suyu/src/core/memory.cpp

927 lines
36 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
2014-12-17 06:38:14 +01:00
// Licensed under GPLv2 or any later version
2014-04-09 01:15:46 +02:00
// Refer to the license.txt file included.
2013-09-19 05:52:51 +02:00
#include <algorithm>
2015-09-10 05:23:44 +02:00
#include <cstring>
#include <optional>
#include <utility>
#include "common/assert.h"
#include "common/atomic_ops.h"
2015-05-06 09:06:12 +02:00
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/page_table.h"
2020-01-19 01:49:30 +01:00
#include "common/settings.h"
2015-05-06 09:06:12 +02:00
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
2020-04-09 04:50:46 +02:00
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/physical_memory.h"
#include "core/memory.h"
#include "video_core/gpu.h"
2016-04-17 00:57:57 +02:00
namespace Core::Memory {
// Implementation class used to keep the specifics of the memory subsystem hidden
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
struct Memory::Impl {
explicit Impl(Core::System& system_) : system{system_} {}
void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
2020-04-09 04:50:46 +02:00
current_page_table = &process.PageTable().PageTableImpl();
2020-01-19 01:49:30 +01:00
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
2020-04-09 04:50:46 +02:00
const std::size_t address_space_width = process.PageTable().GetAddressSpaceWidth();
system.ArmInterface(core_id).PageTableChanged(*current_page_table, address_space_width);
}
2020-04-09 04:50:46 +02:00
void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
2020-01-19 01:49:30 +01:00
ASSERT_MSG(target >= DramMemoryMap::Base && target < DramMemoryMap::End,
"Out of bounds target: {:016X}", target);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, Common::PageType::Memory);
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
system.DeviceMemory().buffer.Map(base, target - DramMemoryMap::Base, size);
}
}
void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
2020-04-09 04:50:46 +02:00
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, 0, Common::PageType::Unmapped);
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
system.DeviceMemory().buffer.Unmap(base, size);
}
}
2018-05-03 04:36:51 +02:00
bool IsValidVirtualAddress(const Kernel::KProcess& process, const VAddr vaddr) const {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
const auto [pointer, type] = page_table.pointers[vaddr >> PAGE_BITS].PointerType();
return pointer != nullptr || type == Common::PageType::RasterizerCachedMemory;
}
bool IsValidVirtualAddress(VAddr vaddr) const {
return IsValidVirtualAddress(*system.CurrentProcess(), vaddr);
}
2020-04-09 04:50:46 +02:00
u8* GetPointerFromRasterizerCachedMemory(VAddr vaddr) const {
const PAddr paddr{current_page_table->backing_addr[vaddr >> PAGE_BITS]};
2020-04-09 04:50:46 +02:00
if (!paddr) {
return {};
}
2020-04-09 04:50:46 +02:00
return system.DeviceMemory().GetPointer(paddr) + vaddr;
}
2020-04-09 04:50:46 +02:00
u8* GetPointer(const VAddr vaddr) const {
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
return pointer + vaddr;
}
const auto type = Common::PageTable::PageInfo::ExtractType(raw_pointer);
if (type == Common::PageType::RasterizerCachedMemory) {
2020-04-09 04:50:46 +02:00
return GetPointerFromRasterizerCachedMemory(vaddr);
}
return nullptr;
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
if ((addr & 1) == 0) {
return Read<u16_le>(addr);
} else {
const u32 a{Read<u8>(addr)};
const u32 b{Read<u8>(addr + sizeof(u8))};
return static_cast<u16>((b << 8) | a);
}
}
u32 Read32(const VAddr addr) {
if ((addr & 3) == 0) {
return Read<u32_le>(addr);
} else {
const u32 a{Read16(addr)};
const u32 b{Read16(addr + sizeof(u16))};
return (b << 16) | a;
}
}
u64 Read64(const VAddr addr) {
if ((addr & 7) == 0) {
return Read<u64_le>(addr);
} else {
const u32 a{Read32(addr)};
const u32 b{Read32(addr + sizeof(u32))};
return (static_cast<u64>(b) << 32) | a;
}
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
if ((addr & 1) == 0) {
Write<u16_le>(addr, data);
} else {
Write<u8>(addr, static_cast<u8>(data));
Write<u8>(addr + sizeof(u8), static_cast<u8>(data >> 8));
}
}
void Write32(const VAddr addr, const u32 data) {
if ((addr & 3) == 0) {
Write<u32_le>(addr, data);
} else {
Write16(addr, static_cast<u16>(data));
Write16(addr + sizeof(u16), static_cast<u16>(data >> 16));
}
}
void Write64(const VAddr addr, const u64 data) {
if ((addr & 7) == 0) {
Write<u64_le>(addr, data);
} else {
Write32(addr, static_cast<u32>(data));
Write32(addr + sizeof(u32), static_cast<u32>(data >> 32));
}
}
bool WriteExclusive8(const VAddr addr, const u8 data, const u8 expected) {
return WriteExclusive<u8>(addr, data, expected);
}
bool WriteExclusive16(const VAddr addr, const u16 data, const u16 expected) {
return WriteExclusive<u16_le>(addr, data, expected);
}
bool WriteExclusive32(const VAddr addr, const u32 data, const u32 expected) {
return WriteExclusive<u32_le>(addr, data, expected);
}
bool WriteExclusive64(const VAddr addr, const u64 data, const u64 expected) {
return WriteExclusive<u64_le>(addr, data, expected);
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
2020-10-21 04:07:39 +02:00
const char c = Read8(vaddr);
if (c == '\0') {
break;
}
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
