mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2025-01-09 01:00:59 +01:00
kernel: Remove old VMManager class.
This commit is contained in:
parent
bebfb05c1b
commit
02547a0cb4
3 changed files with 0 additions and 1973 deletions
|
@ -209,8 +209,6 @@ add_library(core STATIC
|
|||
hle/kernel/time_manager.h
|
||||
hle/kernel/transfer_memory.cpp
|
||||
hle/kernel/transfer_memory.h
|
||||
hle/kernel/vm_manager.cpp
|
||||
hle/kernel/vm_manager.h
|
||||
hle/kernel/writable_event.cpp
|
||||
hle/kernel/writable_event.h
|
||||
hle/lock.cpp
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,796 +0,0 @@
|
|||
// Copyright 2015 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include "common/common_types.h"
|
||||
#include "common/memory_hook.h"
|
||||
#include "common/page_table.h"
|
||||
#include "core/hle/kernel/physical_memory.h"
|
||||
#include "core/hle/result.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace FileSys {
|
||||
enum class ProgramAddressSpaceType : u8;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum class VMAType : u8 {
|
||||
/// VMA represents an unmapped region of the address space.
|
||||
Free,
|
||||
/// VMA is backed by a ref-counted allocate memory block.
|
||||
AllocatedMemoryBlock,
|
||||
/// VMA is backed by a raw, unmanaged pointer.
|
||||
BackingMemory,
|
||||
/// VMA is mapped to MMIO registers at a fixed PAddr.
|
||||
MMIO,
|
||||
// TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
|
||||
};
|
||||
|
||||
/// Permissions for mapped memory blocks
|
||||
enum class VMAPermission : u8 {
|
||||
None = 0,
|
||||
Read = 1,
|
||||
Write = 2,
|
||||
Execute = 4,
|
||||
|
||||
ReadWrite = Read | Write,
|
||||
ReadExecute = Read | Execute,
|
||||
WriteExecute = Write | Execute,
|
||||
ReadWriteExecute = Read | Write | Execute,
|
||||
|
||||
// Used as a wildcard when checking permissions across memory ranges
|
||||
All = 0xFF,
|
||||
};
|
||||
|
||||
constexpr VMAPermission operator|(VMAPermission lhs, VMAPermission rhs) {
|
||||
return static_cast<VMAPermission>(u32(lhs) | u32(rhs));
|
||||
}
|
||||
|
||||
constexpr VMAPermission operator&(VMAPermission lhs, VMAPermission rhs) {
|
||||
return static_cast<VMAPermission>(u32(lhs) & u32(rhs));
|
||||
}
|
||||
|
||||
constexpr VMAPermission operator^(VMAPermission lhs, VMAPermission rhs) {
|
||||
return static_cast<VMAPermission>(u32(lhs) ^ u32(rhs));
|
||||
}
|
||||
|
||||
constexpr VMAPermission operator~(VMAPermission permission) {
|
||||
return static_cast<VMAPermission>(~u32(permission));
|
||||
}
|
||||
|
||||
constexpr VMAPermission& operator|=(VMAPermission& lhs, VMAPermission rhs) {
|
||||
lhs = lhs | rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr VMAPermission& operator&=(VMAPermission& lhs, VMAPermission rhs) {
|
||||
lhs = lhs & rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr VMAPermission& operator^=(VMAPermission& lhs, VMAPermission rhs) {
|
||||
lhs = lhs ^ rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
/// Attribute flags that can be applied to a VMA
|
||||
enum class MemoryAttribute : u32 {
|
||||
Mask = 0xFF,
|
||||
|
||||
/// No particular qualities
|
||||
None = 0,
|
||||
/// Memory locked/borrowed for use. e.g. This would be used by transfer memory.
|
||||
Locked = 1,
|
||||
/// Memory locked for use by IPC-related internals.
|
||||
LockedForIPC = 2,
|
||||
/// Mapped as part of the device address space.
