Slightly refactor NVDEC and codecs for readability and safety

This commit is contained in:
Kelebek1 2021-06-29 05:54:54 +01:00
parent 4df04ad48a
commit 208a04dcff
10 changed files with 544 additions and 378 deletions

View file

@ -103,8 +103,7 @@ void CDmaPusher::ExecuteCommand(u32 state_offset, u32 data) {
case ThiMethod::SetMethod1: case ThiMethod::SetMethod1:
LOG_DEBUG(Service_NVDRV, "NVDEC method 0x{:X}", LOG_DEBUG(Service_NVDRV, "NVDEC method 0x{:X}",
static_cast<u32>(nvdec_thi_state.method_0)); static_cast<u32>(nvdec_thi_state.method_0));
nvdec_processor->ProcessMethod(static_cast<Nvdec::Method>(nvdec_thi_state.method_0), nvdec_processor->ProcessMethod(nvdec_thi_state.method_0, data);
data);
break; break;
default: default:
break; break;

View file

@ -23,8 +23,8 @@ void AVFrameDeleter(AVFrame* ptr) {
av_free(ptr); av_free(ptr);
} }
Codec::Codec(GPU& gpu_) Codec::Codec(GPU& gpu_, const NvdecCommon::NvdecRegisters& regs)
: gpu(gpu_), h264_decoder(std::make_unique<Decoder::H264>(gpu)), : gpu(gpu_), state{regs}, h264_decoder(std::make_unique<Decoder::H264>(gpu)),
vp9_decoder(std::make_unique<Decoder::VP9>(gpu)) {} vp9_decoder(std::make_unique<Decoder::VP9>(gpu)) {}
Codec::~Codec() { Codec::~Codec() {
@ -43,30 +43,19 @@ Codec::~Codec() {
avcodec_close(av_codec_ctx); avcodec_close(av_codec_ctx);
} }
void Codec::SetTargetCodec(NvdecCommon::VideoCodec codec) { void Codec::Initialize() {
if (current_codec != codec) { AVCodecID codec{AV_CODEC_ID_NONE};
LOG_INFO(Service_NVDRV, "NVDEC video codec initialized to {}", static_cast<u32>(codec)); switch (current_codec) {
current_codec = codec; case NvdecCommon::VideoCodec::H264:
} codec = AV_CODEC_ID_H264;
} break;
case NvdecCommon::VideoCodec::Vp9:
void Codec::StateWrite(u32 offset, u64 arguments) { codec = AV_CODEC_ID_VP9;
u8* const state_offset = reinterpret_cast<u8*>(&state) + offset * sizeof(u64); break;
std::memcpy(state_offset, &arguments, sizeof(u64)); default:
}
void Codec::Decode() {
bool is_first_frame = false;
if (!initialized) {
if (current_codec == NvdecCommon::VideoCodec::H264) {
av_codec = avcodec_find_decoder(AV_CODEC_ID_H264);
} else if (current_codec == NvdecCommon::VideoCodec::Vp9) {
av_codec = avcodec_find_decoder(AV_CODEC_ID_VP9);
} else {
LOG_ERROR(Service_NVDRV, "Unknown video codec {}", current_codec);
return; return;
} }
av_codec = avcodec_find_decoder(codec);
av_codec_ctx = avcodec_alloc_context3(av_codec); av_codec_ctx = avcodec_alloc_context3(av_codec);
av_opt_set(av_codec_ctx->priv_data, "tune", "zerolatency", 0); av_opt_set(av_codec_ctx->priv_data, "tune", "zerolatency", 0);
@ -79,10 +68,23 @@ void Codec::Decode() {
return; return;
} }
initialized = true; initialized = true;
is_first_frame = true; return;
} }
bool vp9_hidden_frame = false;
void Codec::SetTargetCodec(NvdecCommon::VideoCodec codec) {
if (current_codec != codec) {
current_codec = codec;
LOG_INFO(Service_NVDRV, "NVDEC video codec initialized to {}", GetCurrentCodecName());
}
}
void Codec::Decode() {
const bool is_first_frame = !initialized;
if (!initialized) {
Initialize();
}
bool vp9_hidden_frame = false;
AVPacket packet{}; AVPacket packet{};
av_init_packet(&packet); av_init_packet(&packet);
std::vector<u8> frame_data; std::vector<u8> frame_data;
@ -95,7 +97,7 @@ void Codec::Decode() {
} }
packet.data = frame_data.data(); packet.data = frame_data.data();
packet.size = static_cast<int>(frame_data.size()); packet.size = static_cast<s32>(frame_data.size());
avcodec_send_packet(av_codec_ctx, &packet); avcodec_send_packet(av_codec_ctx, &packet);
@ -127,4 +129,21 @@ NvdecCommon::VideoCodec Codec::GetCurrentCodec() const {
return current_codec; return current_codec;
} }
std::string_view Codec::GetCurrentCodecName() const {
switch (current_codec) {
case NvdecCommon::VideoCodec::None:
return "None";
case NvdecCommon::VideoCodec::H264:
return "H264";
case NvdecCommon::VideoCodec::Vp8:
return "VP8";
case NvdecCommon::VideoCodec::H265:
return "H265";
case NvdecCommon::VideoCodec::Vp9:
return "VP9";
default:
return "Unknown";
}
};
} // namespace Tegra } // namespace Tegra

View file

@ -42,15 +42,15 @@ class VP9;
class Codec { class Codec {
public: public:
explicit Codec(GPU& gpu); explicit Codec(GPU& gpu, const NvdecCommon::NvdecRegisters& regs);
~Codec(); ~Codec();
/// Initialize the codec, returning success or failure
void Initialize();
/// Sets NVDEC video stream codec /// Sets NVDEC video stream codec
void SetTargetCodec(NvdecCommon::VideoCodec codec); void SetTargetCodec(NvdecCommon::VideoCodec codec);
/// Populate NvdecRegisters state with argument value at the provided offset
void StateWrite(u32 offset, u64 arguments);
/// Call decoders to construct headers, decode AVFrame with ffmpeg /// Call decoders to construct headers, decode AVFrame with ffmpeg
void Decode(); void Decode();
@ -59,6 +59,8 @@ public:
/// Returns the value of current_codec /// Returns the value of current_codec
[[nodiscard]] NvdecCommon::VideoCodec GetCurrentCodec() const; [[nodiscard]] NvdecCommon::VideoCodec GetCurrentCodec() const;
/// Return name of the current codec
[[nodiscard]] std::string_view GetCurrentCodecName() const;
private: private:
bool initialized{}; bool initialized{};
@ -68,10 +70,10 @@ private:
AVCodecContext* av_codec_ctx{nullptr}; AVCodecContext* av_codec_ctx{nullptr};
GPU& gpu; GPU& gpu;
const NvdecCommon::NvdecRegisters& state;
std::unique_ptr<Decoder::H264> h264_decoder; std::unique_ptr<Decoder::H264> h264_decoder;
std::unique_ptr<Decoder::VP9> vp9_decoder; std::unique_ptr<Decoder::VP9> vp9_decoder;
NvdecCommon::NvdecRegisters state{};
std::queue<AVFramePtr> av_frames{}; std::queue<AVFramePtr> av_frames{};
}; };

