fixed licensing issue with core_timing being GPL v2+ instead of Dolphin's GPL v2

This commit is contained in:
bunnei 2014-04-08 19:11:21 -04:00
parent ef7cfa0207
commit 3dc3bd5627
2 changed files with 444 additions and 476 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,22 +1,8 @@
// Copyright (c) 2012- PPSSPP Project / Dolphin Project. // Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// This program is free software: you can redistribute it and/or modify #pragma once
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifndef CORE_CORE_TIMING_H_
#define CORE_CORE_TIMING_H_
// This is a system to schedule events into the emulated machine's future. Time is measured // This is a system to schedule events into the emulated machine's future. Time is measured
// in main CPU clock cycles. // in main CPU clock cycles.
@ -38,88 +24,86 @@ class PointerWrap;
extern int g_clock_rate_arm11; extern int g_clock_rate_arm11;
inline s64 msToCycles(int ms) { inline s64 msToCycles(int ms) {
return g_clock_rate_arm11 / 1000 * ms; return g_clock_rate_arm11 / 1000 * ms;
} }
inline s64 msToCycles(float ms) { inline s64 msToCycles(float ms) {
return (s64)(g_clock_rate_arm11 * ms * (0.001f)); return (s64)(g_clock_rate_arm11 * ms * (0.001f));
} }
inline s64 msToCycles(double ms) { inline s64 msToCycles(double ms) {
return (s64)(g_clock_rate_arm11 * ms * (0.001)); return (s64)(g_clock_rate_arm11 * ms * (0.001));
} }
inline s64 usToCycles(float us) { inline s64 usToCycles(float us) {
return (s64)(g_clock_rate_arm11 * us * (0.000001f)); return (s64)(g_clock_rate_arm11 * us * (0.000001f));
} }
inline s64 usToCycles(int us) { inline s64 usToCycles(int us) {
return (g_clock_rate_arm11 / 1000000 * (s64)us); return (g_clock_rate_arm11 / 1000000 * (s64)us);
} }
inline s64 usToCycles(s64 us) { inline s64 usToCycles(s64 us) {
return (g_clock_rate_arm11 / 1000000 * us); return (g_clock_rate_arm11 / 1000000 * us);
} }
inline s64 usToCycles(u64 us) { inline s64 usToCycles(u64 us) {
return (s64)(g_clock_rate_arm11 / 1000000 * us); return (s64)(g_clock_rate_arm11 / 1000000 * us);
} }
inline s64 cyclesToUs(s64 cycles) { inline s64 cyclesToUs(s64 cycles) {
return cycles / (g_clock_rate_arm11 / 1000000); return cycles / (g_clock_rate_arm11 / 1000000);
} }
namespace CoreTiming namespace CoreTiming {
{
void Init();
void Shutdown();
typedef void (*TimedCallback)(u64 userdata, int cyclesLate); void Init();
void Shutdown();
u64 GetTicks(); typedef void(*TimedCallback)(u64 userdata, int cyclesLate);
u64 GetIdleTicks();
// Returns the event_type identifier. u64 GetTicks();
int RegisterEvent(const char *name, TimedCallback callback); u64 GetIdleTicks();
// For save states.
void RestoreRegisterEvent(int event_type, const char *name, TimedCallback callback);
void UnregisterAllEvents();
// userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from disk, // Returns the event_type identifier.
// when we implement state saves. int RegisterEvent(const char *name, TimedCallback callback);
void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata=0); // For save states.
void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata=0); void RestoreRegisterEvent(int event_type, const char *name, TimedCallback callback);
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata=0); void UnregisterAllEvents();
s64 UnscheduleEvent(int event_type, u64 userdata);
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata);
void RemoveEvent(int event_type); // userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from disk,
void RemoveThreadsafeEvent(int event_type); // when we implement state saves.
void RemoveAllEvents(int event_type); void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata = 0);
bool IsScheduled(int event_type); void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata = 0);
void Advance(); void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata = 0);
void MoveEvents(); s64 UnscheduleEvent(int event_type, u64 userdata);
void ProcessFifoWaitEvents(); s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata);
// Pretend that the main CPU has executed enough cycles to reach the next event. void RemoveEvent(int event_type);
void Idle(int maxIdle = 0); void RemoveThreadsafeEvent(int event_type);
void RemoveAllEvents(int event_type);
bool IsScheduled(int event_type);
void Advance();
void MoveEvents();
void ProcessFifoWaitEvents();
// Clear all pending events. This should ONLY be done on exit or state load. // Pretend that the main CPU has executed enough cycles to reach the next event.
void ClearPendingEvents(); void Idle(int maxIdle = 0);
void LogPendingEvents(); // Clear all pending events. This should ONLY be done on exit or state load.
void ClearPendingEvents();
// Warning: not included in save states. void LogPendingEvents();
void RegisterAdvanceCallback(void (*callback)(int cyclesExecuted));
std::string GetScheduledEventsSummary(); // Warning: not included in save states.
void RegisterAdvanceCallback(void(*callback)(int cyclesExecuted));
void DoState(PointerWrap &p); std::string GetScheduledEventsSummary();
void SetClockFrequencyMHz(int cpuMhz); void DoState(PointerWrap &p);
int GetClockFrequencyMHz();
extern int slicelength; void SetClockFrequencyMHz(int cpuMhz);
int GetClockFrequencyMHz();
extern int slicelength;
}; // namespace }; // namespace
#endif // CORE_CORE_TIMING_H_