|
||||
DeviceMapped = 4,
|
||||
/// Uncached memory
|
||||
Uncached = 8,
|
||||
|
||||
IpcAndDeviceMapped = LockedForIPC | DeviceMapped,
|
||||
};
|
||||
|
||||
constexpr MemoryAttribute operator|(MemoryAttribute lhs, MemoryAttribute rhs) {
|
||||
return static_cast<MemoryAttribute>(u32(lhs) | u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute operator&(MemoryAttribute lhs, MemoryAttribute rhs) {
|
||||
return static_cast<MemoryAttribute>(u32(lhs) & u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute operator^(MemoryAttribute lhs, MemoryAttribute rhs) {
|
||||
return static_cast<MemoryAttribute>(u32(lhs) ^ u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute operator~(MemoryAttribute attribute) {
|
||||
return static_cast<MemoryAttribute>(~u32(attribute));
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute& operator|=(MemoryAttribute& lhs, MemoryAttribute rhs) {
|
||||
lhs = lhs | rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute& operator&=(MemoryAttribute& lhs, MemoryAttribute rhs) {
|
||||
lhs = lhs & rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr MemoryAttribute& operator^=(MemoryAttribute& lhs, MemoryAttribute rhs) {
|
||||
lhs = lhs ^ rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr u32 ToSvcMemoryAttribute(MemoryAttribute attribute) {
|
||||
return static_cast<u32>(attribute & MemoryAttribute::Mask);
|
||||
}
|
||||
|
||||
// clang-format off
|
||||
/// Represents memory states and any relevant flags, as used by the kernel.
|
||||
/// svcQueryMemory interprets these by masking away all but the first eight
|
||||
/// bits when storing memory state into a MemoryInfo instance.
|
||||
enum class MemoryState : u32 {
|
||||
Mask = 0xFF,
|
||||
FlagProtect = 1U << 8,
|
||||
FlagDebug = 1U << 9,
|
||||
FlagIPC0 = 1U << 10,
|
||||
FlagIPC3 = 1U << 11,
|
||||
FlagIPC1 = 1U << 12,
|
||||
FlagMapped = 1U << 13,
|
||||
FlagCode = 1U << 14,
|
||||
FlagAlias = 1U << 15,
|
||||
FlagModule = 1U << 16,
|
||||
FlagTransfer = 1U << 17,
|
||||
FlagQueryPhysicalAddressAllowed = 1U << 18,
|
||||
FlagSharedDevice = 1U << 19,
|
||||
FlagSharedDeviceAligned = 1U << 20,
|
||||
FlagIPCBuffer = 1U << 21,
|
||||
FlagMemoryPoolAllocated = 1U << 22,
|
||||
FlagMapProcess = 1U << 23,
|
||||
FlagUncached = 1U << 24,
|
||||
FlagCodeMemory = 1U << 25,
|
||||
|
||||
// Wildcard used in range checking to indicate all states.
|
||||
All = 0xFFFFFFFF,
|
||||
|
||||
// Convenience flag sets to reduce repetition
|
||||
IPCFlags = FlagIPC0 | FlagIPC3 | FlagIPC1,
|
||||
|
||||
CodeFlags = FlagDebug | IPCFlags | FlagMapped | FlagCode | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
|
||||
|
||||
DataFlags = FlagProtect | IPCFlags | FlagMapped | FlagAlias | FlagTransfer |
|
||||
FlagQueryPhysicalAddressAllowed | FlagSharedDevice | FlagSharedDeviceAligned |
|
||||
FlagMemoryPoolAllocated | FlagIPCBuffer | FlagUncached,
|
||||
|
||||
Unmapped = 0x00,
|
||||
Io = 0x01 | FlagMapped,
|
||||
Normal = 0x02 | FlagMapped | FlagQueryPhysicalAddressAllowed,
|
||||
Code = 0x03 | CodeFlags | FlagMapProcess,
|
||||
CodeData = 0x04 | DataFlags | FlagMapProcess | FlagCodeMemory,
|
||||
Heap = 0x05 | DataFlags | FlagCodeMemory,
|
||||
Shared = 0x06 | FlagMapped | FlagMemoryPoolAllocated,
|
||||
ModuleCode = 0x08 | CodeFlags | FlagModule | FlagMapProcess,
|
||||
ModuleCodeData = 0x09 | DataFlags | FlagModule | FlagMapProcess | FlagCodeMemory,
|
||||
|
||||
IpcBuffer0 = 0x0A | FlagMapped | FlagQueryPhysicalAddressAllowed | FlagMemoryPoolAllocated |
|
||||