View file

@ -45,16 +45,17 @@ H264::~H264() = default;
const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegisters& state, const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegisters& state,
bool is_first_frame) { bool is_first_frame) {
H264DecoderContext context{}; H264DecoderContext context;
gpu.MemoryManager().ReadBlock(state.picture_info_offset, &context, sizeof(H264DecoderContext)); gpu.MemoryManager().ReadBlock(state.picture_info_offset, &context, sizeof(H264DecoderContext));
const s32 frame_number = static_cast<s32>((context.h264_parameter_set.flags >> 46) & 0x1ffff); const s64 frame_number = context.h264_parameter_set.frame_number.Value();
if (!is_first_frame && frame_number != 0) { if (!is_first_frame && frame_number != 0) {
frame.resize(context.frame_data_size); frame.resize(context.stream_len);
gpu.MemoryManager().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size()); gpu.MemoryManager().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size());
} else { return frame;
/// Encode header }
// Encode header
H264BitWriter writer{}; H264BitWriter writer{};
writer.WriteU(1, 24); writer.WriteU(1, 24);
writer.WriteU(0, 1); writer.WriteU(0, 1);
@ -64,8 +65,8 @@ const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegister
writer.WriteU(0, 8); writer.WriteU(0, 8);
writer.WriteU(31, 8); writer.WriteU(31, 8);
writer.WriteUe(0); writer.WriteUe(0);
const auto chroma_format_idc = const u32 chroma_format_idc =
static_cast<u32>((context.h264_parameter_set.flags >> 12) & 3); static_cast<u32>(context.h264_parameter_set.chroma_format_idc.Value());
writer.WriteUe(chroma_format_idc); writer.WriteUe(chroma_format_idc);
if (chroma_format_idc == 3) { if (chroma_format_idc == 3) {
writer.WriteBit(false); writer.WriteBit(false);
@ -76,11 +77,13 @@ const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegister
writer.WriteBit(false); // QpprimeYZeroTransformBypassFlag writer.WriteBit(false); // QpprimeYZeroTransformBypassFlag
writer.WriteBit(false); // Scaling matrix present flag writer.WriteBit(false); // Scaling matrix present flag
const auto order_cnt_type = static_cast<u32>((context.h264_parameter_set.flags >> 14) & 3); writer.WriteUe(static_cast<u32>(context.h264_parameter_set.log2_max_frame_num_minus4.Value()));
writer.WriteUe(static_cast<u32>((context.h264_parameter_set.flags >> 8) & 0xf));
const auto order_cnt_type =
static_cast<u32>(context.h264_parameter_set.pic_order_cnt_type.Value());
writer.WriteUe(order_cnt_type); writer.WriteUe(order_cnt_type);
if (order_cnt_type == 0) { if (order_cnt_type == 0) {
writer.WriteUe(context.h264_parameter_set.log2_max_pic_order_cnt); writer.WriteUe(context.h264_parameter_set.log2_max_pic_order_cnt_lsb_minus4);
} else if (order_cnt_type == 1) { } else if (order_cnt_type == 1) {
writer.WriteBit(context.h264_parameter_set.delta_pic_order_always_zero_flag != 0); writer.WriteBit(context.h264_parameter_set.delta_pic_order_always_zero_flag != 0);
@ -89,7 +92,7 @@ const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegister
writer.WriteUe(0); writer.WriteUe(0);
} }
const s32 pic_height = context.h264_parameter_set.pic_height_in_map_units / const s32 pic_height = context.h264_parameter_set.frame_height_in_map_units /
(context.h264_parameter_set.frame_mbs_only_flag ? 1 : 2); (context.h264_parameter_set.frame_mbs_only_flag ? 1 : 2);
writer.WriteUe(16); writer.WriteUe(16);
@ -99,10 +102,10 @@ const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegister
writer.WriteBit(context.h264_parameter_set.frame_mbs_only_flag != 0); writer.WriteBit(context.h264_parameter_set.frame_mbs_only_flag != 0);
if (!context.h264_parameter_set.frame_mbs_only_flag) { if (!context.h264_parameter_set.frame_mbs_only_flag) {
writer.WriteBit(((context.h264_parameter_set.flags >> 0) & 1) != 0); writer.WriteBit(context.h264_parameter_set.flags.mbaff_frame.Value() != 0);
} }
writer.WriteBit(((context.h264_parameter_set.flags >> 1) & 1) != 0); writer.WriteBit(context.h264_parameter_set.flags.direct_8x8_inference.Value() != 0);
writer.WriteBit(false); // Frame cropping flag writer.WriteBit(false); // Frame cropping flag
writer.WriteBit(false); // VUI parameter present flag writer.WriteBit(false); // VUI parameter present flag
@ -122,57 +125,49 @@ const std::vector<u8>& H264::ComposeFrameHeader(const NvdecCommon::NvdecRegister
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteUe(context.h264_parameter_set.num_refidx_l0_default_active); writer.WriteUe(context.h264_parameter_set.num_refidx_l0_default_active);
writer.WriteUe(context.h264_parameter_set.num_refidx_l1_default_active); writer.WriteUe(context.h264_parameter_set.num_refidx_l1_default_active);
writer.WriteBit(((context.h264_parameter_set.flags >> 2) & 1) != 0); writer.WriteBit(context.h264_parameter_set.flags.weighted_pred.Value() != 0);
writer.WriteU(static_cast<s32>((context.h264_parameter_set.flags >> 32) & 0x3), 2); writer.WriteU(static_cast<s32>(context.h264_parameter_set.weighted_bipred_idc.Value()), 2);
s32 pic_init_qp = static_cast<s32>((context.h264_parameter_set.flags >> 16) & 0x3f); s32 pic_init_qp = static_cast<s32>(context.h264_parameter_set.pic_init_qp_minus26.Value());
pic_init_qp = (pic_init_qp << 26) >> 26;
writer.WriteSe(pic_init_qp); writer.WriteSe(pic_init_qp);
writer.WriteSe(0); writer.WriteSe(0);
s32 chroma_qp_index_offset = s32 chroma_qp_index_offset =
static_cast<s32>((context.h264_parameter_set.flags >> 22) & 0x1f); static_cast<s32>(context.h264_parameter_set.chroma_qp_index_offset.Value());
chroma_qp_index_offset = (chroma_qp_index_offset << 27) >> 27;
writer.WriteSe(chroma_qp_index_offset); writer.WriteSe(chroma_qp_index_offset);
writer.WriteBit(context.h264_parameter_set.deblocking_filter_control_flag != 0); writer.WriteBit(context.h264_parameter_set.deblocking_filter_control_present_flag != 0);
writer.WriteBit(((context.h264_parameter_set.flags >> 3) & 1) != 0); writer.WriteBit(context.h264_parameter_set.flags.constrained_intra_pred.Value() != 0);
writer.WriteBit(context.h264_parameter_set.redundant_pic_count_flag != 0); writer.WriteBit(context.h264_parameter_set.redundant_pic_cnt_present_flag != 0);
writer.WriteBit(context.h264_parameter_set.transform_8x8_mode_flag != 0); writer.WriteBit(context.h264_parameter_set.transform_8x8_mode_flag != 0);
writer.WriteBit(true); writer.WriteBit(true);
for (s32 index = 0; index < 6; index++) { for (s32 index = 0; index < 6; index++) {
writer.WriteBit(true); writer.WriteBit(true);
const auto matrix_x4 = std::span<const u8> matrix{context.weight_scale};
std::vector<u8>(context.scaling_matrix_4.begin(), context.scaling_matrix_4.end()); writer.WriteScalingList(matrix, index * 16, 16);
writer.WriteScalingList(matrix_x4, index * 16, 16);
} }
if (context.h264_parameter_set.transform_8x8_mode_flag) { if (context.h264_parameter_set.transform_8x8_mode_flag) {
for (s32 index = 0; index < 2; index++) { for (s32 index = 0; index < 2; index++) {
writer.WriteBit(true); writer.WriteBit(true);
const auto matrix_x8 = std::vector<u8>(context.scaling_matrix_8.begin(), std::span<const u8> matrix{context.weight_scale_8x8};
context.scaling_matrix_8.end()); writer.WriteScalingList(matrix, index * 64, 64);
writer.WriteScalingList(matrix_x8, index * 64, 64);
} }
} }
s32 chroma_qp_index_offset2 = s32 chroma_qp_index_offset2 =
static_cast<s32>((context.h264_parameter_set.flags >> 27) & 0x1f); static_cast<s32>(context.h264_parameter_set.second_chroma_qp_index_offset.Value());
chroma_qp_index_offset2 = (chroma_qp_index_offset2 << 27) >> 27;
writer.WriteSe(chroma_qp_index_offset2); writer.WriteSe(chroma_qp_index_offset2);
writer.End(); writer.End();
const auto& encoded_header = writer.GetByteArray(); const auto& encoded_header = writer.GetByteArray();
frame.resize(encoded_header.size() + context.frame_data_size); frame.resize(encoded_header.size() + context.stream_len);
std::memcpy(frame.data(), encoded_header.data(), encoded_header.size()); std::memcpy(frame.data(), encoded_header.data(), encoded_header.size());
gpu.MemoryManager().ReadBlock(state.frame_bitstream_offset, gpu.MemoryManager().ReadBlock(state.frame_bitstream_offset,
frame.data() + encoded_header.size(), frame.data() + encoded_header.size(), context.stream_len);
context.frame_data_size);
}
return frame; return frame;
} }
@ -202,7 +197,7 @@ void H264BitWriter::WriteBit(bool state) {
WriteBits(state ? 1 : 0, 1); WriteBits(state ? 1 : 0, 1);
} }
void H264BitWriter::WriteScalingList(const std::vector<u8>& list, s32 start, s32 count) { void H264BitWriter::WriteScalingList(std::span<const u8> list, s32 start, s32 count) {
std::vector<u8> scan(count); std::vector<u8> scan(count);
if (count == 16) { if (count == 16) {
std::memcpy(scan.data(), zig_zag_scan.data(), scan.size()); std::memcpy(scan.data(), zig_zag_scan.data(), scan.size());