void ReadBlock(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
const u8* const src_ptr = pointer + page_offset + (page_index << PAGE_BITS);
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
const u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
system.GPU().FlushRegion(current_vaddr, copy_amount);
std::memcpy(dest_buffer, host_ptr, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void ReadBlockUnsafe(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
const u8* const src_ptr = pointer + page_offset + (page_index << PAGE_BITS);
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
const u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
std::memcpy(dest_buffer, host_ptr, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
ReadBlock(*system.CurrentProcess(), src_addr, dest_buffer, size);
}
void ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
ReadBlockUnsafe(*system.CurrentProcess(), src_addr, dest_buffer, size);
}
void WriteBlock(const Kernel::KProcess& process, const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
u8* const dest_ptr = pointer + page_offset + (page_index << PAGE_BITS);
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
system.GPU().InvalidateRegion(current_vaddr, copy_amount);
std::memcpy(host_ptr, src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void WriteBlockUnsafe(const Kernel::KProcess& process, const VAddr dest_addr,
const void* src_buffer, const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
u8* const dest_ptr = pointer + page_offset + (page_index << PAGE_BITS);
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
std::memcpy(host_ptr, src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
WriteBlock(*system.CurrentProcess(), dest_addr, src_buffer, size);
}
void WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
WriteBlockUnsafe(*system.CurrentProcess(), dest_addr, src_buffer, size);
}
void ZeroBlock(const Kernel::KProcess& process, const VAddr dest_addr, const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
u8* const dest_ptr = pointer + page_offset + (page_index << PAGE_BITS);
std::memset(dest_ptr, 0, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
system.GPU().InvalidateRegion(current_vaddr, copy_amount);
std::memset(host_ptr, 0, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
}
void ZeroBlock(const VAddr dest_addr, const std::size_t size) {
ZeroBlock(*system.CurrentProcess(), dest_addr, size);
}
void CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
2020-04-09 04:50:46 +02:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(process, dest_addr, copy_amount);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
const u8* src_ptr = pointer + page_offset + (page_index << PAGE_BITS);
WriteBlock(process, dest_addr, src_ptr, copy_amount);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
const u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
system.GPU().FlushRegion(current_vaddr, copy_amount);
WriteBlock(process, dest_addr, host_ptr, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) {
return CopyBlock(*system.CurrentProcess(), dest_addr, src_addr, size);
}
void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
if (vaddr == 0) {
return;
}
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
const bool is_read_enable = Settings::IsGPULevelHigh() || !cached;
system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached);
}
2020-01-19 01:49:30 +01:00
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU
// address space, marking the region as un/cached. The region is marked un/cached at a
// granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size
// is different). This assumes the specified GPU address region is contiguous as well.
const u64 num_pages = ((vaddr + size - 1) >> PAGE_BITS) - (vaddr >> PAGE_BITS) + 1;
for (u64 i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) {
const Common::PageType page_type{
current_page_table->pointers[vaddr >> PAGE_BITS].Type()};
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case Common::PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case Common::PageType::Memory:
current_page_table->pointers[vaddr >> PAGE_BITS].Store(
nullptr, Common::PageType::RasterizerCachedMemory);
break;
case Common::PageType::RasterizerCachedMemory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already marked as cached.
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
case Common::PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case Common::PageType::Memory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already unmarked as cached.
break;
case Common::PageType::RasterizerCachedMemory: {
u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~PAGE_MASK)};
if (pointer == nullptr) {
// It's possible that this function has been called while updating the
// pagetable after unmapping a VMA. In that case the underlying VMA will no
// longer exist, and we should just leave the pagetable entry blank.
current_page_table->pointers[vaddr >> PAGE_BITS].Store(
nullptr, Common::PageType::Unmapped);
} else {
current_page_table->pointers[vaddr >> PAGE_BITS].Store(
pointer - (vaddr & ~PAGE_MASK), Common::PageType::Memory);
}
break;
}
default:
UNREACHABLE();
}
}
}
}
/**
* Maps a region of pages as a specific type.