IPCFlags | FlagSharedDevice | FlagSharedDeviceAligned,
|
||||
|
||||
Stack = 0x0B | FlagMapped | IPCFlags | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
|
||||
|
||||
ThreadLocal = 0x0C | FlagMapped | FlagMemoryPoolAllocated,
|
||||
|
||||
TransferMemoryIsolated = 0x0D | IPCFlags | FlagMapped | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated |
|
||||
FlagUncached,
|
||||
|
||||
TransferMemory = 0x0E | FlagIPC3 | FlagIPC1 | FlagMapped | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
|
||||
|
||||
ProcessMemory = 0x0F | FlagIPC3 | FlagIPC1 | FlagMapped | FlagMemoryPoolAllocated,
|
||||
|
||||
// Used to signify an inaccessible or invalid memory region with memory queries
|
||||
Inaccessible = 0x10,
|
||||
|
||||
IpcBuffer1 = 0x11 | FlagIPC3 | FlagIPC1 | FlagMapped | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
|
||||
|
||||
IpcBuffer3 = 0x12 | FlagIPC3 | FlagMapped | FlagQueryPhysicalAddressAllowed |
|
||||
FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
|
||||
|
||||
KernelStack = 0x13 | FlagMapped,
|
||||
};
|
||||
// clang-format on
|
||||
|
||||
constexpr MemoryState operator|(MemoryState lhs, MemoryState rhs) {
|
||||
return static_cast<MemoryState>(u32(lhs) | u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryState operator&(MemoryState lhs, MemoryState rhs) {
|
||||
return static_cast<MemoryState>(u32(lhs) & u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryState operator^(MemoryState lhs, MemoryState rhs) {
|
||||
return static_cast<MemoryState>(u32(lhs) ^ u32(rhs));
|
||||
}
|
||||
|
||||
constexpr MemoryState operator~(MemoryState lhs) {
|
||||
return static_cast<MemoryState>(~u32(lhs));
|
||||
}
|
||||
|
||||
constexpr MemoryState& operator|=(MemoryState& lhs, MemoryState rhs) {
|
||||
lhs = lhs | rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr MemoryState& operator&=(MemoryState& lhs, MemoryState rhs) {
|
||||
lhs = lhs & rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr MemoryState& operator^=(MemoryState& lhs, MemoryState rhs) {
|
||||
lhs = lhs ^ rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
constexpr u32 ToSvcMemoryState(MemoryState state) {
|
||||
return static_cast<u32>(state & MemoryState::Mask);
|
||||
}
|
||||
|
||||
struct MemoryInfo {
|
||||
u64 base_address;
|
||||
u64 size;
|
||||
u32 state;
|
||||
u32 attributes;
|
||||
u32 permission;
|
||||
u32 ipc_ref_count;
|
||||
u32 device_ref_count;
|
||||
};
|
||||
static_assert(sizeof(MemoryInfo) == 0x28, "MemoryInfo has incorrect size.");
|
||||
|
||||
struct PageInfo {
|
||||
u32 flags;
|
||||
};
|
||||
|
||||
/**
|
||||
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
|
||||
* with homogeneous attributes across its extents. In this particular implementation each VMA is
|
||||
* also backed by a single host memory allocation.
|
||||
*/
|
||||
struct VirtualMemoryArea {
|
||||
/// Gets the starting (base) address of this VMA.
|
||||
VAddr StartAddress() const {
|
||||
return base;
|
||||
}
|
||||
|
||||
/// Gets the ending address of this VMA.
|
||||
VAddr EndAddress() const {
|
||||
return base + size - 1;
|
||||
}
|
||||
|
||||
/// Virtual base address of the region.
|
||||
VAddr base = 0;
|
||||
/// Size of the region.
|
||||
u64 size = 0;
|
||||
|
||||
VMAType type = VMAType::Free;
|
||||
VMAPermission permissions = VMAPermission::None;
|
||||
MemoryState state = MemoryState::Unmapped;
|
||||
MemoryAttribute attribute = MemoryAttribute::None;
|
||||
|
||||
// Settings for type = AllocatedMemoryBlock
|
||||
/// Memory block backing this VMA.
