suyu/src/video_core/pica.h

1344 lines
45 KiB
C
Raw Normal View History

// Copyright 2014 Citra Emulator Project
2014-12-17 06:38:14 +01:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
2015-06-21 15:02:11 +02:00
#include <cmath>
#include <cstddef>
2015-06-21 15:02:11 +02:00
#include <string>
2015-05-06 09:06:12 +02:00
#include "common/assert.h"
#include "common/bit_field.h"
2015-05-06 09:06:12 +02:00
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/vector_math.h"
2015-09-11 13:20:02 +02:00
#include "common/logging/log.h"
#include "pica_types.h"
namespace Pica {
// Returns index corresponding to the Regs member labeled by field_name
// TODO: Due to Visual studio bug 209229, offsetof does not return constant expressions
// when used with array elements (e.g. PICA_REG_INDEX(vs_uniform_setup.set_value[1])).
// For details cf. https://connect.microsoft.com/VisualStudio/feedback/details/209229/offsetof-does-not-produce-a-constant-expression-for-array-members
// Hopefully, this will be fixed sometime in the future.
// For lack of better alternatives, we currently hardcode the offsets when constant
// expressions are needed via PICA_REG_INDEX_WORKAROUND (on sane compilers, static_asserts
// will then make sure the offsets indeed match the automatically calculated ones).
#define PICA_REG_INDEX(field_name) (offsetof(Pica::Regs, field_name) / sizeof(u32))
#if defined(_MSC_VER)
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) (backup_workaround_index)
#else
// NOTE: Yeah, hacking in a static_assert here just to workaround the lacking MSVC compiler
// really is this annoying. This macro just forwards its first argument to PICA_REG_INDEX
// and then performs a (no-op) cast to size_t iff the second argument matches the expected
// field offset. Otherwise, the compiler will fail to compile this code.
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) \
((typename std::enable_if<backup_workaround_index == PICA_REG_INDEX(field_name), size_t>::type)PICA_REG_INDEX(field_name))
#endif // _MSC_VER
struct Regs {
INSERT_PADDING_WORDS(0x10);
u32 trigger_irq;
INSERT_PADDING_WORDS(0x2f);
enum class CullMode : u32 {
// Select which polygons are considered to be "frontfacing".
KeepAll = 0,
KeepClockWise = 1,
KeepCounterClockWise = 2,
// TODO: What does the third value imply?
};
union {
BitField<0, 2, CullMode> cull_mode;
};
BitField<0, 24, u32> viewport_size_x;
INSERT_PADDING_WORDS(0x1);
BitField<0, 24, u32> viewport_size_y;
2014-07-27 17:34:11 +02:00
INSERT_PADDING_WORDS(0x9);
BitField<0, 24, u32> viewport_depth_range; // float24
BitField<0, 24, u32> viewport_depth_far_plane; // float24
INSERT_PADDING_WORDS(0x1);
union VSOutputAttributes {
// Maps components of output vertex attributes to semantics
enum Semantic : u32
{
POSITION_X = 0,
POSITION_Y = 1,
POSITION_Z = 2,
POSITION_W = 3,
QUATERNION_X = 4,
QUATERNION_Y = 5,
QUATERNION_Z = 6,
QUATERNION_W = 7,
COLOR_R = 8,
COLOR_G = 9,
COLOR_B = 10,
COLOR_A = 11,
TEXCOORD0_U = 12,
TEXCOORD0_V = 13,
TEXCOORD1_U = 14,
TEXCOORD1_V = 15,
// TODO: Not verified
VIEW_X = 18,
VIEW_Y = 19,
VIEW_Z = 20,
TEXCOORD2_U = 22,
TEXCOORD2_V = 23,
INVALID = 31,
};
BitField< 0, 5, Semantic> map_x;
BitField< 8, 5, Semantic> map_y;
BitField<16, 5, Semantic> map_z;
BitField<24, 5, Semantic> map_w;
} vs_output_attributes[7];
2014-07-27 17:34:11 +02:00
INSERT_PADDING_WORDS(0x11);
union {
BitField< 0, 16, u32> x;
BitField<16, 16, u32> y;
} viewport_corner;
INSERT_PADDING_WORDS(0x17);
struct TextureConfig {
2014-12-04 17:37:59 +01:00
enum WrapMode : u32 {
ClampToEdge = 0,
2015-07-07 23:36:06 +02:00
ClampToBorder = 1,
Repeat = 2,
MirroredRepeat = 3,
2014-12-04 17:37:59 +01:00
};
enum TextureFilter : u32 {
Nearest = 0,
Linear = 1
};
2015-07-07 23:36:06 +02:00
union {
u32 raw;
2015-07-07 23:36:06 +02:00
BitField< 0, 8, u32> r;
BitField< 8, 8, u32> g;
BitField<16, 8, u32> b;
BitField<24, 8, u32> a;
} border_color;
union {
BitField< 0, 16, u32> height;
BitField<16, 16, u32> width;
};
2014-12-04 17:37:59 +01:00
union {
BitField< 1, 1, TextureFilter> mag_filter;
BitField< 2, 1, TextureFilter> min_filter;
BitField< 8, 2, WrapMode> wrap_t;
BitField<12, 2, WrapMode> wrap_s;
2014-12-04 17:37:59 +01:00
};
INSERT_PADDING_WORDS(0x1);
u32 address;
u32 GetPhysicalAddress() const {
return DecodeAddressRegister(address);
}
// texture1 and texture2 store the texture format directly after the address
// whereas texture0 inserts some additional flags inbetween.
// Hence, we store the format separately so that all other parameters can be described
// in a single structure.
