mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2024-11-02 13:02:44 +01:00
merge 'dev' into 'metal-dev'
This commit is contained in:
commit
4844961618
8 changed files with 1433 additions and 736 deletions
|
@ -26,6 +26,24 @@ std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callbac
|
|||
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
||||
}
|
||||
|
||||
struct CoreTiming::Event {
|
||||
s64 time;
|
||||
u64 fifo_order;
|
||||
std::weak_ptr<EventType> type;
|
||||
s64 reschedule_time;
|
||||
heap_t::handle_type handle{};
|
||||
|
||||
// Sort by time, unless the times are the same, in which case sort by
|
||||
// the order added to the queue
|
||||
friend bool operator>(const Event& left, const Event& right) {
|
||||
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
||||
}
|
||||
|
||||
friend bool operator<(const Event& left, const Event& right) {
|
||||
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
||||
}
|
||||
};
|
||||
|
||||
CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}
|
||||
|
||||
CoreTiming::~CoreTiming() {
|
||||
|
@ -69,7 +87,7 @@ void CoreTiming::Pause(bool is_paused) {
|
|||
}
|
||||
|
||||
void CoreTiming::SyncPause(bool is_paused) {
|
||||
if (is_paused == paused && paused_set == is_paused) {
|
||||
if (is_paused == paused && paused_set == paused) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -94,7 +112,7 @@ bool CoreTiming::IsRunning() const {
|
|||
|
||||
bool CoreTiming::HasPendingEvents() const {
|
||||
std::scoped_lock lock{basic_lock};
|
||||
return !event_queue.empty();
|
||||
return !(wait_set && event_queue.empty());
|
||||
}
|
||||
|
||||
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
||||
|
@ -103,8 +121,8 @@ void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
|||
std::scoped_lock scope{basic_lock};
|
||||
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
|
||||
|
||||
event_queue.emplace_back(Event{next_time.count(), event_fifo_id++, event_type});
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
auto h{event_queue.emplace(Event{next_time.count(), event_fifo_id++, event_type, 0})};
|
||||
(*h).handle = h;
|
||||
}
|
||||
|
||||
event.Set();
|
||||
|
@ -118,9 +136,9 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
|
|||
std::scoped_lock scope{basic_lock};
|
||||
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
|
||||
|
||||
event_queue.emplace_back(
|
||||
Event{next_time.count(), event_fifo_id++, event_type, resched_time.count()});
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
auto h{event_queue.emplace(
|
||||
Event{next_time.count(), event_fifo_id++, event_type, resched_time.count()})};
|
||||
(*h).handle = h;
|
||||
}
|
||||
|
||||
event.Set();
|
||||
|
@ -131,11 +149,17 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
|||
{
|
||||
std::scoped_lock lk{basic_lock};
|
||||
|
||||
event_queue.erase(
|
||||
std::remove_if(event_queue.begin(), event_queue.end(),
|
||||
[&](const Event& e) { return e.type.lock().get() == event_type.get(); }),
|
||||
event_queue.end());
|
||||
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
std::vector<heap_t::handle_type> to_remove;
|
||||
for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
|
||||
const Event& e = *itr;
|
||||
if (e.type.lock().get() == event_type.get()) {
|
||||
to_remove.push_back(itr->handle);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto& h : to_remove) {
|
||||
event_queue.erase(h);
|
||||
}
|
||||
|
||||
event_type->sequence_number++;
|
||||
}
|
||||
|
@ -148,7 +172,7 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
|||
|
||||
void CoreTiming::AddTicks(u64 ticks_to_add) {
|
||||
cpu_ticks += ticks_to_add;
|
||||
downcount -= static_cast<s64>(ticks_to_add);
|
||||
downcount -= static_cast<s64>(cpu_ticks);
|
||||
}
|
||||
|
||||
void CoreTiming::Idle() {
|
||||
|
@ -156,7 +180,7 @@ void CoreTiming::Idle() {
|
|||
}
|
||||
|
||||
void CoreTiming::ResetTicks() {
|
||||
downcount.store(MAX_SLICE_LENGTH, std::memory_order_release);
|
||||
downcount = MAX_SLICE_LENGTH;
|
||||
}
|
||||
|
||||
u64 CoreTiming::GetClockTicks() const {
|
||||
|
@ -177,38 +201,48 @@ std::optional<s64> CoreTiming::Advance() {
|
|||
std::scoped_lock lock{advance_lock, basic_lock};
|
||||
global_timer = GetGlobalTimeNs().count();
|
||||
|
||||
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||||