View file

@ -20,7 +20,9 @@
#pragma once #pragma once
#include <span>
#include <vector> #include <vector>
#include "common/bit_field.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/command_classes/nvdec_common.h" #include "video_core/command_classes/nvdec_common.h"
@ -48,7 +50,7 @@ public:
/// Based on section 7.3.2.1.1.1 and Table 7-4 in the H.264 specification /// Based on section 7.3.2.1.1.1 and Table 7-4 in the H.264 specification
/// Writes the scaling matrices of the sream /// Writes the scaling matrices of the sream
void WriteScalingList(const std::vector<u8>& list, s32 start, s32 count); void WriteScalingList(std::span<const u8> list, s32 start, s32 count);
/// Return the bitstream as a vector. /// Return the bitstream as a vector.
[[nodiscard]] std::vector<u8>& GetByteArray(); [[nodiscard]] std::vector<u8>& GetByteArray();
@ -78,40 +80,110 @@ public:
const NvdecCommon::NvdecRegisters& state, bool is_first_frame = false); const NvdecCommon::NvdecRegisters& state, bool is_first_frame = false);
private: private:
struct H264ParameterSet {
u32 log2_max_pic_order_cnt{};
u32 delta_pic_order_always_zero_flag{};
u32 frame_mbs_only_flag{};
u32 pic_width_in_mbs{};
u32 pic_height_in_map_units{};
INSERT_PADDING_WORDS(1);
u32 entropy_coding_mode_flag{};
u32 bottom_field_pic_order_flag{};
u32 num_refidx_l0_default_active{};
u32 num_refidx_l1_default_active{};
u32 deblocking_filter_control_flag{};
u32 redundant_pic_count_flag{};
u32 transform_8x8_mode_flag{};
INSERT_PADDING_WORDS(9);
u64 flags{};
u32 frame_number{};
u32 frame_number2{};
};
static_assert(sizeof(H264ParameterSet) == 0x68, "H264ParameterSet is an invalid size");
struct H264DecoderContext {
INSERT_PADDING_BYTES(0x48);
u32 frame_data_size{};
INSERT_PADDING_BYTES(0xc);
H264ParameterSet h264_parameter_set{};
INSERT_PADDING_BYTES(0x100);
std::array<u8, 0x60> scaling_matrix_4;
std::array<u8, 0x80> scaling_matrix_8;
};
static_assert(sizeof(H264DecoderContext) == 0x2a0, "H264DecoderContext is an invalid size");
std::vector<u8> frame; std::vector<u8> frame;
GPU& gpu; GPU& gpu;
struct H264ParameterSet {
s32 log2_max_pic_order_cnt_lsb_minus4; ///< 0x00
s32 delta_pic_order_always_zero_flag; ///< 0x04
s32 frame_mbs_only_flag; ///< 0x08
u32 pic_width_in_mbs; ///< 0x0C
u32 frame_height_in_map_units; ///< 0x10
union { ///< 0x14
BitField<0, 2, u32> tile_format;
BitField<2, 3, u32> gob_height;
};
u32 entropy_coding_mode_flag; ///< 0x18
s32 pic_order_present_flag; ///< 0x1C
s32 num_refidx_l0_default_active; ///< 0x20
s32 num_refidx_l1_default_active; ///< 0x24
s32 deblocking_filter_control_present_flag; ///< 0x28
s32 redundant_pic_cnt_present_flag; ///< 0x2C
u32 transform_8x8_mode_flag; ///< 0x30
u32 pitch_luma; ///< 0x34
u32 pitch_chroma; ///< 0x38
u32 luma_top_offset; ///< 0x3C
u32 luma_bot_offset; ///< 0x40
u32 luma_frame_offset; ///< 0x44
u32 chroma_top_offset; ///< 0x48
u32 chroma_bot_offset; ///< 0x4C
u32 chroma_frame_offset; ///< 0x50
u32 hist_buffer_size; ///< 0x54
union { ///< 0x58
union {
BitField<0, 1, u64> mbaff_frame;
BitField<1, 1, u64> direct_8x8_inference;
BitField<2, 1, u64> weighted_pred;
BitField<3, 1, u64> constrained_intra_pred;
BitField<4, 1, u64> ref_pic;
BitField<5, 1, u64> field_pic;
BitField<6, 1, u64> bottom_field;
BitField<7, 1, u64> second_field;
} flags;
BitField<8, 4, u64> log2_max_frame_num_minus4;
BitField<12, 2, u64> chroma_format_idc;
BitField<14, 2, u64> pic_order_cnt_type;
BitField<16, 6, s64> pic_init_qp_minus26;
BitField<22, 5, s64> chroma_qp_index_offset;
BitField<27, 5, s64> second_chroma_qp_index_offset;
BitField<32, 2, u64> weighted_bipred_idc;
BitField<34, 7, u64> curr_pic_idx;
BitField<41, 5, u64> curr_col_idx;
BitField<46, 16, u64> frame_number;
BitField<62, 1, u64> frame_surfaces;
BitField<63, 1, u64> output_memory_layout;
};
};
static_assert(sizeof(H264ParameterSet) == 0x60, "H264ParameterSet is an invalid size");
struct H264DecoderContext {
INSERT_PADDING_WORDS_NOINIT(18); ///< 0x0000
u32 stream_len; ///< 0x0048
INSERT_PADDING_WORDS_NOINIT(3); ///< 0x004C
H264ParameterSet h264_parameter_set; ///< 0x0058
INSERT_PADDING_WORDS_NOINIT(66); ///< 0x00B8
std::array<u8, 0x60> weight_scale; ///< 0x01C0
std::array<u8, 0x80> weight_scale_8x8; ///< 0x0220
};
static_assert(sizeof(H264DecoderContext) == 0x2A0, "H264DecoderContext is an invalid size");
#define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(H264ParameterSet, field_name) == position, \
"Field " #field_name " has invalid position")
ASSERT_POSITION(log2_max_pic_order_cnt_lsb_minus4, 0x00);
ASSERT_POSITION(delta_pic_order_always_zero_flag, 0x04);
ASSERT_POSITION(frame_mbs_only_flag, 0x08);
ASSERT_POSITION(pic_width_in_mbs, 0x0C);
ASSERT_POSITION(frame_height_in_map_units, 0x10);
ASSERT_POSITION(tile_format, 0x14);
ASSERT_POSITION(entropy_coding_mode_flag, 0x18);
ASSERT_POSITION(pic_order_present_flag, 0x1C);
ASSERT_POSITION(num_refidx_l0_default_active, 0x20);
ASSERT_POSITION(num_refidx_l1_default_active, 0x24);
ASSERT_POSITION(deblocking_filter_control_present_flag, 0x28);
ASSERT_POSITION(redundant_pic_cnt_present_flag, 0x2C);
ASSERT_POSITION(transform_8x8_mode_flag, 0x30);
ASSERT_POSITION(pitch_luma, 0x34);
ASSERT_POSITION(pitch_chroma, 0x38);
ASSERT_POSITION(luma_top_offset, 0x3C);
ASSERT_POSITION(luma_bot_offset, 0x40);
ASSERT_POSITION(luma_frame_offset, 0x44);
ASSERT_POSITION(chroma_top_offset, 0x48);
ASSERT_POSITION(chroma_bot_offset, 0x4C);
ASSERT_POSITION(chroma_frame_offset, 0x50);
ASSERT_POSITION(hist_buffer_size, 0x54);
ASSERT_POSITION(flags, 0x58);
#undef ASSERT_POSITION
#define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(H264DecoderContext, field_name) == position, \
"Field " #field_name " has invalid position")
ASSERT_POSITION(stream_len, 0x48);
ASSERT_POSITION(h264_parameter_set, 0x58);
ASSERT_POSITION(weight_scale, 0x1C0);
#undef ASSERT_POSITION
}; };
} // namespace Decoder } // namespace Decoder

View file

@ -354,7 +354,7 @@ void VP9::WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_
} }
Vp9PictureInfo VP9::GetVp9PictureInfo(const NvdecCommon::NvdecRegisters& state) { Vp9PictureInfo VP9::GetVp9PictureInfo(const NvdecCommon::NvdecRegisters& state) {
PictureInfo picture_info{}; PictureInfo picture_info;
gpu.MemoryManager().ReadBlock(state.picture_info_offset, &picture_info, sizeof(PictureInfo)); gpu.MemoryManager().ReadBlock(state.picture_info_offset, &picture_info, sizeof(PictureInfo));
Vp9PictureInfo vp9_info = picture_info.Convert(); Vp9PictureInfo vp9_info = picture_info.Convert();
@ -370,7 +370,7 @@ Vp9PictureInfo VP9::GetVp9PictureInfo(const NvdecCommon::NvdecRegisters& state)
} }
void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) { void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) {
EntropyProbs entropy{}; EntropyProbs entropy;
gpu.MemoryManager().ReadBlock(offset, &entropy, sizeof(EntropyProbs)); gpu.MemoryManager().ReadBlock(offset, &entropy, sizeof(EntropyProbs));
entropy.Convert(dst); entropy.Convert(dst);
} }