};
enum class TextureFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGB5A1 = 2,
RGB565 = 3,
RGBA4 = 4,
IA8 = 5,
2015-05-14 22:39:46 +02:00
RG8 = 6, ///< @note Also called HILO8 in 3DBrew.
I8 = 7,
A8 = 8,
IA4 = 9,
I4 = 10,
A4 = 11,
ETC1 = 12, // compressed
ETC1A4 = 13, // compressed
};
2015-05-26 00:39:03 +02:00
enum class LogicOp : u32 {
Clear = 0,
And = 1,
AndReverse = 2,
Copy = 3,
Set = 4,
CopyInverted = 5,
NoOp = 6,
Invert = 7,
Nand = 8,
Or = 9,
Nor = 10,
Xor = 11,
Equiv = 12,
AndInverted = 13,
OrReverse = 14,
OrInverted = 15,
};
static unsigned NibblesPerPixel(TextureFormat format) {
2014-12-04 20:41:01 +01:00
switch (format) {
case TextureFormat::RGBA8:
return 8;
2014-12-04 20:41:01 +01:00
case TextureFormat::RGB8:
return 6;
2014-12-04 20:41:01 +01:00
case TextureFormat::RGB5A1:
2014-12-04 20:41:01 +01:00
case TextureFormat::RGB565:
case TextureFormat::RGBA4:
case TextureFormat::IA8:
2015-05-14 22:39:46 +02:00
case TextureFormat::RG8:
return 4;
2014-12-04 20:41:01 +01:00
case TextureFormat::I4:
case TextureFormat::A4:
return 1;
case TextureFormat::I8:
case TextureFormat::A8:
case TextureFormat::IA4:
default: // placeholder for yet unknown formats
return 2;
2014-12-04 20:41:01 +01:00
}
}
union {
BitField< 0, 1, u32> texture0_enable;
BitField< 1, 1, u32> texture1_enable;
BitField< 2, 1, u32> texture2_enable;
};
TextureConfig texture0;
INSERT_PADDING_WORDS(0x8);
BitField<0, 4, TextureFormat> texture0_format;
BitField<0, 1, u32> fragment_lighting_enable;
INSERT_PADDING_WORDS(0x1);
TextureConfig texture1;
BitField<0, 4, TextureFormat> texture1_format;
INSERT_PADDING_WORDS(0x2);
TextureConfig texture2;
BitField<0, 4, TextureFormat> texture2_format;
INSERT_PADDING_WORDS(0x21);
struct FullTextureConfig {
const bool enabled;
const TextureConfig config;
const TextureFormat format;
};
const std::array<FullTextureConfig, 3> GetTextures() const {
return {{
2014-12-21 00:28:17 +01:00
{ texture0_enable.ToBool(), texture0, texture0_format },
{ texture1_enable.ToBool(), texture1, texture1_format },
{ texture2_enable.ToBool(), texture2, texture2_format }
}};
}
// 0xc0-0xff: Texture Combiner (akin to glTexEnv)
struct TevStageConfig {
enum class Source : u32 {
PrimaryColor = 0x0,
PrimaryFragmentColor = 0x1,
SecondaryFragmentColor = 0x2,
Texture0 = 0x3,
Texture1 = 0x4,
Texture2 = 0x5,
Texture3 = 0x6,
PreviousBuffer = 0xd,
Constant = 0xe,
Previous = 0xf,
};
enum class ColorModifier : u32 {
SourceColor = 0x0,
OneMinusSourceColor = 0x1,
SourceAlpha = 0x2,
OneMinusSourceAlpha = 0x3,
SourceRed = 0x4,
OneMinusSourceRed = 0x5,
SourceGreen = 0x8,
OneMinusSourceGreen = 0x9,
SourceBlue = 0xc,
OneMinusSourceBlue = 0xd,
};
enum class AlphaModifier : u32 {
SourceAlpha = 0x0,
OneMinusSourceAlpha = 0x1,
SourceRed = 0x2,
OneMinusSourceRed = 0x3,
SourceGreen = 0x4,
OneMinusSourceGreen = 0x5,
SourceBlue = 0x6,
OneMinusSourceBlue = 0x7,
};
enum class Operation : u32 {
Replace = 0,
Modulate = 1,
Add = 2,
AddSigned = 3,
Lerp = 4,
Subtract = 5,
Dot3_RGB = 6,
MultiplyThenAdd = 8,
AddThenMultiply = 9,
};
union {
u32 sources_raw;
BitField< 0, 4, Source> color_source1;
BitField< 4, 4, Source> color_source2;
BitField< 8, 4, Source> color_source3;
BitField<16, 4, Source> alpha_source1;
BitField<20, 4, Source> alpha_source2;
BitField<24, 4, Source> alpha_source3;
};
union {
u32 modifiers_raw;
BitField< 0, 4, ColorModifier> color_modifier1;
BitField< 4, 4, ColorModifier> color_modifier2;
BitField< 8, 4, ColorModifier> color_modifier3;
BitField<12, 3, AlphaModifier> alpha_modifier1;
BitField<16, 3, AlphaModifier> alpha_modifier2;
BitField<20, 3, AlphaModifier> alpha_modifier3;
};
union {
u32 ops_raw;
BitField< 0, 4, Operation> color_op;
BitField<16, 4, Operation> alpha_op;
};
union {
u32 const_color;
BitField< 0, 8, u32> const_r;
BitField< 8, 8, u32> const_g;
BitField<16, 8, u32> const_b;
BitField<24, 8, u32> const_a;
};
union {
u32 scales_raw;
BitField< 0, 2, u32> color_scale;
BitField<16, 2, u32> alpha_scale;
};
inline unsigned GetColorMultiplier() const {
return (color_scale < 3) ? (1 << color_scale) : 1;
}
inline unsigned GetAlphaMultiplier() const {
return (alpha_scale < 3) ? (1 << alpha_scale) : 1;
}
};
TevStageConfig tev_stage0;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage1;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage2;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage3;
