00
}
if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
2020-06-21 18:36:28 +02:00
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0);
if (interface_claim_error) {
LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error);
2020-06-21 18:36:28 +02:00
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
return true;
}
bool Adapter::GetGCEndpoint(libusb_device* device) {
2020-06-21 18:36:28 +02:00
libusb_config_descriptor* config = nullptr;
const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config);
if (config_descriptor_return != LIBUSB_SUCCESS) {
2020-07-08 19:19:33 +02:00
LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}",
config_descriptor_return);
return false;
2020-07-08 19:19:33 +02:00
}
2020-06-21 18:36:28 +02:00
for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
const libusb_interface* interfaceContainer = &config->interface[ic];
for (int i = 0; i < interfaceContainer->num_altsetting; i++) {
const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
for (u8 e = 0; e < interface->bNumEndpoints; e++) {
const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
if ((endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) != 0) {
2020-06-21 18:36:28 +02:00
input_endpoint = endpoint->bEndpointAddress;
} else {
output_endpoint = endpoint->bEndpointAddress;
2020-06-21 21:31:57 +02:00
}
2020-06-21 18:36:28 +02:00
}
}
}
// This transfer seems to be responsible for clearing the state of the adapter
// Used to clear the "busy" state of when the device is unexpectedly unplugged
unsigned char clear_payload = 0x13;
libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload,
sizeof(clear_payload), nullptr, 16);
return true;
2020-06-21 18:36:28 +02:00
}
void Adapter::JoinThreads() {
restart_scan_thread = false;
adapter_input_thread_running = false;
adapter_scan_thread_running = false;
2020-06-21 18:36:28 +02:00
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
2020-06-21 21:31:57 +02:00
}
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
}
2020-06-21 18:36:28 +02:00
void Adapter::ClearLibusbHandle() {
2020-06-21 18:36:28 +02:00
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 1);
2020-06-21 18:36:28 +02:00
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
}
}
void Adapter::ResetDevices() {
for (std::size_t i = 0; i < pads.size(); ++i) {
ResetDevice(i);
}
}
void Adapter::ResetDevice(std::size_t port) {
pads[port].type = ControllerTypes::None;
pads[port].enable_vibration = false;
pads[port].rumble_amplitude = 0;
pads[port].buttons = 0;
pads[port].last_button = PadButton::Undefined;
pads[port].axis_values.fill(0);
pads[port].axis_origin.fill(255);
}
void Adapter::Reset() {
JoinThreads();
ClearLibusbHandle();
ResetDevices();
2020-06-23 18:47:58 +02:00
if (libusb_ctx) {
libusb_exit(libusb_ctx);
}
2020-06-21 18:36:28 +02:00
}
2020-09-02 01:17:59 +02:00
std::vector<Common::ParamPackage> Adapter::GetInputDevices() const {
std::vector<Common::ParamPackage> devices;
for (std::size_t port = 0; port < pads.size(); ++port) {
2020-09-02 01:17:59 +02:00
if (!DeviceConnected(port)) {
continue;
}
std::string name = fmt::format("Gamecube Controller {}", port + 1);
2020-09-02 01:17:59 +02:00
devices.emplace_back(Common::ParamPackage{
{"class", "gcpad"},
{"display", std::move(name)},
{"port", std::to_string(port)},
});
}
return devices;
}
InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice(
const Common::ParamPackage& params) const {
// This list is missing ZL/ZR since those are not considered buttons.
// We will add those afterwards
// This list also excludes any button that can't be really mapped
static constexpr std::array<std::pair<Settings::NativeButton::Values, PadButton>, 12>
switch_to_gcadapter_button = {
std::pair{Settings::NativeButton::A, PadButton::ButtonA},
{Settings::NativeButton::B, PadButton::ButtonB},
{Settings::NativeButton::X, PadButton::ButtonX},
{Settings::NativeButton::Y, PadButton::ButtonY},
{Settings::NativeButton::Plus, PadButton::ButtonStart},
{Settings::NativeButton::DLeft, PadButton::ButtonLeft},
{Settings::NativeButton::DUp, PadButton::ButtonUp},
{Settings::NativeButton::DRight, PadButton::ButtonRight},
{Settings::NativeButton::DDown, PadButton::ButtonDown},
{Settings::NativeButton::SL, PadButton::TriggerL},
{Settings::NativeButton::SR, PadButton::TriggerR},
{Settings::NativeButton::R, PadButton::TriggerZ},
2020-09-02 01:17:59 +02:00
};
if (!params.Has("port")) {
return {};
}
InputCommon::ButtonMapping mapping{};
for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) {
Common::ParamPackage button_params({{"engine", "gcpad"}});
button_params.Set("port", params.Get("port", 0));
button_params.Set("button", static_cast<int>(gcadapter_button));
mapping.insert_or_assign(switch_button, std::move(button_params));
}
// Add the missing bindings for ZL/ZR
static constexpr std::array<std::pair<Settings::NativeButton::Values, PadAxes>, 2>
switch_to_gcadapter_axis = {
std::pair{Settings::NativeButton::ZL, PadAxes::TriggerLeft},
{Settings::NativeButton::ZR, PadAxes::TriggerRight},
};
for (const auto& [switch_button, gcadapter_axis] : switch_to_gcadapter_axis) {
Common::ParamPackage button_params({{"engine", "gcpad"}});
button_params.Set("port", params.Get("port", 0));
button_params.Set("button", static_cast<s32>(PadButton::Stick));
button_params.Set("axis", static_cast<s32>(gcadapter_axis));
button_params.Set("threshold", 0.5f);
button_params.Set("direction", "+");
2020-09-02 01:17:59 +02:00
mapping.insert_or_assign(switch_button, std::move(button_params));
}
return mapping;
}
InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice(
const Common::ParamPackage& params) const {
if (!params.Has("port")) {
return {};
}
InputCommon::AnalogMapping mapping = {};
Common::ParamPackage left_analog_params;
left_analog_params.Set("engine", "gcpad");
left_analog_params.Set("port", params.Get("port", 0));
left_analog_params.Set("axis_x", static_cast<int>(PadAxes::StickX));
left_analog_params.Set("axis_y", static_cast<int>(PadAxes::StickY));
mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params));
Common::ParamPackage right_analog_params;
right_analog_params.Set("engine", "gcpad");
right_analog_params.Set("port", params.Get("port", 0));
right_analog_params.Set("axis_x", static_cast<int>(PadAxes::SubstickX));
right_analog_params.Set("axis_y", static_cast<int>(PadAxes::SubstickY));
mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params));
return mapping;
}
bool Adapter::DeviceConnected(std::size_t port) const {
return pads[port].type != ControllerTypes::None;
2020-06-21 18:36:28 +02:00
}
void Adapter::BeginConfiguration() {
pad_queue.Clear();
2020-06-21 18:36:28 +02:00
configuring = true;
}
void Adapter::EndConfiguration() {
pad_queue.Clear();
2020-06-21 18:36:28 +02:00
configuring = false;
}
Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() {
return pad_queue;
}
const Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() const {
return pad_queue;
}
GCController& Adapter::GetPadState(std::size_t port) {
return pads.at(port);
}
const GCController& Adapter::GetPadState(std::size_t port) const {
return pads.at(port);
}
} // namespace GCAdapter