View file

@ -15,10 +15,10 @@ class GPU;
namespace Decoder { namespace Decoder {
struct Vp9FrameDimensions { struct Vp9FrameDimensions {
s16 width{}; s16 width;
s16 height{}; s16 height;
s16 luma_pitch{}; s16 luma_pitch;
s16 chroma_pitch{}; s16 chroma_pitch;
}; };
static_assert(sizeof(Vp9FrameDimensions) == 0x8, "Vp9 Vp9FrameDimensions is an invalid size"); static_assert(sizeof(Vp9FrameDimensions) == 0x8, "Vp9 Vp9FrameDimensions is an invalid size");
@ -49,87 +49,87 @@ enum class TxMode {
}; };
struct Segmentation { struct Segmentation {
u8 enabled{}; u8 enabled;
u8 update_map{}; u8 update_map;
u8 temporal_update{}; u8 temporal_update;
u8 abs_delta{}; u8 abs_delta;
std::array<u32, 8> feature_mask{}; std::array<u32, 8> feature_mask;
std::array<std::array<s16, 4>, 8> feature_data{}; std::array<std::array<s16, 4>, 8> feature_data;
}; };
static_assert(sizeof(Segmentation) == 0x64, "Segmentation is an invalid size"); static_assert(sizeof(Segmentation) == 0x64, "Segmentation is an invalid size");
struct LoopFilter { struct LoopFilter {
u8 mode_ref_delta_enabled{}; u8 mode_ref_delta_enabled;
std::array<s8, 4> ref_deltas{}; std::array<s8, 4> ref_deltas;
std::array<s8, 2> mode_deltas{}; std::array<s8, 2> mode_deltas;
}; };
static_assert(sizeof(LoopFilter) == 0x7, "LoopFilter is an invalid size"); static_assert(sizeof(LoopFilter) == 0x7, "LoopFilter is an invalid size");
struct Vp9EntropyProbs { struct Vp9EntropyProbs {
std::array<u8, 36> y_mode_prob{}; std::array<u8, 36> y_mode_prob; ///< 0x0000
std::array<u8, 64> partition_prob{}; std::array<u8, 64> partition_prob; ///< 0x0024
std::array<u8, 1728> coef_probs{}; std::array<u8, 1728> coef_probs; ///< 0x0064
std::array<u8, 8> switchable_interp_prob{}; std::array<u8, 8> switchable_interp_prob; ///< 0x0724
std::array<u8, 28> inter_mode_prob{}; std::array<u8, 28> inter_mode_prob; ///< 0x072C
std::array<u8, 4> intra_inter_prob{}; std::array<u8, 4> intra_inter_prob; ///< 0x0748
std::array<u8, 5> comp_inter_prob{}; std::array<u8, 5> comp_inter_prob; ///< 0x074C
std::array<u8, 10> single_ref_prob{}; std::array<u8, 10> single_ref_prob; ///< 0x0751
std::array<u8, 5> comp_ref_prob{}; std::array<u8, 5> comp_ref_prob; ///< 0x075B
std::array<u8, 6> tx_32x32_prob{}; std::array<u8, 6> tx_32x32_prob; ///< 0x0760
std::array<u8, 4> tx_16x16_prob{}; std::array<u8, 4> tx_16x16_prob; ///< 0x0766
std::array<u8, 2> tx_8x8_prob{}; std::array<u8, 2> tx_8x8_prob; ///< 0x076A
std::array<u8, 3> skip_probs{}; std::array<u8, 3> skip_probs; ///< 0x076C
std::array<u8, 3> joints{}; std::array<u8, 3> joints; ///< 0x076F
std::array<u8, 2> sign{}; std::array<u8, 2> sign; ///< 0x0772
std::array<u8, 20> classes{}; std::array<u8, 20> classes; ///< 0x0774
std::array<u8, 2> class_0{}; std::array<u8, 2> class_0; ///< 0x0788
std::array<u8, 20> prob_bits{}; std::array<u8, 20> prob_bits; ///< 0x078A
std::array<u8, 12> class_0_fr{}; std::array<u8, 12> class_0_fr; ///< 0x079E
std::array<u8, 6> fr{}; std::array<u8, 6> fr; ///< 0x07AA
std::array<u8, 2> class_0_hp{}; std::array<u8, 2> class_0_hp; ///< 0x07B0
std::array<u8, 2> high_precision{}; std::array<u8, 2> high_precision; ///< 0x07B2
}; };
static_assert(sizeof(Vp9EntropyProbs) == 0x7B4, "Vp9EntropyProbs is an invalid size"); static_assert(sizeof(Vp9EntropyProbs) == 0x7B4, "Vp9EntropyProbs is an invalid size");
struct Vp9PictureInfo { struct Vp9PictureInfo {
bool is_key_frame{}; bool is_key_frame;
bool intra_only{}; bool intra_only;
bool last_frame_was_key{}; bool last_frame_was_key;
bool frame_size_changed{}; bool frame_size_changed;
bool error_resilient_mode{}; bool error_resilient_mode;
bool last_frame_shown{}; bool last_frame_shown;
bool show_frame{}; bool show_frame;
std::array<s8, 4> ref_frame_sign_bias{}; std::array<s8, 4> ref_frame_sign_bias;
s32 base_q_index{}; s32 base_q_index;
s32 y_dc_delta_q{}; s32 y_dc_delta_q;
s32 uv_dc_delta_q{}; s32 uv_dc_delta_q;
s32 uv_ac_delta_q{}; s32 uv_ac_delta_q;
bool lossless{}; bool lossless;
s32 transform_mode{}; s32 transform_mode;
bool allow_high_precision_mv{}; bool allow_high_precision_mv;
s32 interp_filter{}; s32 interp_filter;
s32 reference_mode{}; s32 reference_mode;
s8 comp_fixed_ref{}; s8 comp_fixed_ref;
std::array<s8, 2> comp_var_ref{}; std::array<s8, 2> comp_var_ref;