Event evt = std::move(event_queue.front());
|
||||
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
event_queue.pop_back();
|
||||
while (!event_queue.empty() && event_queue.top().time <= global_timer) {
|
||||
const Event& evt = event_queue.top();
|
||||
|
||||
if (const auto event_type = evt.type.lock()) {
|
||||
if (const auto event_type{evt.type.lock()}) {
|
||||
const auto evt_time = evt.time;
|
||||
const auto evt_sequence_num = event_type->sequence_number;
|
||||
|
||||
basic_lock.unlock();
|
||||
if (evt.reschedule_time == 0) {
|
||||
event_queue.pop();
|
||||
|
||||
const auto new_schedule_time = event_type->callback(
|
||||
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
|
||||
basic_lock.unlock();
|
||||
|
||||
basic_lock.lock();
|
||||
event_type->callback(
|
||||
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
|
||||
|
||||
if (evt_sequence_num != event_type->sequence_number) {
|
||||
continue;
|
||||
}
|
||||
basic_lock.lock();
|
||||
} else {
|
||||
basic_lock.unlock();
|
||||
|
||||
if (new_schedule_time.has_value() || evt.reschedule_time != 0) {
|
||||
const auto next_schedule_time = new_schedule_time.value_or(
|
||||
std::chrono::nanoseconds{evt.reschedule_time});
|
||||
const auto new_schedule_time{event_type->callback(
|
||||
evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time})};
|
||||
|
||||
auto next_time = evt.time + next_schedule_time.count();
|
||||
if (evt.time < pause_end_time) {
|
||||
next_time = pause_end_time + next_schedule_time.count();
|
||||
basic_lock.lock();
|
||||
|
||||
if (evt_sequence_num != event_type->sequence_number) {
|
||||
// Heap handle is invalidated after external modification.
|
||||
continue;
|
||||
}
|
||||
|
||||
event_queue.emplace_back(Event{next_time, event_fifo_id++, evt.type,
|
||||
next_schedule_time.count()});
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||
const auto next_schedule_time{new_schedule_time.has_value()
|
||||
? new_schedule_time.value().count()
|
||||
: evt.reschedule_time};
|
||||
|
||||
// If this event was scheduled into a pause, its time now is going to be way
|
||||
// behind. Re-set this event to continue from the end of the pause.
|
||||
auto next_time{evt.time + next_schedule_time};
|
||||
if (evt.time < pause_end_time) {
|
||||
next_time = pause_end_time + next_schedule_time;
|
||||
}
|
||||
|
||||
event_queue.update(evt.handle, Event{next_time, event_fifo_id++, evt.type,
|
||||
next_schedule_time, evt.handle});
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -216,7 +250,7 @@ std::optional<s64> CoreTiming::Advance() {
|
|||
}
|
||||
|
||||
if (!event_queue.empty()) {
|
||||
return event_queue.front().time;
|
||||
return event_queue.top().time;
|
||||
} else {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
@ -235,7 +269,7 @@ void CoreTiming::ThreadLoop() {
|
|||
#ifdef _WIN32
|
||||
while (!paused && !event.IsSet() && wait_time > 0) {
|
||||
wait_time = *next_time - GetGlobalTimeNs().count();
|
||||
if (wait_time >= 1'000'000) { // 1ms
|
||||
if (wait_time >= timer_resolution_ns) {
|
||||
Common::Windows::SleepForOneTick();
|
||||
} else {
|
||||
#ifdef ARCHITECTURE_x86_64
|
||||
|
@ -256,8 +290,10 @@ void CoreTiming::ThreadLoop() {
|
|||
} else {
|
||||
// Queue is empty, wait until another event is scheduled and signals us to
|
||||
// continue.
|
||||
wait_set = true;
|
||||
event.Wait();
|
||||
}
|
||||
wait_set = false;
|
||||
}
|
||||
|
||||
paused_set = true;
|
||||
|
@ -291,4 +327,10 @@ std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
|||
return std::chrono::microseconds{Common::WallClock::CPUTickToUS(cpu_ticks)};
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
void CoreTiming::SetTimerResolutionNs(std::chrono::nanoseconds ns) {
|
||||
timer_resolution_ns = ns.count();
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace Core::Timing
|
||||
|
|
|
@ -11,7 +11,8 @@
|
|||
#include <optional>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include <boost/heap/fibonacci_heap.hpp>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "common/thread.h"
|
||||
|
@ -42,6 +43,18 @@ enum class UnscheduleEventType {
|
|||
NoWait,
|
||||
};
|
||||
|
||||
/**
|
||||
* This is a system to schedule events into the emulated machine's future. Time is measured
|
||||
* in main CPU clock cycles.