INSERT_PADDING_WORDS(0x3);
union {
// Tev stages 0-3 write their output to the combiner buffer if the corresponding bit in
// these masks are set
BitField< 8, 4, u32> update_mask_rgb;
BitField<12, 4, u32> update_mask_a;
bool TevStageUpdatesCombinerBufferColor(unsigned stage_index) const {
return (stage_index < 4) && (update_mask_rgb & (1 << stage_index));
}
bool TevStageUpdatesCombinerBufferAlpha(unsigned stage_index) const {
return (stage_index < 4) && (update_mask_a & (1 << stage_index));
}
} tev_combiner_buffer_input;
INSERT_PADDING_WORDS(0xf);
TevStageConfig tev_stage4;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage5;
union {
u32 raw;
BitField< 0, 8, u32> r;
BitField< 8, 8, u32> g;
BitField<16, 8, u32> b;
BitField<24, 8, u32> a;
} tev_combiner_buffer_color;
INSERT_PADDING_WORDS(0x2);
const std::array<Regs::TevStageConfig,6> GetTevStages() const {
return {{ tev_stage0, tev_stage1,
tev_stage2, tev_stage3,
tev_stage4, tev_stage5 }};
};
2014-07-27 18:02:35 +02:00
enum class BlendEquation : u32 {
Add = 0,
Subtract = 1,
ReverseSubtract = 2,
Min = 3,
Max = 4,
};
enum class BlendFactor : u32 {
Zero = 0,
One = 1,
SourceColor = 2,
OneMinusSourceColor = 3,
DestColor = 4,
OneMinusDestColor = 5,
SourceAlpha = 6,
OneMinusSourceAlpha = 7,
DestAlpha = 8,
OneMinusDestAlpha = 9,
ConstantColor = 10,
OneMinusConstantColor = 11,
ConstantAlpha = 12,
OneMinusConstantAlpha = 13,
SourceAlphaSaturate = 14,
};
2014-12-21 02:55:51 +01:00
enum class CompareFunc : u32 {
Never = 0,
Always = 1,
Equal = 2,
NotEqual = 3,
LessThan = 4,
LessThanOrEqual = 5,
GreaterThan = 6,
GreaterThanOrEqual = 7,
};
2015-05-21 16:51:31 +02:00
enum class StencilAction : u32 {
Keep = 0,
Zero = 1,
Replace = 2,
Increment = 3,
Decrement = 4,
Invert = 5,
IncrementWrap = 6,
DecrementWrap = 7
2015-05-21 16:51:31 +02:00
};
struct {
2014-12-21 02:55:51 +01:00
union {
// If false, logic blending is used
BitField<8, 1, u32> alphablend_enable;
};
union {
BitField< 0, 8, BlendEquation> blend_equation_rgb;
BitField< 8, 8, BlendEquation> blend_equation_a;
BitField<16, 4, BlendFactor> factor_source_rgb;
BitField<20, 4, BlendFactor> factor_dest_rgb;
BitField<24, 4, BlendFactor> factor_source_a;
BitField<28, 4, BlendFactor> factor_dest_a;
} alpha_blending;
union {
2015-05-26 00:39:03 +02:00
BitField<0, 4, LogicOp> logic_op;
};
2014-12-21 02:55:51 +01:00
2015-01-31 07:40:05 +01:00
union {
u32 raw;
2015-01-31 07:40:05 +01:00
BitField< 0, 8, u32> r;
BitField< 8, 8, u32> g;
BitField<16, 8, u32> b;
BitField<24, 8, u32> a;
} blend_const;
2015-01-27 03:10:09 +01:00
union {
BitField< 0, 1, u32> enable;
BitField< 4, 3, CompareFunc> func;
BitField< 8, 8, u32> ref;
} alpha_test;
2015-05-21 16:51:31 +02:00
struct {
union {
// Raw value of this register
u32 raw_func;
2015-05-21 16:51:31 +02:00
// If true, enable stencil testing
BitField< 0, 1, u32> enable;
2015-05-21 16:51:31 +02:00
// Comparison operation for stencil testing
BitField< 4, 3, CompareFunc> func;
// Mask used to control writing to the stencil buffer
BitField< 8, 8, u32> write_mask;
2015-05-21 16:51:31 +02:00
// Value to compare against for stencil testing
BitField<16, 8, u32> reference_value;
// Mask to apply on stencil test inputs
BitField<24, 8, u32> input_mask;
2015-05-21 16:51:31 +02:00
};
union {
// Raw value of this register
u32 raw_op;
2015-05-21 16:51:31 +02:00
// Action to perform when the stencil test fails
BitField< 0, 3, StencilAction> action_stencil_fail;
// Action to perform when stencil testing passed but depth testing fails
BitField< 4, 3, StencilAction> action_depth_fail;
// Action to perform when both stencil and depth testing pass
BitField< 8, 3, StencilAction> action_depth_pass;
};
} stencil_test;
2014-12-21 02:55:51 +01:00
union {
BitField< 0, 1, u32> depth_test_enable;
2015-01-27 03:10:09 +01:00
BitField< 4, 3, CompareFunc> depth_test_func;
BitField< 8, 1, u32> red_enable;
BitField< 9, 1, u32> green_enable;
BitField<10, 1, u32> blue_enable;
BitField<11, 1, u32> alpha_enable;
2014-12-21 02:55:51 +01:00
BitField<12, 1, u32> depth_write_enable;
};
INSERT_PADDING_WORDS(0x8);
} output_merger;
// Components are laid out in reverse byte order, most significant bits first.