s32 log2_tile_cols{}; s32 log2_tile_cols;
s32 log2_tile_rows{}; s32 log2_tile_rows;
bool segment_enabled{}; bool segment_enabled;
bool segment_map_update{}; bool segment_map_update;
bool segment_map_temporal_update{}; bool segment_map_temporal_update;
s32 segment_abs_delta{}; s32 segment_abs_delta;
std::array<u32, 8> segment_feature_enable{}; std::array<u32, 8> segment_feature_enable;
std::array<std::array<s16, 4>, 8> segment_feature_data{}; std::array<std::array<s16, 4>, 8> segment_feature_data;
bool mode_ref_delta_enabled{}; bool mode_ref_delta_enabled;
bool use_prev_in_find_mv_refs{}; bool use_prev_in_find_mv_refs;
std::array<s8, 4> ref_deltas{}; std::array<s8, 4> ref_deltas;
std::array<s8, 2> mode_deltas{}; std::array<s8, 2> mode_deltas;
Vp9EntropyProbs entropy{}; Vp9EntropyProbs entropy;
Vp9FrameDimensions frame_size{}; Vp9FrameDimensions frame_size;
u8 first_level{}; u8 first_level;
u8 sharpness_level{}; u8 sharpness_level;
u32 bitstream_size{}; u32 bitstream_size;
std::array<u64, 4> frame_offsets{}; std::array<u64, 4> frame_offsets;
std::array<bool, 4> refresh_frame{}; std::array<bool, 4> refresh_frame;
}; };
struct Vp9FrameContainer { struct Vp9FrameContainer {
@ -138,35 +138,35 @@ struct Vp9FrameContainer {
}; };
struct PictureInfo { struct PictureInfo {
INSERT_PADDING_WORDS(12); INSERT_PADDING_WORDS_NOINIT(12); ///< 0x00
u32 bitstream_size{}; u32 bitstream_size; ///< 0x30
INSERT_PADDING_WORDS(5); INSERT_PADDING_WORDS_NOINIT(5); ///< 0x34
Vp9FrameDimensions last_frame_size{}; Vp9FrameDimensions last_frame_size; ///< 0x48
Vp9FrameDimensions golden_frame_size{}; Vp9FrameDimensions golden_frame_size; ///< 0x50
Vp9FrameDimensions alt_frame_size{}; Vp9FrameDimensions alt_frame_size; ///< 0x58
Vp9FrameDimensions current_frame_size{}; Vp9FrameDimensions current_frame_size; ///< 0x60
u32 vp9_flags{}; u32 vp9_flags; ///< 0x68
std::array<s8, 4> ref_frame_sign_bias{}; std::array<s8, 4> ref_frame_sign_bias; ///< 0x6C
u8 first_level{}; u8 first_level; ///< 0x70
u8 sharpness_level{}; u8 sharpness_level; ///< 0x71
u8 base_q_index{}; u8 base_q_index; ///< 0x72
u8 y_dc_delta_q{}; u8 y_dc_delta_q; ///< 0x73
u8 uv_ac_delta_q{}; u8 uv_ac_delta_q; ///< 0x74
u8 uv_dc_delta_q{}; u8 uv_dc_delta_q; ///< 0x75
u8 lossless{}; u8 lossless; ///< 0x76
u8 tx_mode{}; u8 tx_mode; ///< 0x77
u8 allow_high_precision_mv{}; u8 allow_high_precision_mv; ///< 0x78
u8 interp_filter{}; u8 interp_filter; ///< 0x79
u8 reference_mode{}; u8 reference_mode; ///< 0x7A
s8 comp_fixed_ref{}; s8 comp_fixed_ref; ///< 0x7B
std::array<s8, 2> comp_var_ref{}; std::array<s8, 2> comp_var_ref; ///< 0x7C
u8 log2_tile_cols{}; u8 log2_tile_cols; ///< 0x7E
u8 log2_tile_rows{}; u8 log2_tile_rows; ///< 0x7F
Segmentation segmentation{}; Segmentation segmentation; ///< 0x80
LoopFilter loop_filter{}; LoopFilter loop_filter; ///< 0xE4
INSERT_PADDING_BYTES(5); INSERT_PADDING_BYTES_NOINIT(5); ///< 0xEB
u32 surface_params{}; u32 surface_params; ///< 0xF0
INSERT_PADDING_WORDS(3); INSERT_PADDING_WORDS_NOINIT(3); ///< 0xF4
[[nodiscard]] Vp9PictureInfo Convert() const { [[nodiscard]] Vp9PictureInfo Convert() const {
return { return {
@ -176,6 +176,7 @@ struct PictureInfo {
.frame_size_changed = (vp9_flags & FrameFlags::FrameSizeChanged) != 0, .frame_size_changed = (vp9_flags & FrameFlags::FrameSizeChanged) != 0,
.error_resilient_mode = (vp9_flags & FrameFlags::ErrorResilientMode) != 0, .error_resilient_mode = (vp9_flags & FrameFlags::ErrorResilientMode) != 0,
.last_frame_shown = (vp9_flags & FrameFlags::LastShowFrame) != 0, .last_frame_shown = (vp9_flags & FrameFlags::LastShowFrame) != 0,
.show_frame = false,
.ref_frame_sign_bias = ref_frame_sign_bias, .ref_frame_sign_bias = ref_frame_sign_bias,
.base_q_index = base_q_index, .base_q_index = base_q_index,
.y_dc_delta_q = y_dc_delta_q, .y_dc_delta_q = y_dc_delta_q,
@ -204,45 +205,48 @@ struct PictureInfo {
!(vp9_flags == (FrameFlags::LastFrameIsKeyFrame)), !(vp9_flags == (FrameFlags::LastFrameIsKeyFrame)),
.ref_deltas = loop_filter.ref_deltas, .ref_deltas = loop_filter.ref_deltas,
.mode_deltas = loop_filter.mode_deltas, .mode_deltas = loop_filter.mode_deltas,
.entropy{},
.frame_size = current_frame_size, .frame_size = current_frame_size,
.first_level = first_level, .first_level = first_level,