|
||||
*
|
||||
* To schedule an event, you first have to register its type. This is where you pass in the
|
||||
* callback. You then schedule events using the type ID you get back.
|
||||
*
|
||||
* The s64 ns_late that the callbacks get is how many ns late it was.
|
||||
* So to schedule a new event on a regular basis:
|
||||
* inside callback:
|
||||
* ScheduleEvent(period_in_ns - ns_late, callback, "whatever")
|
||||
*/
|
||||
class CoreTiming {
|
||||
public:
|
||||
CoreTiming();
|
||||
|
@ -53,56 +66,99 @@ public:
|
|||
CoreTiming& operator=(const CoreTiming&) = delete;
|
||||
CoreTiming& operator=(CoreTiming&&) = delete;
|
||||
|
||||
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
|
||||
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
|
||||
void Initialize(std::function<void()>&& on_thread_init_);
|
||||
|
||||
/// Clear all pending events. This should ONLY be done on exit.
|
||||
void ClearPendingEvents();
|
||||
|
||||
/// Sets if emulation is multicore or single core, must be set before Initialize
|
||||
void SetMulticore(bool is_multicore_) {
|
||||
is_multicore = is_multicore_;
|
||||
}
|
||||
|
||||
/// Pauses/Unpauses the execution of the timer thread.
|
||||
void Pause(bool is_paused);
|
||||
|
||||
/// Pauses/Unpauses the execution of the timer thread and waits until paused.
|
||||
void SyncPause(bool is_paused);
|
||||
|
||||
/// Checks if core timing is running.
|
||||
bool IsRunning() const;
|
||||
|
||||
/// Checks if the timer thread has started.
|
||||
bool HasStarted() const {
|
||||
return has_started;
|
||||
}
|
||||
|
||||
/// Checks if there are any pending time events.
|
||||
bool HasPendingEvents() const;
|
||||
|
||||
/// Schedules an event in core timing
|
||||
void ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
||||
const std::shared_ptr<EventType>& event_type, bool absolute_time = false);
|
||||
|
||||
/// Schedules an event which will automatically re-schedule itself with the given time, until
|
||||
/// unscheduled
|
||||
void ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
|
||||
std::chrono::nanoseconds resched_time,
|
||||
const std::shared_ptr<EventType>& event_type,
|
||||
bool absolute_time = false);
|
||||
|
||||
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
||||
UnscheduleEventType type = UnscheduleEventType::Wait);
|
||||
|
||||
void AddTicks(u64 ticks_to_add);
|
||||
|
||||
void ResetTicks();
|
||||
|
||||
void Idle();
|
||||
|
||||
s64 GetDowncount() const {
|
||||
return downcount.load(std::memory_order_relaxed);
|
||||
return downcount;
|
||||
}
|
||||
|
||||
/// Returns the current CNTPCT tick value.
|
||||
u64 GetClockTicks() const;
|
||||
|
||||
/// Returns the current GPU tick value.
|
||||
u64 GetGPUTicks() const;
|
||||
|
||||
/// Returns current time in microseconds.
|
||||
std::chrono::microseconds GetGlobalTimeUs() const;
|
||||
|
||||
/// Returns current time in nanoseconds.
|
||||
std::chrono::nanoseconds GetGlobalTimeNs() const;
|
||||
|
||||
/// Checks for events manually and returns time in nanoseconds for next event, threadsafe.