enum class ColorFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGB5A1 = 2,
RGB565 = 3,
RGBA4 = 4,
};
enum class DepthFormat : u32 {
D16 = 0,
D24 = 2,
D24S8 = 3,
2015-05-19 06:21:33 +02:00
};
2014-07-27 18:02:35 +02:00
2015-05-19 06:21:33 +02:00
// Returns the number of bytes in the specified color format
static unsigned BytesPerColorPixel(ColorFormat format) {
switch (format) {
case ColorFormat::RGBA8:
return 4;
case ColorFormat::RGB8:
return 3;
case ColorFormat::RGB5A1:
case ColorFormat::RGB565:
case ColorFormat::RGBA4:
return 2;
default:
LOG_CRITICAL(HW_GPU, "Unknown color format %u", format);
UNIMPLEMENTED();
}
}
struct {
2014-07-27 18:02:35 +02:00
INSERT_PADDING_WORDS(0x6);
2015-05-21 16:51:31 +02:00
DepthFormat depth_format; // TODO: Should be a BitField!
2015-05-19 06:21:33 +02:00
BitField<16, 3, ColorFormat> color_format;
2014-07-27 18:02:35 +02:00
INSERT_PADDING_WORDS(0x4);
u32 depth_buffer_address;
u32 color_buffer_address;
union {
// Apparently, the framebuffer width is stored as expected,
// while the height is stored as the actual height minus one.
// Hence, don't access these fields directly but use the accessors
// GetWidth() and GetHeight() instead.
BitField< 0, 11, u32> width;
BitField<12, 10, u32> height;
};
INSERT_PADDING_WORDS(0x1);
inline u32 GetColorBufferPhysicalAddress() const {
return DecodeAddressRegister(color_buffer_address);
2014-07-27 18:02:35 +02:00
}
inline u32 GetDepthBufferPhysicalAddress() const {
return DecodeAddressRegister(depth_buffer_address);
2014-07-27 18:02:35 +02:00
}
inline u32 GetWidth() const {
return width;
}
inline u32 GetHeight() const {
return height + 1;
}
} framebuffer;
// Returns the number of bytes in the specified depth format
static u32 BytesPerDepthPixel(DepthFormat format) {
switch (format) {
case DepthFormat::D16:
return 2;
case DepthFormat::D24:
return 3;
case DepthFormat::D24S8:
return 4;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
// Returns the number of bits per depth component of the specified depth format
static u32 DepthBitsPerPixel(DepthFormat format) {
switch (format) {
case DepthFormat::D16:
return 16;
case DepthFormat::D24:
case DepthFormat::D24S8:
return 24;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
INSERT_PADDING_WORDS(0x20);
enum class LightingSampler {
Distribution0 = 0,
Distribution1 = 1,
Fresnel = 3,
ReflectBlue = 4,
ReflectGreen = 5,
ReflectRed = 6,
SpotlightAttenuation = 8,
DistanceAttenuation = 16,
};
/**
* Pica fragment lighting supports using different LUTs for each lighting component:
* Reflectance R, G, and B channels, distribution function for specular components 0 and 1,
* fresnel factor, and spotlight attenuation. Furthermore, which LUTs are used for each channel
* (or whether a channel is enabled at all) is specified by various pre-defined lighting
* configurations. With configurations that require more LUTs, more cycles are required on HW to
* perform lighting computations.
*/
enum class LightingConfig {
Config0 = 0, ///< Reflect Red, Distribution 0, Spotlight
Config1 = 1, ///< Reflect Red, Fresnel, Spotlight
Config2 = 2, ///< Reflect Red, Distribution 0/1
Config3 = 3, ///< Distribution 0/1, Fresnel
Config4 = 4, ///< Reflect Red/Green/Blue, Distribution 0/1, Spotlight
Config5 = 5, ///< Reflect Red/Green/Blue, Distribution 0, Fresnel, Spotlight
Config6 = 6, ///< Reflect Red, Distribution 0/1, Fresnel, Spotlight
Config7 = 8, ///< Reflect Red/Green/Blue, Distribution 0/1, Fresnel, Spotlight
///< NOTE: '8' is intentional, '7' does not appear to be a valid configuration
};
/// Selects which lighting components are affected by fresnel
enum class LightingFresnelSelector {
None = 0, ///< Fresnel is disabled
PrimaryAlpha = 1, ///< Primary (diffuse) lighting alpha is affected by fresnel
SecondaryAlpha = 2, ///< Secondary (specular) lighting alpha is affected by fresnel
Both = PrimaryAlpha | SecondaryAlpha, ///< Both primary and secondary lighting alphas are affected by fresnel
};
/// Factor used to scale the output of a lighting LUT
enum class LightingScale {
Scale1 = 0, ///< Scale is 1x
Scale2 = 1, ///< Scale is 2x
Scale4 = 2, ///< Scale is 4x
Scale8 = 3, ///< Scale is 8x
Scale1_4 = 6, ///< Scale is 0.25x
Scale1_2 = 7, ///< Scale is 0.5x
};
enum class LightingLutInput {
NH = 0, // Cosine of the angle between the normal and half-angle vectors
VH = 1, // Cosine of the angle between the view and half-angle vectors