.sharpness_level = sharpness_level, .sharpness_level = sharpness_level,
.bitstream_size = bitstream_size, .bitstream_size = bitstream_size,
.frame_offsets{},
.refresh_frame{},
}; };
} }
}; };
static_assert(sizeof(PictureInfo) == 0x100, "PictureInfo is an invalid size"); static_assert(sizeof(PictureInfo) == 0x100, "PictureInfo is an invalid size");
struct EntropyProbs { struct EntropyProbs {
INSERT_PADDING_BYTES(1024); INSERT_PADDING_BYTES_NOINIT(1024); ///< 0x0000
std::array<u8, 28> inter_mode_prob{}; std::array<u8, 28> inter_mode_prob; ///< 0x0400
std::array<u8, 4> intra_inter_prob{}; std::array<u8, 4> intra_inter_prob; ///< 0x041C
INSERT_PADDING_BYTES(80); INSERT_PADDING_BYTES_NOINIT(80); ///< 0x0420
std::array<u8, 2> tx_8x8_prob{}; std::array<u8, 2> tx_8x8_prob; ///< 0x0470
std::array<u8, 4> tx_16x16_prob{}; std::array<u8, 4> tx_16x16_prob; ///< 0x0472
std::array<u8, 6> tx_32x32_prob{}; std::array<u8, 6> tx_32x32_prob; ///< 0x0476
std::array<u8, 4> y_mode_prob_e8{}; std::array<u8, 4> y_mode_prob_e8; ///< 0x047C
std::array<std::array<u8, 8>, 4> y_mode_prob_e0e7{}; std::array<std::array<u8, 8>, 4> y_mode_prob_e0e7; ///< 0x0480
INSERT_PADDING_BYTES(64); INSERT_PADDING_BYTES_NOINIT(64); ///< 0x04A0
std::array<u8, 64> partition_prob{}; std::array<u8, 64> partition_prob; ///< 0x04E0
INSERT_PADDING_BYTES(10); INSERT_PADDING_BYTES_NOINIT(10); ///< 0x0520
std::array<u8, 8> switchable_interp_prob{}; std::array<u8, 8> switchable_interp_prob; ///< 0x052A
std::array<u8, 5> comp_inter_prob{}; std::array<u8, 5> comp_inter_prob; ///< 0x0532
std::array<u8, 3> skip_probs{}; std::array<u8, 3> skip_probs; ///< 0x0537
INSERT_PADDING_BYTES(1); INSERT_PADDING_BYTES_NOINIT(1); ///< 0x053A
std::array<u8, 3> joints{}; std::array<u8, 3> joints; ///< 0x053B
std::array<u8, 2> sign{}; std::array<u8, 2> sign; ///< 0x053E
std::array<u8, 2> class_0{}; std::array<u8, 2> class_0; ///< 0x0540
std::array<u8, 6> fr{}; std::array<u8, 6> fr; ///< 0x0542
std::array<u8, 2> class_0_hp{}; std::array<u8, 2> class_0_hp; ///< 0x0548
std::array<u8, 2> high_precision{}; std::array<u8, 2> high_precision; ///< 0x054A
std::array<u8, 20> classes{}; std::array<u8, 20> classes; ///< 0x054C
std::array<u8, 12> class_0_fr{}; std::array<u8, 12> class_0_fr; ///< 0x0560
std::array<u8, 20> pred_bits{}; std::array<u8, 20> pred_bits; ///< 0x056C
std::array<u8, 10> single_ref_prob{}; std::array<u8, 10> single_ref_prob; ///< 0x0580
std::array<u8, 5> comp_ref_prob{}; std::array<u8, 5> comp_ref_prob; ///< 0x058A
INSERT_PADDING_BYTES(17); INSERT_PADDING_BYTES_NOINIT(17); ///< 0x058F
std::array<u8, 2304> coef_probs{}; std::array<u8, 2304> coef_probs; ///< 0x05A0
void Convert(Vp9EntropyProbs& fc) { void Convert(Vp9EntropyProbs& fc) {
fc.inter_mode_prob = inter_mode_prob; fc.inter_mode_prob = inter_mode_prob;
@ -293,10 +297,45 @@ struct RefPoolElement {
}; };
struct FrameContexts { struct FrameContexts {
s64 from{}; s64 from;
bool adapted{}; bool adapted;
Vp9EntropyProbs probs{}; Vp9EntropyProbs probs;
}; };
#define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(Vp9EntropyProbs, field_name) == position, \
"Field " #field_name " has invalid position")
ASSERT_POSITION(partition_prob, 0x0024);
ASSERT_POSITION(switchable_interp_prob, 0x0724);
ASSERT_POSITION(sign, 0x0772);
ASSERT_POSITION(class_0_fr, 0x079E);
ASSERT_POSITION(high_precision, 0x07B2);
#undef ASSERT_POSITION
#define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(PictureInfo, field_name) == position, \
"Field " #field_name " has invalid position")
ASSERT_POSITION(bitstream_size, 0x30);
ASSERT_POSITION(last_frame_size, 0x48);
ASSERT_POSITION(first_level, 0x70);
ASSERT_POSITION(segmentation, 0x80);
ASSERT_POSITION(loop_filter, 0xE4);
ASSERT_POSITION(surface_params, 0xF0);
#undef ASSERT_POSITION
#define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(EntropyProbs, field_name) == position, \
"Field " #field_name " has invalid position")
ASSERT_POSITION(inter_mode_prob, 0x400);
ASSERT_POSITION(tx_8x8_prob, 0x470);
ASSERT_POSITION(partition_prob, 0x4E0);
ASSERT_POSITION(class_0, 0x540);
ASSERT_POSITION(class_0_fr, 0x560);
ASSERT_POSITION(coef_probs, 0x5A0);
#undef ASSERT_POSITION
}; // namespace Decoder }; // namespace Decoder
}; // namespace Tegra }; // namespace Tegra