|
||||
std::shared_ptr<PhysicalMemory> backing_block = nullptr;
|
||||
/// Offset into the backing_memory the mapping starts from.
|
||||
std::size_t offset = 0;
|
||||
|
||||
// Settings for type = BackingMemory
|
||||
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
|
||||
u8* backing_memory = nullptr;
|
||||
|
||||
// Settings for type = MMIO
|
||||
/// Physical address of the register area this VMA maps to.
|
||||
PAddr paddr = 0;
|
||||
Common::MemoryHookPointer mmio_handler = nullptr;
|
||||
|
||||
/// Tests if this area can be merged to the right with `next`.
|
||||
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* Manages a process' virtual addressing space. This class maintains a list of allocated and free
|
||||
* regions in the address space, along with their attributes, and allows kernel clients to
|
||||
* manipulate it, adjusting the page table to match.
|
||||
*
|
||||
* This is similar in idea and purpose to the VM manager present in operating system kernels, with
|
||||
* the main difference being that it doesn't have to support swapping or memory mapping of files.
|
||||
* The implementation is also simplified by not having to allocate page frames. See these articles
|
||||
* about the Linux kernel for an explantion of the concept and implementation:
|
||||
* - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
|
||||
* - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
|
||||
*/
|
||||
class VMManager final {
|
||||
using VMAMap = std::map<VAddr, VirtualMemoryArea>;
|
||||
|
||||
public:
|
||||
using VMAHandle = VMAMap::const_iterator;
|
||||
|
||||
explicit VMManager(Core::System& system);
|
||||
~VMManager();
|
||||
|
||||
/// Clears the address space map, re-initializing with a single free area.
|
||||
void Reset(FileSys::ProgramAddressSpaceType type);
|
||||
|
||||
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
|
||||
VMAHandle FindVMA(VAddr target) const;
|
||||
|
||||
/// Indicates whether or not the given handle is within the VMA map.
|
||||
bool IsValidHandle(VMAHandle handle) const;
|
||||
|
||||
// TODO(yuriks): Should these functions actually return the handle?
|
||||
|
||||
/**
|
||||
* Maps part of a ref-counted block of memory at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param block The block to be mapped.
|
||||
* @param offset Offset into `block` to map from.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<PhysicalMemory> block,
|
||||
std::size_t offset, u64 size, MemoryState state,
|
||||
VMAPermission perm = VMAPermission::ReadWrite);
|
||||
|
||||
/**
|
||||
* Maps an unmanaged host memory pointer at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param memory The memory to be mapped.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state);
|
||||
|
||||
/**
|
||||
* Finds the first free memory region of the given size within
|
||||
* the user-addressable ASLR memory region.
|
||||
*
|
||||
* @param size The size of the desired region in bytes.
|
||||
*
|
||||
* @returns If successful, the base address of the free region with
|
||||
* the given size.
|
||||
*/
|
||||
ResultVal<VAddr> FindFreeRegion(u64 size) const;
|
||||
|
||||
/**
|
||||
* Finds the first free address range that can hold a region of the desired size
|
||||
*
|
||||
* @param begin The starting address of the range.
|
||||
* This is treated as an inclusive beginning address.
|
||||
*
|
||||
* @param end The ending address of the range.
|
||||
* This is treated as an exclusive ending address.
|
||||
*
|
||||
* @param size The size of the free region to attempt to locate,
|
||||
* in bytes.
|
||||
*
|
||||
* @returns If successful, the base address of the free region with
|
||||
* the given size.
|
||||
*
|
||||
* @returns If unsuccessful, a result containing an error code.
|
||||
*
|
||||
* @pre The starting address must be less than the ending address.
|
||||
* @pre The size must not exceed the address range itself.
|
||||
*/
|
||||
ResultVal<VAddr> FindFreeRegion(VAddr begin, VAddr end, u64 size) const;
|
||||
|
||||
/**
|
||||
* Maps a memory-mapped IO region at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param paddr The physical address where the registers are present.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
* @param mmio_handler The handler that will implement read and write for this MMIO region.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
|
||||
Common::MemoryHookPointer mmio_handler);
|
||||
|
||||
/// Unmaps a range of addresses, splitting VMAs as necessary.