*
* @param page_table The page table to use to perform the mapping.
* @param base The base address to begin mapping at.
* @param size The total size of the range in bytes.
* @param target The target address to begin mapping from.
* @param type The page type to map the memory as.
*/
2020-04-09 04:50:46 +02:00
void MapPages(Common::PageTable& page_table, VAddr base, u64 size, PAddr target,
Common::PageType type) {
2020-04-09 04:50:46 +02:00
LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", target, base * PAGE_SIZE,
(base + size) * PAGE_SIZE);
// During boot, current_page_table might not be set yet, in which case we need not flush
if (system.IsPoweredOn()) {
auto& gpu = system.GPU();
for (u64 i = 0; i < size; i++) {
const auto page = base + i;
if (page_table.pointers[page].Type() == Common::PageType::RasterizerCachedMemory) {
gpu.FlushAndInvalidateRegion(page << PAGE_BITS, PAGE_SIZE);
}
}
}
const VAddr end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
2020-04-09 04:50:46 +02:00
if (!target) {
ASSERT_MSG(type != Common::PageType::Memory,
"Mapping memory page without a pointer @ {:016x}", base * PAGE_SIZE);
2020-04-09 04:50:46 +02:00
while (base != end) {
page_table.pointers[base].Store(nullptr, type);
2020-04-09 04:50:46 +02:00
page_table.backing_addr[base] = 0;
2020-04-09 04:50:46 +02:00
base += 1;
}
} else {
while (base != end) {
page_table.pointers[base].Store(
system.DeviceMemory().GetPointer(target) - (base << PAGE_BITS), type);
2020-04-09 04:50:46 +02:00
page_table.backing_addr[base] = target - (base << PAGE_BITS);
ASSERT_MSG(page_table.pointers[base].Pointer(),
"memory mapping base yield a nullptr within the table");
base += 1;
2020-04-09 04:50:46 +02:00
target += PAGE_SIZE;
}
}
}
2013-09-19 05:52:51 +02:00
/**
* Reads a particular data type out of memory at the given virtual address.
*
* @param vaddr The virtual address to read the data type from.
*
* @tparam T The data type to read out of memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*
* @returns The instance of T read from the specified virtual address.
*/
template <typename T>
T Read(VAddr vaddr) {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr &= 0xffffffffffffLL;
if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
return 0;
}
// Avoid adding any extra logic to this fast-path block
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
if (const u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
T value;
std::memcpy(&value, &pointer[vaddr], sizeof(T));
return value;
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
return 0;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
const u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().FlushRegion(vaddr, sizeof(T));
T value;
std::memcpy(&value, host_ptr, sizeof(T));
return value;
}
default:
UNREACHABLE();
}
return {};
}
/**
* Writes a particular data type to memory at the given virtual address.
*
* @param vaddr The virtual address to write the data type to.
*
* @tparam T The data type to write to memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*/
template <typename T>
void Write(VAddr vaddr, const T data) {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr &= 0xffffffffffffLL;
if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return;
}
// Avoid adding any extra logic to this fast-path block
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
std::memcpy(&pointer[vaddr], &data, sizeof(T));
return;
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
case Common::PageType::RasterizerCachedMemory: {
2020-04-09 04:50:46 +02:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().InvalidateRegion(vaddr, sizeof(T));
std::memcpy(host_ptr, &data, sizeof(T));
break;
}
default:
UNREACHABLE();
}
}
template <typename T>
bool WriteExclusive(VAddr vaddr, const T data, const T expected) {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr &= 0xffffffffffffLL;
if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return true;
}
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
// NOTE: Avoid adding any extra logic to this fast-path block
const auto volatile_pointer = reinterpret_cast<volatile T*>(&pointer[vaddr]);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return true;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
case Common::PageType::RasterizerCachedMemory: {
u8* host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().InvalidateRegion(vaddr, sizeof(T));
auto* pointer = reinterpret_cast<volatile T*>(&host_ptr);
return Common::AtomicCompareAndSwap(pointer, data, expected);
}
default:
UNREACHABLE();
}
return true;
}
bool WriteExclusive128(VAddr vaddr, const u128 data, const u128 expected) {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr &= 0xffffffffffffLL;
if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data[0]), vaddr);
return true;
}
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
// NOTE: Avoid adding any extra logic to this fast-path block