View file

@ -8,22 +8,21 @@
namespace Tegra { namespace Tegra {
Nvdec::Nvdec(GPU& gpu_) : gpu(gpu_), codec(std::make_unique<Codec>(gpu)) {} #define NVDEC_REG_INDEX(field_name) \
(offsetof(NvdecCommon::NvdecRegisters, field_name) / sizeof(u64))
Nvdec::Nvdec(GPU& gpu_) : gpu(gpu_), state{}, codec(std::make_unique<Codec>(gpu, state)) {}
Nvdec::~Nvdec() = default; Nvdec::~Nvdec() = default;
void Nvdec::ProcessMethod(Method method, u32 argument) { void Nvdec::ProcessMethod(u32 method, u32 argument) {
if (method == Method::SetVideoCodec) { state.reg_array[method] = static_cast<u64>(argument) << 8;
codec->StateWrite(static_cast<u32>(method), argument);
} else {
codec->StateWrite(static_cast<u32>(method), static_cast<u64>(argument) << 8);
}
switch (method) { switch (method) {
case Method::SetVideoCodec: case NVDEC_REG_INDEX(set_codec_id):
codec->SetTargetCodec(static_cast<NvdecCommon::VideoCodec>(argument)); codec->SetTargetCodec(static_cast<NvdecCommon::VideoCodec>(argument));
break; break;
case Method::Execute: case NVDEC_REG_INDEX(execute):
Execute(); Execute();
break; break;
} }