|
||||
ResultCode UnmapRange(VAddr target, u64 size);
|
||||
|
||||
/// Changes the permissions of the given VMA.
|
||||
VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
|
||||
|
||||
/// Changes the permissions of a range of addresses, splitting VMAs as necessary.
|
||||
ResultCode ReprotectRange(VAddr target, u64 size, VMAPermission new_perms);
|
||||
|
||||
ResultCode MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state);
|
||||
|
||||
/// Attempts to allocate a heap with the given size.
|
||||
///
|
||||
/// @param size The size of the heap to allocate in bytes.
|
||||
///
|
||||
/// @note If a heap is currently allocated, and this is called
|
||||
/// with a size that is equal to the size of the current heap,
|
||||
/// then this function will do nothing and return the current
|
||||
/// heap's starting address, as there's no need to perform
|
||||
/// any additional heap allocation work.
|
||||
///
|
||||
/// @note If a heap is currently allocated, and this is called
|
||||
/// with a size less than the current heap's size, then
|
||||
/// this function will attempt to shrink the heap.
|
||||
///
|
||||
/// @note If a heap is currently allocated, and this is called
|
||||
/// with a size larger than the current heap's size, then
|
||||
/// this function will attempt to extend the size of the heap.
|
||||
///
|
||||
/// @returns A result indicating either success or failure.
|
||||
/// <p>
|
||||
/// If successful, this function will return a result
|
||||
/// containing the starting address to the allocated heap.
|
||||
/// <p>
|
||||
/// If unsuccessful, this function will return a result
|
||||
/// containing an error code.
|
||||
///
|
||||
/// @pre The given size must lie within the allowable heap
|
||||
/// memory region managed by this VMManager instance.
|
||||
/// Failure to abide by this will result in ERR_OUT_OF_MEMORY
|
||||
/// being returned as the result.
|
||||
///
|
||||
ResultVal<VAddr> SetHeapSize(u64 size);
|
||||
|
||||
/// Maps memory at a given address.
|
||||
///
|
||||
/// @param target The virtual address to map memory at.
|
||||
/// @param size The amount of memory to map.
|
||||
///
|
||||
/// @note The destination address must lie within the Map region.
|
||||
///
|
||||
/// @note This function requires that SystemResourceSize be non-zero,
|
||||
/// however, this is just because if it were not then the
|
||||
/// resulting page tables could be exploited on hardware by
|
||||
/// a malicious program. SystemResource usage does not need
|
||||
/// to be explicitly checked or updated here.
|
||||
ResultCode MapPhysicalMemory(VAddr target, u64 size);
|
||||
|
||||
/// Unmaps memory at a given address.
|
||||
///
|
||||
/// @param target The virtual address to unmap memory at.
|
||||
/// @param size The amount of memory to unmap.
|
||||
///
|
||||
/// @note The destination address must lie within the Map region.
|
||||
///
|
||||
/// @note This function requires that SystemResourceSize be non-zero,
|
||||
/// however, this is just because if it were not then the
|
||||
/// resulting page tables could be exploited on hardware by
|
||||
/// a malicious program. SystemResource usage does not need
|
||||
/// to be explicitly checked or updated here.
|
||||
ResultCode UnmapPhysicalMemory(VAddr target, u64 size);
|
||||
|
||||
/// Maps a region of memory as code memory.
|
||||
///
|
||||
/// @param dst_address The base address of the region to create the aliasing memory region.
|
||||
/// @param src_address The base address of the region to be aliased.
|
||||
/// @param size The total amount of memory to map in bytes.
|
||||
///
|
||||
/// @pre Both memory regions lie within the actual addressable address space.
|
||||
///
|
||||
/// @post After this function finishes execution, assuming success, then the address range
|
||||
/// [dst_address, dst_address+size) will alias the memory region,
|
||||
/// [src_address, src_address+size).
|
||||
/// <p>
|
||||
/// What this also entails is as follows:
|
||||
/// 1. The aliased region gains the Locked memory attribute.
|
||||
/// 2. The aliased region becomes read-only.
|
||||
/// 3. The aliasing region becomes read-only.
|
||||
/// 4. The aliasing region is created with a memory state of MemoryState::CodeModule.