const auto volatile_pointer = reinterpret_cast<volatile u64*>(&pointer[vaddr]);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}{:016X}", sizeof(data) * 8,
static_cast<u64>(data[1]), static_cast<u64>(data[0]), vaddr);
return true;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
case Common::PageType::RasterizerCachedMemory: {
u8* host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().InvalidateRegion(vaddr, sizeof(u128));
auto* pointer = reinterpret_cast<volatile u64*>(&host_ptr);
return Common::AtomicCompareAndSwap(pointer, data, expected);
}
default:
UNREACHABLE();
}
return true;
}
Common::PageTable* current_page_table = nullptr;
Core::System& system;
};
2014-04-26 07:27:25 +02:00
Memory::Memory(Core::System& system_) : system{system_} {
Reset();
}
Memory::~Memory() = default;
2016-01-30 19:41:04 +01:00
void Memory::Reset() {
impl = std::make_unique<Impl>(system);
}
void Memory::SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
impl->SetCurrentPageTable(process, core_id);
}
2020-04-09 04:50:46 +02:00
void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
impl->MapMemoryRegion(page_table, base, size, target);
}
void Memory::UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
impl->UnmapRegion(page_table, base, size);
}
2016-04-17 00:57:57 +02:00
bool Memory::IsValidVirtualAddress(const Kernel::KProcess& process, const VAddr vaddr) const {
return impl->IsValidVirtualAddress(process, vaddr);
}
bool Memory::IsValidVirtualAddress(const VAddr vaddr) const {
return impl->IsValidVirtualAddress(vaddr);
}
u8* Memory::GetPointer(VAddr vaddr) {
return impl->GetPointer(vaddr);
}
const u8* Memory::GetPointer(VAddr vaddr) const {
return impl->GetPointer(vaddr);
}
u8 Memory::Read8(const VAddr addr) {
return impl->Read8(addr);
}
u16 Memory::Read16(const VAddr addr) {
return impl->Read16(addr);
}
u32 Memory::Read32(const VAddr addr) {
return impl->Read32(addr);
}
u64 Memory::Read64(const VAddr addr) {
return impl->Read64(addr);
}
void Memory::Write8(VAddr addr, u8 data) {
impl->Write8(addr, data);
}
void Memory::Write16(VAddr addr, u16 data) {
impl->Write16(addr, data);
}
void Memory::Write32(VAddr addr, u32 data) {
impl->Write32(addr, data);
}
void Memory::Write64(VAddr addr, u64 data) {
impl->Write64(addr, data);
}
bool Memory::WriteExclusive8(VAddr addr, u8 data, u8 expected) {
return impl->WriteExclusive8(addr, data, expected);
}
bool Memory::WriteExclusive16(VAddr addr, u16 data, u16 expected) {
return impl->WriteExclusive16(addr, data, expected);
}
bool Memory::WriteExclusive32(VAddr addr, u32 data, u32 expected) {
return impl->WriteExclusive32(addr, data, expected);
}
bool Memory::WriteExclusive64(VAddr addr, u64 data, u64 expected) {
return impl->WriteExclusive64(addr, data, expected);
}
bool Memory::WriteExclusive128(VAddr addr, u128 data, u128 expected) {
return impl->WriteExclusive128(addr, data, expected);
}
std::string Memory::ReadCString(VAddr vaddr, std::size_t max_length) {
return impl->ReadCString(vaddr, max_length);
}
void Memory::ReadBlock(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
impl->ReadBlock(process, src_addr, dest_buffer, size);
}
void Memory::ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
impl->ReadBlock(src_addr, dest_buffer, size);
}
void Memory::ReadBlockUnsafe(const Kernel::KProcess& process, const VAddr src_addr,
void* dest_buffer, const std::size_t size) {
impl->ReadBlockUnsafe(process, src_addr, dest_buffer, size);
}
void Memory::ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
impl->ReadBlockUnsafe(src_addr, dest_buffer, size);
}
void Memory::WriteBlock(const Kernel::KProcess& process, VAddr dest_addr, const void* src_buffer,
std::size_t size) {
impl->WriteBlock(process, dest_addr, src_buffer, size);
}
void Memory::WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
impl->WriteBlock(dest_addr, src_buffer, size);
}
void Memory::WriteBlockUnsafe(const Kernel::KProcess& process, VAddr dest_addr,
const void* src_buffer, std::size_t size) {
impl->WriteBlockUnsafe(process, dest_addr, src_buffer, size);
}
void Memory::WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
impl->WriteBlockUnsafe(dest_addr, src_buffer, size);
}
void Memory::ZeroBlock(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size) {
impl->ZeroBlock(process, dest_addr, size);
}
void Memory::ZeroBlock(VAddr dest_addr, std::size_t size) {
impl->ZeroBlock(dest_addr, size);
}
void Memory::CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
impl->CopyBlock(process, dest_addr, src_addr, size);
}
void Memory::CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) {
impl->CopyBlock(dest_addr, src_addr, size);
}
void Memory::RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
impl->RasterizerMarkRegionCached(vaddr, size, cached);
}
bool IsKernelVirtualAddress(const VAddr vaddr) {
return KERNEL_REGION_VADDR <= vaddr && vaddr < KERNEL_REGION_END;
}
} // namespace Core::Memory