NV = 2, // Cosine of the angle between the normal and the view vector
LN = 3, // Cosine of the angle between the light and the normal vectors
};
union LightColor {
BitField< 0, 10, u32> b;
BitField<10, 10, u32> g;
BitField<20, 10, u32> r;
Math::Vec3f ToVec3f() const {
// These fields are 10 bits wide, however 255 corresponds to 1.0f for each color component
return Math::MakeVec((f32)r / 255.f, (f32)g / 255.f, (f32)b / 255.f);
}
};
/// Returns true if the specified lighting sampler is supported by the current Pica lighting configuration
static bool IsLightingSamplerSupported(LightingConfig config, LightingSampler sampler) {
switch (sampler) {
case LightingSampler::Distribution0:
return (config != LightingConfig::Config1);
case LightingSampler::Distribution1:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config1) && (config != LightingConfig::Config5);
case LightingSampler::Fresnel:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config2) && (config != LightingConfig::Config4);
case LightingSampler::ReflectRed:
return (config != LightingConfig::Config3);
case LightingSampler::ReflectGreen:
case LightingSampler::ReflectBlue:
return (config == LightingConfig::Config4) || (config == LightingConfig::Config5) || (config == LightingConfig::Config7);
}
return false;
}
struct {
struct LightSrc {
LightColor specular_0; // material.specular_0 * light.specular_0
LightColor specular_1; // material.specular_1 * light.specular_1
LightColor diffuse; // material.diffuse * light.diffuse
LightColor ambient; // material.ambient * light.ambient
struct {
// Encoded as 16-bit floating point
union {
BitField< 0, 16, u32> x;
BitField<16, 16, u32> y;
};
union {
BitField< 0, 16, u32> z;
};
INSERT_PADDING_WORDS(0x3);
union {
BitField<0, 1, u32> directional;
BitField<1, 1, u32> two_sided_diffuse; // 1: GL_TRUE, 0: GL_FALSE; when disabled, clamp dot-product to 0
};
};
BitField<0, 20, u32> dist_atten_bias;
BitField<0, 20, u32> dist_atten_scale;
INSERT_PADDING_WORDS(0x4);
};
static_assert(sizeof(LightSrc) == 0x10 * sizeof(u32), "LightSrc structure must be 0x10 words");
LightSrc light[8];
LightColor global_ambient; // emission + (material.ambient * lighting.ambient)
INSERT_PADDING_WORDS(0x1);
BitField<0, 3, u32> src_num; // number of enabled lights - 1
union {
BitField< 2, 2, LightingFresnelSelector> fresnel_selector;
BitField< 4, 4, LightingConfig> config;
BitField<27, 1, u32> clamp_highlights; // 1: GL_TRUE, 0: GL_FALSE
};
union {
BitField<16, 1, u32> lut_enable_d0; // 0: GL_TRUE, 1: GL_FALSE
BitField<17, 1, u32> lut_enable_d1; // 0: GL_TRUE, 1: GL_FALSE
BitField<19, 1, u32> lut_enable_fr; // 0: GL_TRUE, 1: GL_FALSE
BitField<20, 1, u32> lut_enable_rr; // 0: GL_TRUE, 1: GL_FALSE
BitField<21, 1, u32> lut_enable_rg; // 0: GL_TRUE, 1: GL_FALSE
BitField<22, 1, u32> lut_enable_rb; // 0: GL_TRUE, 1: GL_FALSE
// Each bit specifies whether distance attenuation should be applied for the
// corresponding light
BitField<24, 1, u32> dist_atten_enable_light_0; // 0: GL_TRUE, 1: GL_FALSE
BitField<25, 1, u32> dist_atten_enable_light_1; // 0: GL_TRUE, 1: GL_FALSE
BitField<26, 1, u32> dist_atten_enable_light_2; // 0: GL_TRUE, 1: GL_FALSE
BitField<27, 1, u32> dist_atten_enable_light_3; // 0: GL_TRUE, 1: GL_FALSE
BitField<28, 1, u32> dist_atten_enable_light_4; // 0: GL_TRUE, 1: GL_FALSE
BitField<29, 1, u32> dist_atten_enable_light_5; // 0: GL_TRUE, 1: GL_FALSE
BitField<30, 1, u32> dist_atten_enable_light_6; // 0: GL_TRUE, 1: GL_FALSE
BitField<31, 1, u32> dist_atten_enable_light_7; // 0: GL_TRUE, 1: GL_FALSE
};
bool IsDistAttenEnabled(unsigned index) const {
const unsigned enable[] = { dist_atten_enable_light_0, dist_atten_enable_light_1,
dist_atten_enable_light_2, dist_atten_enable_light_3,
dist_atten_enable_light_4, dist_atten_enable_light_5,
dist_atten_enable_light_6, dist_atten_enable_light_7 };
return enable[index] == 0;
}
union {
BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
BitField<8, 5, u32> type; ///< Type of LUT for which to set data
} lut_config;
BitField<0, 1, u32> disable;
INSERT_PADDING_WORDS(0x1);
// When data is written to any of these registers, it gets written to the lookup table of
// the selected type at the selected index, specified above in the `lut_config` register.
// With each write, `lut_config.index` is incremented. It does not matter which of these
// registers is written to, the behavior will be the same.