|
||||
///
|
||||
ResultCode MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size);
|
||||
|
||||
/// Unmaps a region of memory designated as code module memory.
|
||||
///
|
||||
/// @param dst_address The base address of the memory region aliasing the source memory region.
|
||||
/// @param src_address The base address of the memory region being aliased.
|
||||
/// @param size The size of the memory region to unmap in bytes.
|
||||
///
|
||||
/// @pre Both memory ranges lie within the actual addressable address space.
|
||||
///
|
||||
/// @pre The memory region being unmapped has been previously been mapped
|
||||
/// by a call to MapCodeMemory.
|
||||
///
|
||||
/// @post After execution of the function, if successful. the aliasing memory region
|
||||
/// will be unmapped and the aliased region will have various traits about it
|
||||
/// restored to what they were prior to the original mapping call preceding
|
||||
/// this function call.
|
||||
/// <p>
|
||||
/// What this also entails is as follows:
|
||||
/// 1. The state of the memory region will now indicate a general heap region.
|
||||
/// 2. All memory attributes for the memory region are cleared.
|
||||
/// 3. Memory permissions for the region are restored to user read/write.
|
||||
///
|
||||
ResultCode UnmapCodeMemory(VAddr dst_address, VAddr src_address, u64 size);
|
||||
|
||||
/// Queries the memory manager for information about the given address.
|
||||
///
|
||||
/// @param address The address to query the memory manager about for information.
|
||||
///
|
||||
/// @return A MemoryInfo instance containing information about the given address.
|
||||
///
|
||||
MemoryInfo QueryMemory(VAddr address) const;
|
||||
|
||||
/// Sets an attribute across the given address range.
|
||||
///
|
||||
/// @param address The starting address
|
||||
/// @param size The size of the range to set the attribute on.
|
||||
/// @param mask The attribute mask
|
||||
/// @param attribute The attribute to set across the given address range
|
||||
///
|
||||
/// @returns RESULT_SUCCESS if successful
|
||||
/// @returns ERR_INVALID_ADDRESS_STATE if the attribute could not be set.
|
||||
///
|
||||
ResultCode SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask,
|
||||
MemoryAttribute attribute);
|
||||
|
||||
/**
|
||||
* Scans all VMAs and updates the page table range of any that use the given vector as backing
|
||||
* memory. This should be called after any operation that causes reallocation of the vector.
|
||||
*/
|
||||
void RefreshMemoryBlockMappings(const PhysicalMemory* block);
|
||||
|
||||
/// Dumps the address space layout to the log, for debugging
|
||||
void LogLayout() const;
|
||||
|
||||
/// Gets the total memory usage, used by svcGetInfo
|
||||
u64 GetTotalPhysicalMemoryAvailable() const;
|
||||
|
||||
/// Gets the address space base address
|
||||
VAddr GetAddressSpaceBaseAddress() const;
|
||||
|
||||
/// Gets the address space end address
|
||||
VAddr GetAddressSpaceEndAddress() const;
|
||||
|
||||
/// Gets the total address space address size in bytes
|
||||
u64 GetAddressSpaceSize() const;
|
||||
|
||||
/// Gets the address space width in bits.
|
||||
u64 GetAddressSpaceWidth() const;
|
||||
|
||||
/// Determines whether or not the given address range lies within the address space.
|
||||
bool IsWithinAddressSpace(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the ASLR region.
|
||||
VAddr GetASLRRegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the ASLR region.
|
||||
VAddr GetASLRRegionEndAddress() const;
|
||||
|
||||
/// Gets the size of the ASLR region
|
||||
u64 GetASLRRegionSize() const;
|
||||
|
||||
/// Determines whether or not the specified address range is within the ASLR region.
|
||||
bool IsWithinASLRRegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the code region.
|
||||
VAddr GetCodeRegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the code region.
|
||||
VAddr GetCodeRegionEndAddress() const;
|
||||
|
||||
/// Gets the total size of the code region in bytes.
|
||||
u64 GetCodeRegionSize() const;
|
||||
|
||||
/// Determines whether or not the specified range is within the code region.
|
||||
bool IsWithinCodeRegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the heap region.