|
||||
std::optional<s64> Advance();
|
||||
|
||||
#ifdef _WIN32
|
||||
void SetTimerResolutionNs(std::chrono::nanoseconds ns);
|
||||
#endif
|
||||
|
||||
private:
|
||||
struct Event {
|
||||
s64 time;
|
||||
u64 fifo_order;
|
||||
std::shared_ptr<EventType> type;
|
||||
bool operator>(const Event& other) const {
|
||||
return std::tie(time, fifo_order) > std::tie(other.time, other.fifo_order);
|
||||
}
|
||||
};
|
||||
struct Event;
|
||||
|
||||
static void ThreadEntry(CoreTiming& instance);
|
||||
void ThreadLoop();
|
||||
|
||||
void Reset();
|
||||
|
||||
std::unique_ptr<Common::WallClock> clock;
|
||||
std::atomic<s64> global_timer{0};
|
||||
std::vector<Event> event_queue;
|
||||
std::atomic<u64> event_fifo_id{0};
|
||||
|
||||
s64 global_timer = 0;
|
||||
|
||||
#ifdef _WIN32
|
||||
s64 timer_resolution_ns;
|
||||
#endif
|
||||
|
||||
using heap_t =
|
||||
boost::heap::fibonacci_heap<CoreTiming::Event, boost::heap::compare<std::greater<>>>;
|
||||
|
||||
heap_t event_queue;
|
||||
u64 event_fifo_id = 0;
|
||||
|
||||
Common::Event event{};
|
||||
Common::Event pause_event{};
|
||||
|
@ -117,12 +173,20 @@ private:
|
|||
std::function<void()> on_thread_init{};
|
||||
|
||||
bool is_multicore{};
|
||||
std::atomic<s64> pause_end_time{};
|
||||
s64 pause_end_time{};
|
||||
|
||||
std::atomic<u64> cpu_ticks{};
|
||||
std::atomic<s64> downcount{};
|
||||
/// Cycle timing
|
||||
u64 cpu_ticks{};
|
||||
s64 downcount{};
|
||||
};
|
||||
|
||||
/// Creates a core timing event with the given name and callback.
|
||||
///
|
||||
/// @param name The name of the core timing event to create.
|
||||
/// @param callback The callback to execute for the event.
|
||||
///
|
||||
/// @returns An EventType instance representing the created event.
|
||||
///
|
||||
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback);
|
||||
|
||||
} // namespace Core::Timing
|
||||
|
|
|
@ -1,12 +1,6 @@
|
|||
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "common/fiber.h"
|
||||
#include "common/microprofile.h"
|
||||
#include "common/scope_exit.h"
|
||||
|
@ -30,7 +24,6 @@ void CpuManager::Initialize() {
|
|||
num_cores = is_multicore ? Core::Hardware::NUM_CPU_CORES : 1;
|
||||
gpu_barrier = std::make_unique<Common::Barrier>(num_cores + 1);
|
||||
|
||||
core_data.resize(num_cores);
|
||||
for (std::size_t core = 0; core < num_cores; core++) {
|
||||
core_data[core].host_thread =
|
||||
std::jthread([this, core](std::stop_token token) { RunThread(token, core); });
|
||||
|
@ -38,10 +31,10 @@ void CpuManager::Initialize() {
|
|||
}
|
||||
|
||||
void CpuManager::Shutdown() {
|
||||
for (auto& data : core_data) {
|
||||
if (data.host_thread.joinable()) {
|
||||
data.host_thread.request_stop();
|
||||
data.host_thread.join();
|
||||
for (std::size_t core = 0; core < num_cores; core++) {
|
||||
if (core_data[core].host_thread.joinable()) {
|
||||
core_data[core].host_thread.request_stop();
|
||||
core_data[core].host_thread.join();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -73,7 +66,12 @@ void CpuManager::HandleInterrupt() {
|
|||
Kernel::KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_index));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// MultiCore ///
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void CpuManager::MultiCoreRunGuestThread() {
|
||||
// Similar to UserModeThreadStarter in HOS
|
||||
auto& kernel = system.Kernel();
|
||||
auto* thread = Kernel::GetCurrentThreadPointer(kernel);
|
||||
kernel.CurrentScheduler()->OnThreadStart();
|
||||
|
@ -90,6 +88,10 @@ void CpuManager::MultiCoreRunGuestThread() {
|
|||
}
|
||||
|
||||
void CpuManager::MultiCoreRunIdleThread() {
|
||||
// Not accurate to HOS. Remove this entire method when singlecore is removed.
|
||||
// See notes in KScheduler::ScheduleImpl for more information about why this
|
||||
// is inaccurate.
|
||||
|
||||
auto& kernel = system.Kernel();
|
||||
kernel.CurrentScheduler()->OnThreadStart();
|
||||
|
||||
|
@ -103,6 +105,10 @@ void CpuManager::MultiCoreRunIdleThread() {
|
|||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// SingleCore ///
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void CpuManager::SingleCoreRunGuestThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
auto* thread = Kernel::GetCurrentThreadPointer(kernel);
|
||||
|
@ -148,16 +154,19 @@ void CpuManager::PreemptSingleCore(bool from_running_environment) {
|
|||
system.CoreTiming().Advance();
|
||||
kernel.SetIsPhantomModeForSingleCore(false);
|
||||
}
|
||||
current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES, std::memory_order_release);
|
||||
current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
|
||||
system.CoreTiming().ResetTicks();
|
||||
kernel.Scheduler(current_core).PreemptSingleCore();
|
||||
|
||||
// We've now been scheduled again, and we may have exchanged schedulers.