u32 lut_data[8];
union {
BitField< 1, 1, u32> d0; // 0: GL_TRUE, 1: GL_FALSE
BitField< 5, 1, u32> d1; // 0: GL_TRUE, 1: GL_FALSE
BitField< 9, 1, u32> sp; // 0: GL_TRUE, 1: GL_FALSE
BitField<13, 1, u32> fr; // 0: GL_TRUE, 1: GL_FALSE
BitField<17, 1, u32> rb; // 0: GL_TRUE, 1: GL_FALSE
BitField<21, 1, u32> rg; // 0: GL_TRUE, 1: GL_FALSE
BitField<25, 1, u32> rr; // 0: GL_TRUE, 1: GL_FALSE
} abs_lut_input;
union {
BitField< 0, 3, LightingLutInput> d0;
BitField< 4, 3, LightingLutInput> d1;
BitField< 8, 3, LightingLutInput> sp;
BitField<12, 3, LightingLutInput> fr;
BitField<16, 3, LightingLutInput> rb;
BitField<20, 3, LightingLutInput> rg;
BitField<24, 3, LightingLutInput> rr;
} lut_input;
union {
BitField< 0, 3, LightingScale> d0;
BitField< 4, 3, LightingScale> d1;
BitField< 8, 3, LightingScale> sp;
BitField<12, 3, LightingScale> fr;
BitField<16, 3, LightingScale> rb;
BitField<20, 3, LightingScale> rg;
BitField<24, 3, LightingScale> rr;
static float GetScale(LightingScale scale) {
switch (scale) {
case LightingScale::Scale1:
return 1.0f;
case LightingScale::Scale2:
return 2.0f;
case LightingScale::Scale4:
return 4.0f;
case LightingScale::Scale8:
return 8.0f;
case LightingScale::Scale1_4:
return 0.25f;
case LightingScale::Scale1_2:
return 0.5f;
}
return 0.0f;
}
} lut_scale;
INSERT_PADDING_WORDS(0x6);
union {
// There are 8 light enable "slots", corresponding to the total number of lights
// supported by Pica. For N enabled lights (specified by register 0x1c2, or 'src_num'
// above), the first N slots below will be set to integers within the range of 0-7,
// corresponding to the actual light that is enabled for each slot.
BitField< 0, 3, u32> slot_0;
BitField< 4, 3, u32> slot_1;
BitField< 8, 3, u32> slot_2;
BitField<12, 3, u32> slot_3;
BitField<16, 3, u32> slot_4;
BitField<20, 3, u32> slot_5;
BitField<24, 3, u32> slot_6;
BitField<28, 3, u32> slot_7;
unsigned GetNum(unsigned index) const {
const unsigned enable_slots[] = { slot_0, slot_1, slot_2, slot_3, slot_4, slot_5, slot_6, slot_7 };
return enable_slots[index];
}
} light_enable;
} lighting;
INSERT_PADDING_WORDS(0x26);
enum class VertexAttributeFormat : u64 {
BYTE = 0,
UBYTE = 1,
SHORT = 2,
FLOAT = 3,
};
struct {
BitField<0, 29, u32> base_address;
u32 GetPhysicalBaseAddress() const {
return DecodeAddressRegister(base_address);
}
// Descriptor for internal vertex attributes
union {
BitField< 0, 2, VertexAttributeFormat> format0; // size of one element
BitField< 2, 2, u64> size0; // number of elements minus 1
BitField< 4, 2, VertexAttributeFormat> format1;
BitField< 6, 2, u64> size1;
BitField< 8, 2, VertexAttributeFormat> format2;
BitField<10, 2, u64> size2;
BitField<12, 2, VertexAttributeFormat> format3;
BitField<14, 2, u64> size3;
BitField<16, 2, VertexAttributeFormat> format4;
BitField<18, 2, u64> size4;
BitField<20, 2, VertexAttributeFormat> format5;
BitField<22, 2, u64> size5;
BitField<24, 2, VertexAttributeFormat> format6;
BitField<26, 2, u64> size6;
BitField<28, 2, VertexAttributeFormat> format7;
BitField<30, 2, u64> size7;
BitField<32, 2, VertexAttributeFormat> format8;
BitField<34, 2, u64> size8;
BitField<36, 2, VertexAttributeFormat> format9;
BitField<38, 2, u64> size9;
BitField<40, 2, VertexAttributeFormat> format10;
BitField<42, 2, u64> size10;
BitField<44, 2, VertexAttributeFormat> format11;
BitField<46, 2, u64> size11;
BitField<48, 12, u64> attribute_mask;
// number of total attributes minus 1
BitField<60, 4, u64> num_extra_attributes;
};
inline VertexAttributeFormat GetFormat(int n) const {
VertexAttributeFormat formats[] = {
format0, format1, format2, format3,
format4, format5, format6, format7,
format8, format9, format10, format11
};
return formats[n];
}
inline int GetNumElements(int n) const {
2014-07-26 16:19:11 +02:00
u64 sizes[] = {
size0, size1, size2, size3,
size4, size5, size6, size7,
size8, size9, size10, size11
};
2014-07-26 16:19:11 +02:00
return (int)sizes[n]+1;
}
inline int GetElementSizeInBytes(int n) const {
return (GetFormat(n) == VertexAttributeFormat::FLOAT) ? 4 :
(GetFormat(n) == VertexAttributeFormat::SHORT) ? 2 : 1;
}
inline int GetStride(int n) const {
return GetNumElements(n) * GetElementSizeInBytes(n);
}
inline bool IsDefaultAttribute(int id) const {
return (id >= 12) || (attribute_mask & (1ULL << id)) != 0;
}
inline int GetNumTotalAttributes() const {
2014-07-26 16:19:11 +02:00
return (int)num_extra_attributes+1;
}
// Attribute loaders map the source vertex data to input attributes
// This e.g. allows to load different attributes from different memory locations
struct {
// Source attribute data offset from the base address
u32 data_offset;
union {
BitField< 0, 4, u64> comp0;
BitField< 4, 4, u64> comp1;
BitField< 8, 4, u64> comp2;
BitField<12, 4, u64> comp3;
BitField<16, 4, u64> comp4;
BitField<20, 4, u64> comp5;
BitField<24, 4, u64> comp6;
BitField<28, 4, u64> comp7;
BitField<32, 4, u64> comp8;
BitField<36, 4, u64> comp9;
BitField<40, 4, u64> comp10;
BitField<44, 4, u64> comp11;
// bytes for a single vertex in this loader
BitField<48, 8, u64> byte_count;
BitField<60, 4, u64> component_count;
};
inline int GetComponent(int n) const {
2014-07-26 16:19:11 +02:00
u64 components[] = {
comp0, comp1, comp2, comp3,
comp4, comp5, comp6, comp7,
comp8, comp9, comp10, comp11
};
2014-07-26 16:19:11 +02:00
return (int)components[n];
}
} attribute_loaders[12];
} vertex_attributes;
struct {
enum IndexFormat : u32 {
BYTE = 0,
SHORT = 1,
};
union {
BitField<0, 31, u32> offset; // relative to base attribute address
BitField<31, 1, IndexFormat> format;
};
} index_array;
2014-07-26 16:19:11 +02:00
// Number of vertices to render
u32 num_vertices;
INSERT_PADDING_WORDS(0x1);
// The index of the first vertex to render
u32 vertex_offset;
INSERT_PADDING_WORDS(0x3);
2014-07-26 16:19:11 +02:00
// These two trigger rendering of triangles
u32 trigger_draw;
u32 trigger_draw_indexed;
INSERT_PADDING_WORDS(0x2);
// These registers are used to setup the default "fall-back" vertex shader attributes
struct {
// Index of the current default attribute
u32 index;
// Writing to these registers sets the "current" default attribute.