|
||||
VAddr GetHeapRegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the heap region;
|
||||
VAddr GetHeapRegionEndAddress() const;
|
||||
|
||||
/// Gets the total size of the heap region in bytes.
|
||||
u64 GetHeapRegionSize() const;
|
||||
|
||||
/// Gets the total size of the current heap in bytes.
|
||||
///
|
||||
/// @note This is the current allocated heap size, not the size
|
||||
/// of the region it's allowed to exist within.
|
||||
///
|
||||
u64 GetCurrentHeapSize() const;
|
||||
|
||||
/// Determines whether or not the specified range is within the heap region.
|
||||
bool IsWithinHeapRegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the map region.
|
||||
VAddr GetMapRegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the map region.
|
||||
VAddr GetMapRegionEndAddress() const;
|
||||
|
||||
/// Gets the total size of the map region in bytes.
|
||||
u64 GetMapRegionSize() const;
|
||||
|
||||
/// Determines whether or not the specified range is within the map region.
|
||||
bool IsWithinMapRegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the stack region.
|
||||
VAddr GetStackRegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the stack region.
|
||||
VAddr GetStackRegionEndAddress() const;
|
||||
|
||||
/// Gets the total size of the stack region in bytes.
|
||||
u64 GetStackRegionSize() const;
|
||||
|
||||
/// Determines whether or not the given address range is within the stack region
|
||||
bool IsWithinStackRegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Gets the base address of the TLS IO region.
|
||||
VAddr GetTLSIORegionBaseAddress() const;
|
||||
|
||||
/// Gets the end address of the TLS IO region.
|
||||
VAddr GetTLSIORegionEndAddress() const;
|
||||
|
||||
/// Gets the total size of the TLS IO region in bytes.
|
||||
u64 GetTLSIORegionSize() const;
|
||||
|
||||
/// Determines if the given address range is within the TLS IO region.
|
||||
bool IsWithinTLSIORegion(VAddr address, u64 size) const;
|
||||
|
||||
/// Each VMManager has its own page table, which is set as the main one when the owning process
|
||||
/// is scheduled.
|
||||
Common::PageTable page_table{Memory::PAGE_BITS};
|
||||
|
||||
using CheckResults = ResultVal<std::tuple<MemoryState, VMAPermission, MemoryAttribute>>;
|
||||
|
||||
/// Checks if an address range adheres to the specified states provided.
|
||||
///
|
||||
/// @param address The starting address of the address range.
|
||||
/// @param size The size of the address range.
|
||||
/// @param state_mask The memory state mask.
|
||||
/// @param state The state to compare the individual VMA states against,
|
||||
/// which is done in the form of: (vma.state & state_mask) != state.
|
||||
/// @param permission_mask The memory permissions mask.
|
||||
/// @param permissions The permission to compare the individual VMA permissions against,
|
||||
/// which is done in the form of:
|
||||
/// (vma.permission & permission_mask) != permission.
|
||||
/// @param attribute_mask The memory attribute mask.
|
||||
/// @param attribute The memory attributes to compare the individual VMA attributes
|
||||
/// against, which is done in the form of:
|
||||
/// (vma.attributes & attribute_mask) != attribute.
|
||||
/// @param ignore_mask The memory attributes to ignore during the check.
|
||||
///
|
||||
/// @returns If successful, returns a tuple containing the memory attributes
|
||||
/// (with ignored bits specified by ignore_mask unset), memory permissions, and
|
||||
/// memory state across the memory range.
|
||||
/// @returns If not successful, returns ERR_INVALID_ADDRESS_STATE.
|
||||
///
|
||||
CheckResults CheckRangeState(VAddr address, u64 size, MemoryState state_mask, MemoryState state,
|
||||
VMAPermission permission_mask, VMAPermission permissions,
|
||||
MemoryAttribute attribute_mask, MemoryAttribute attribute,
|
||||
MemoryAttribute ignore_mask) const;
|
||||
|
||||
private:
|
||||
using VMAIter = VMAMap::iterator;
|
||||
|
||||
/// Converts a VMAHandle to a mutable VMAIter.
|
||||
VMAIter StripIterConstness(const VMAHandle& iter);
|
||||
|
||||
/// Unmaps the given VMA.