View file

@ -14,16 +14,11 @@ class GPU;
class Nvdec { class Nvdec {
public: public:
enum class Method : u32 {
SetVideoCodec = 0x80,
Execute = 0xc0,
};
explicit Nvdec(GPU& gpu); explicit Nvdec(GPU& gpu);
~Nvdec(); ~Nvdec();
/// Writes the method into the state, Invoke Execute() if encountered /// Writes the method into the state, Invoke Execute() if encountered
void ProcessMethod(Method method, u32 argument); void ProcessMethod(u32 method, u32 argument);
/// Return most recently decoded frame /// Return most recently decoded frame
[[nodiscard]] AVFramePtr GetFrame(); [[nodiscard]] AVFramePtr GetFrame();
@ -33,6 +28,7 @@ private:
void Execute(); void Execute();
GPU& gpu; GPU& gpu;
NvdecCommon::NvdecRegisters state;
std::unique_ptr<Codec> codec; std::unique_ptr<Codec> codec;
}; };
} // namespace Tegra } // namespace Tegra

View file

@ -4,40 +4,13 @@
#pragma once #pragma once
#include "common/bit_field.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
namespace Tegra::NvdecCommon { namespace Tegra::NvdecCommon {
struct NvdecRegisters { enum class VideoCodec : u64 {
INSERT_PADDING_WORDS(256);
u64 set_codec_id{};
INSERT_PADDING_WORDS(254);
u64 set_platform_id{};
u64 picture_info_offset{};
u64 frame_bitstream_offset{};
u64 frame_number{};
u64 h264_slice_data_offsets{};
u64 h264_mv_dump_offset{};
INSERT_PADDING_WORDS(6);
u64 frame_stats_offset{};
u64 h264_last_surface_luma_offset{};
u64 h264_last_surface_chroma_offset{};
std::array<u64, 17> surface_luma_offset{};
std::array<u64, 17> surface_chroma_offset{};
INSERT_PADDING_WORDS(132);
u64 vp9_entropy_probs_offset{};
u64 vp9_backward_updates_offset{};
u64 vp9_last_frame_segmap_offset{};
u64 vp9_curr_frame_segmap_offset{};
INSERT_PADDING_WORDS(2);
u64 vp9_last_frame_mvs_offset{};
u64 vp9_curr_frame_mvs_offset{};
INSERT_PADDING_WORDS(2);
};
static_assert(sizeof(NvdecRegisters) == (0xBC0), "NvdecRegisters is incorrect size");
enum class VideoCodec : u32 {
None = 0x0, None = 0x0,
H264 = 0x3, H264 = 0x3,
Vp8 = 0x5, Vp8 = 0x5,
@ -45,4 +18,76 @@ enum class VideoCodec : u32 {
Vp9 = 0x9, Vp9 = 0x9,
}; };
// NVDEC should use a 32-bit address space, but is mapped to 64-bit,
// doubling the sizes here is compensating for that.
struct NvdecRegisters {
static constexpr std::size_t NUM_REGS = 0x178;
union {
struct {
INSERT_PADDING_WORDS_NOINIT(256); ///< 0x0000
VideoCodec set_codec_id; ///< 0x0400
INSERT_PADDING_WORDS_NOINIT(126); ///< 0x0408
u64 execute; ///< 0x0600
INSERT_PADDING_WORDS_NOINIT(126); ///< 0x0608
struct { ///< 0x0800
union {
BitField<0, 3, VideoCodec> codec;
BitField<4, 1, u64> gp_timer_on;
BitField<13, 1, u64> mb_timer_on;
BitField<14, 1, u64> intra_frame_pslc;
BitField<17, 1, u64> all_intra_frame;
};
} control_params;
u64 picture_info_offset; ///< 0x0808
u64 frame_bitstream_offset; ///< 0x0810
u64 frame_number; ///< 0x0818
u64 h264_slice_data_offsets; ///< 0x0820
u64 h264_mv_dump_offset; ///< 0x0828
INSERT_PADDING_WORDS_NOINIT(6); ///< 0x0830
u64 frame_stats_offset; ///< 0x0848
u64 h264_last_surface_luma_offset; ///< 0x0850
u64 h264_last_surface_chroma_offset; ///< 0x0858
std::array<u64, 17> surface_luma_offset; ///< 0x0860
std::array<u64, 17> surface_chroma_offset; ///< 0x08E8
INSERT_PADDING_WORDS_NOINIT(132); ///< 0x0970
u64 vp9_entropy_probs_offset; ///< 0x0B80
u64 vp9_backward_updates_offset; ///< 0x0B88
u64 vp9_last_frame_segmap_offset; ///< 0x0B90
u64 vp9_curr_frame_segmap_offset; ///< 0x0B98
INSERT_PADDING_WORDS_NOINIT(2); ///< 0x0BA0
u64 vp9_last_frame_mvs_offset; ///< 0x0BA8
u64 vp9_curr_frame_mvs_offset; ///< 0x0BB0
INSERT_PADDING_WORDS_NOINIT(2); ///< 0x0BB8
};
std::array<u64, NUM_REGS> reg_array;
};
};
static_assert(sizeof(NvdecRegisters) == (0xBC0), "NvdecRegisters is incorrect size");
#define ASSERT_REG_POSITION(field_name, position) \
static_assert(offsetof(NvdecRegisters, field_name) == position * sizeof(u64), \
"Field " #field_name " has invalid position")
ASSERT_REG_POSITION(set_codec_id, 0x80);
ASSERT_REG_POSITION(execute, 0xC0);
ASSERT_REG_POSITION(control_params, 0x100);
ASSERT_REG_POSITION(picture_info_offset, 0x101);
ASSERT_REG_POSITION(frame_bitstream_offset, 0x102);
ASSERT_REG_POSITION(frame_number, 0x103);
ASSERT_REG_POSITION(h264_slice_data_offsets, 0x104);
ASSERT_REG_POSITION(frame_stats_offset, 0x109);
ASSERT_REG_POSITION(h264_last_surface_luma_offset, 0x10A);
ASSERT_REG_POSITION(h264_last_surface_chroma_offset, 0x10B);
ASSERT_REG_POSITION(surface_luma_offset, 0x10C);
ASSERT_REG_POSITION(surface_chroma_offset, 0x11D);
ASSERT_REG_POSITION(vp9_entropy_probs_offset, 0x170);
ASSERT_REG_POSITION(vp9_backward_updates_offset, 0x171);
ASSERT_REG_POSITION(vp9_last_frame_segmap_offset, 0x172);
ASSERT_REG_POSITION(vp9_curr_frame_segmap_offset, 0x173);
ASSERT_REG_POSITION(vp9_last_frame_mvs_offset, 0x175);
ASSERT_REG_POSITION(vp9_curr_frame_mvs_offset, 0x176);
#undef ASSERT_REG_POSITION
} // namespace Tegra::NvdecCommon } // namespace Tegra::NvdecCommon