u32 set_value[3];
} vs_default_attributes_setup;
INSERT_PADDING_WORDS(0x2);
struct {
// There are two channels that can be used to configure the next command buffer, which
// can be then executed by writing to the "trigger" registers. There are two reasons why a
// game might use this feature:
// 1) With this, an arbitrary number of additional command buffers may be executed in
// sequence without requiring any intervention of the CPU after the initial one is
// kicked off.
// 2) Games can configure these registers to provide a command list subroutine mechanism.
BitField< 0, 20, u32> size[2]; ///< Size (in bytes / 8) of each channel's command buffer
BitField< 0, 28, u32> addr[2]; ///< Physical address / 8 of each channel's command buffer
u32 trigger[2]; ///< Triggers execution of the channel's command buffer when written to
unsigned GetSize(unsigned index) const {
ASSERT(index < 2);
return 8 * size[index];
}
PAddr GetPhysicalAddress(unsigned index) const {
ASSERT(index < 2);
return (PAddr)(8 * addr[index]);
}
} command_buffer;
INSERT_PADDING_WORDS(0x20);
2014-07-27 14:58:30 +02:00
enum class TriangleTopology : u32 {
List = 0,
Strip = 1,
Fan = 2,
Shader = 3, // Programmable setup unit implemented in a geometry shader
2014-07-27 14:58:30 +02:00
};
BitField<8, 2, TriangleTopology> triangle_topology;
u32 restart_primitive;
INSERT_PADDING_WORDS(0x20);
struct ShaderConfig {
BitField<0, 16, u32> bool_uniforms;
union {
BitField< 0, 8, u32> x;
BitField< 8, 8, u32> y;
BitField<16, 8, u32> z;
BitField<24, 8, u32> w;
} int_uniforms[4];
INSERT_PADDING_WORDS(0x5);
// Offset to shader program entry point (in words)
BitField<0, 16, u32> main_offset;
union {
BitField< 0, 4, u64> attribute0_register;
BitField< 4, 4, u64> attribute1_register;
BitField< 8, 4, u64> attribute2_register;
BitField<12, 4, u64> attribute3_register;
BitField<16, 4, u64> attribute4_register;
BitField<20, 4, u64> attribute5_register;
BitField<24, 4, u64> attribute6_register;
BitField<28, 4, u64> attribute7_register;
BitField<32, 4, u64> attribute8_register;
BitField<36, 4, u64> attribute9_register;
BitField<40, 4, u64> attribute10_register;
BitField<44, 4, u64> attribute11_register;
BitField<48, 4, u64> attribute12_register;
BitField<52, 4, u64> attribute13_register;
BitField<56, 4, u64> attribute14_register;
BitField<60, 4, u64> attribute15_register;
int GetRegisterForAttribute(int attribute_index) const {
u64 fields[] = {
attribute0_register, attribute1_register, attribute2_register, attribute3_register,
attribute4_register, attribute5_register, attribute6_register, attribute7_register,
attribute8_register, attribute9_register, attribute10_register, attribute11_register,
attribute12_register, attribute13_register, attribute14_register, attribute15_register,
};
return (int)fields[attribute_index];
}
} input_register_map;
// OUTMAP_MASK, 0x28E, CODETRANSFER_END
INSERT_PADDING_WORDS(0x3);
struct {
enum Format : u32
{
FLOAT24 = 0,
FLOAT32 = 1
};
bool IsFloat32() const {
return format == FLOAT32;
}
union {
// Index of the next uniform to write to
// TODO: ctrulib uses 8 bits for this, however that seems to yield lots of invalid indices
// TODO: Maybe the uppermost index is for the geometry shader? Investigate!
BitField<0, 7, u32> index;
BitField<31, 1, Format> format;
};
// Writing to these registers sets the current uniform.
u32 set_value[8];
} uniform_setup;
INSERT_PADDING_WORDS(0x2);
struct {
// Offset of the next instruction to write code to.
// Incremented with each instruction write.
u32 offset;
// Writing to these registers sets the "current" word in the shader program.
u32 set_word[8];
} program;
INSERT_PADDING_WORDS(0x1);
// This register group is used to load an internal table of swizzling patterns,
// which are indexed by each shader instruction to specify vector component swizzling.
struct {
// Offset of the next swizzle pattern to write code to.