|
||||
VMAIter Unmap(VMAIter vma);
|
||||
|
||||
/**
|
||||
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
|
||||
* the appropriate error checking.
|
||||
*/
|
||||
ResultVal<VMAIter> CarveVMA(VAddr base, u64 size);
|
||||
|
||||
/**
|
||||
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
|
||||
* end of the range.
|
||||
*/
|
||||
ResultVal<VMAIter> CarveVMARange(VAddr base, u64 size);
|
||||
|
||||
/**
|
||||
* Splits a VMA in two, at the specified offset.
|
||||
* @returns the right side of the split, with the original iterator becoming the left side.
|
||||
*/
|
||||
VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
|
||||
|
||||
/**
|
||||
* Checks for and merges the specified VMA with adjacent ones if possible.
|
||||
* @returns the merged VMA or the original if no merging was possible.
|
||||
*/
|
||||
VMAIter MergeAdjacent(VMAIter vma);
|
||||
|
||||
/**
|
||||
* Merges two adjacent VMAs.
|
||||
*/
|
||||
void MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right);
|
||||
|
||||
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
|
||||
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
|
||||
|
||||
/// Initializes memory region ranges to adhere to a given address space type.
|
||||
void InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type);
|
||||
|
||||
/// Clears the underlying map and page table.
|
||||
void Clear();
|
||||
|
||||
/// Clears out the VMA map, unmapping any previously mapped ranges.
|
||||
void ClearVMAMap();
|
||||
|
||||
/// Clears out the page table
|
||||
void ClearPageTable();
|
||||
|
||||
/// Gets the amount of memory currently mapped (state != Unmapped) in a range.
|
||||
ResultVal<std::size_t> SizeOfAllocatedVMAsInRange(VAddr address, std::size_t size) const;
|
||||
|
||||
/// Gets the amount of memory unmappable by UnmapPhysicalMemory in a range.
|
||||
ResultVal<std::size_t> SizeOfUnmappablePhysicalMemoryInRange(VAddr address,
|
||||
std::size_t size) const;
|
||||
|
||||
/**
|
||||
* A map covering the entirety of the managed address space, keyed by the `base` field of each
|
||||
* VMA. It must always be modified by splitting or merging VMAs, so that the invariant
|
||||
* `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
|
||||
* merged when possible so that no two similar and adjacent regions exist that have not been
|
||||
* merged.
|
||||
*/
|
||||
VMAMap vma_map;
|
||||
|
||||
u32 address_space_width = 0;
|
||||
VAddr address_space_base = 0;
|
||||
VAddr address_space_end = 0;
|
||||
|
||||
VAddr aslr_region_base = 0;
|
||||
VAddr aslr_region_end = 0;
|
||||
|
||||
VAddr code_region_base = 0;
|
||||
VAddr code_region_end = 0;
|
||||
|
||||
VAddr heap_region_base = 0;
|
||||
VAddr heap_region_end = 0;
|
||||
|
||||
VAddr map_region_base = 0;
|
||||
VAddr map_region_end = 0;
|
||||
|
||||
VAddr stack_region_base = 0;
|
||||
VAddr stack_region_end = 0;
|
||||
|
||||
VAddr tls_io_region_base = 0;
|
||||
VAddr tls_io_region_end = 0;
|
||||
|
||||
// Memory used to back the allocations in the regular heap. A single vector is used to cover
|
||||
// the entire virtual address space extents that bound the allocations, including any holes.
|
||||
// This makes deallocation and reallocation of holes fast and keeps process memory contiguous
|
||||
// in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
|
||||
std::shared_ptr<PhysicalMemory> heap_memory;
|
||||
|
||||
// The end of the currently allocated heap. This is not an inclusive
|
||||
// end of the range. This is essentially 'base_address + current_size'.
|
||||
VAddr heap_end = 0;
|
||||
|
||||
// The current amount of memory mapped via MapPhysicalMemory.
|
||||
// This is used here (and in Nintendo's kernel) only for debugging, and does not impact
|
||||
// any behavior.
|
||||
u64 physical_memory_mapped = 0;
|
||||
|
||||
Core::System& system;
|
||||
};
|
||||
} // namespace Kernel
|
Loading…
Reference in a new issue