// Incremented with each instruction write.
u32 offset;
// Writing to these registers sets the current swizzle pattern in the table.
u32 set_word[8];
} swizzle_patterns;
INSERT_PADDING_WORDS(0x2);
};
ShaderConfig gs;
ShaderConfig vs;
INSERT_PADDING_WORDS(0x20);
// Map register indices to names readable by humans
// Used for debugging purposes, so performance is not an issue here
static std::string GetCommandName(int index);
2014-09-28 17:20:06 +02:00
static inline size_t NumIds() {
return sizeof(Regs) / sizeof(u32);
}
u32& operator [] (int index) const {
u32* content = (u32*)this;
return content[index];
}
u32& operator [] (int index) {
u32* content = (u32*)this;
return content[index];
}
private:
/*
* Most physical addresses which Pica registers refer to are 8-byte aligned.
* This function should be used to get the address from a raw register value.
*/
static inline u32 DecodeAddressRegister(u32 register_value) {
return register_value * 8;
}
};
// TODO: MSVC does not support using offsetof() on non-static data members even though this
// is technically allowed since C++11. This macro should be enabled once MSVC adds
// support for that.
#ifndef _MSC_VER
#define ASSERT_REG_POSITION(field_name, position) static_assert(offsetof(Regs, field_name) == position * 4, "Field "#field_name" has invalid position")
ASSERT_REG_POSITION(trigger_irq, 0x10);
ASSERT_REG_POSITION(cull_mode, 0x40);
ASSERT_REG_POSITION(viewport_size_x, 0x41);
ASSERT_REG_POSITION(viewport_size_y, 0x43);
2014-07-27 17:34:11 +02:00
ASSERT_REG_POSITION(viewport_depth_range, 0x4d);
ASSERT_REG_POSITION(viewport_depth_far_plane, 0x4e);
ASSERT_REG_POSITION(vs_output_attributes[0], 0x50);
ASSERT_REG_POSITION(vs_output_attributes[1], 0x51);
2014-07-27 17:34:11 +02:00
ASSERT_REG_POSITION(viewport_corner, 0x68);
ASSERT_REG_POSITION(texture0_enable, 0x80);
ASSERT_REG_POSITION(texture0, 0x81);
ASSERT_REG_POSITION(texture0_format, 0x8e);
ASSERT_REG_POSITION(fragment_lighting_enable, 0x8f);
ASSERT_REG_POSITION(texture1, 0x91);
ASSERT_REG_POSITION(texture1_format, 0x96);
ASSERT_REG_POSITION(texture2, 0x99);
ASSERT_REG_POSITION(texture2_format, 0x9e);
ASSERT_REG_POSITION(tev_stage0, 0xc0);
ASSERT_REG_POSITION(tev_stage1, 0xc8);
ASSERT_REG_POSITION(tev_stage2, 0xd0);
ASSERT_REG_POSITION(tev_stage3, 0xd8);
ASSERT_REG_POSITION(tev_combiner_buffer_input, 0xe0);
ASSERT_REG_POSITION(tev_stage4, 0xf0);
ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(tev_combiner_buffer_color, 0xfd);
2014-12-21 02:55:51 +01:00
ASSERT_REG_POSITION(output_merger, 0x100);
2014-07-27 18:02:35 +02:00
ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(lighting, 0x140);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);
2014-07-26 16:19:11 +02:00
ASSERT_REG_POSITION(num_vertices, 0x228);
ASSERT_REG_POSITION(vertex_offset, 0x22a);
2014-07-26 16:19:11 +02:00
ASSERT_REG_POSITION(trigger_draw, 0x22e);
ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f);
ASSERT_REG_POSITION(vs_default_attributes_setup, 0x232);
ASSERT_REG_POSITION(command_buffer, 0x238);
2014-07-27 14:58:30 +02:00
ASSERT_REG_POSITION(triangle_topology, 0x25e);
ASSERT_REG_POSITION(restart_primitive, 0x25f);
ASSERT_REG_POSITION(gs, 0x280);
ASSERT_REG_POSITION(vs, 0x2b0);
#undef ASSERT_REG_POSITION
#endif // !defined(_MSC_VER)
static_assert(sizeof(Regs::ShaderConfig) == 0x30 * sizeof(u32), "ShaderConfig structure has incorrect size");
// The total number of registers is chosen arbitrarily, but let's make sure it's not some odd value anyway.
static_assert(sizeof(Regs) <= 0x300 * sizeof(u32), "Register set structure larger than it should be");
static_assert(sizeof(Regs) >= 0x300 * sizeof(u32), "Register set structure smaller than it should be");
/// Struct used to describe current Pica state
struct State {
/// Pica registers
Regs regs;
/// Vertex shader memory
struct ShaderSetup {
struct {
// The float uniforms are accessed by the shader JIT using SSE instructions, and are
// therefore required to be 16-byte aligned.
Math::Vec4<float24> MEMORY_ALIGNED16(f[96]);
std::array<bool, 16> b;
std::array<Math::Vec4<u8>, 4> i;
} uniforms;
Math::Vec4<float24> default_attributes[16];
std::array<u32, 1024> program_code;
std::array<u32, 1024> swizzle_data;
};
ShaderSetup vs;
ShaderSetup gs;
struct {
union LutEntry {
// Used for raw access
u32 raw;
// LUT value, encoded as 12-bit fixed point, with 12 fraction bits
BitField< 0, 12, u32> value;
// Used by HW for efficient interpolation, Citra does not use these
BitField<12, 12, u32> difference;
float ToFloat() {
return static_cast<float>(value) / 4095.f;
}
};
std::array<std::array<LutEntry, 256>, 24> luts;
} lighting;
/// Current Pica command list
struct {
const u32* head_ptr;
const u32* current_ptr;
u32 length;
} cmd_list;
};
/// Initialize Pica state
void Init();
/// Shutdown Pica state
void Shutdown();
extern State g_state; ///< Current Pica state
} // namespace