|
||||
// Reload the scheduler in case it's different.
|
||||
if (!kernel.Scheduler(current_core).IsIdle()) {
|
||||
idle_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::GuestActivate() {
|
||||
// Similar to the HorizonKernelMain callback in HOS
|
||||
auto& kernel = system.Kernel();
|
||||
auto* scheduler = kernel.CurrentScheduler();
|
||||
|
||||
|
@ -175,19 +184,27 @@ void CpuManager::ShutdownThread() {
|
|||
}
|
||||
|
||||
void CpuManager::RunThread(std::stop_token token, std::size_t core) {
|
||||
/// Initialization
|
||||
system.RegisterCoreThread(core);
|
||||
std::string name = is_multicore ? "CPUCore_" + std::to_string(core) : "CPUThread";
|
||||
std::string name;
|
||||
if (is_multicore) {
|
||||
name = "CPUCore_" + std::to_string(core);
|
||||
} else {
|
||||
name = "CPUThread";
|
||||
}
|
||||
MicroProfileOnThreadCreate(name.c_str());
|
||||
Common::SetCurrentThreadName(name.c_str());
|
||||
Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
|
||||
auto& data = core_data[core];
|
||||
data.host_context = Common::Fiber::ThreadToFiber();
|
||||
|
||||
// Cleanup
|
||||
SCOPE_EXIT {
|
||||
data.host_context->Exit();
|
||||
MicroProfileOnThreadExit();
|
||||
};
|
||||
|
||||
// Running
|
||||
if (!gpu_barrier->Sync(token)) {
|
||||
return;
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -40,23 +40,10 @@ struct GPU::Impl {
|
|||
explicit Impl(GPU& gpu_, Core::System& system_, bool is_async_, bool use_nvdec_)
|
||||
: gpu{gpu_}, system{system_}, host1x{system.Host1x()}, use_nvdec{use_nvdec_},
|
||||
shader_notify{std::make_unique<VideoCore::ShaderNotify>()}, is_async{is_async_},
|
||||
gpu_thread{system_, is_async_}, scheduler{std::make_unique<Control::Scheduler>(gpu)} {
|
||||
Initialize();
|
||||
}
|
||||
gpu_thread{system_, is_async_}, scheduler{std::make_unique<Control::Scheduler>(gpu)} {}
|
||||
|
||||
~Impl() = default;
|
||||
|
||||
void Initialize() {
|
||||
// Initialize the GPU memory manager
|
||||
memory_manager = std::make_unique<Tegra::MemoryManager>(system);
|
||||
|
||||
// Initialize the command buffer
|
||||
command_buffer.reserve(COMMAND_BUFFER_SIZE);
|
||||
|
||||
// Initialize the fence manager
|
||||
fence_manager = std::make_unique<FenceManager>();
|
||||
}
|
||||
|
||||
std::shared_ptr<Control::ChannelState> CreateChannel(s32 channel_id) {
|
||||
auto channel_state = std::make_shared<Tegra::Control::ChannelState>(channel_id);
|
||||
channels.emplace(channel_id, channel_state);
|
||||
|
@ -104,15 +91,14 @@ struct GPU::Impl {
|
|||
|
||||
/// Flush all current written commands into the host GPU for execution.
|
||||
void FlushCommands() {
|
||||
if (!command_buffer.empty()) {
|
||||
rasterizer->ExecuteCommands(command_buffer);
|
||||
command_buffer.clear();
|
||||
}
|
||||
rasterizer->FlushCommands();
|
||||
}
|
||||
|
||||
/// Synchronizes CPU writes with Host GPU memory.
|
||||
void InvalidateGPUCache() {
|
||||
rasterizer->InvalidateGPUCache();
|
||||
std::function<void(PAddr, size_t)> callback_writes(
|
||||
[this](PAddr address, size_t size) { rasterizer->OnCacheInvalidation(address, size); });
|
||||
system.GatherGPUDirtyMemory(callback_writes);
|
||||
}
|
||||
|
||||
/// Signal the ending of command list.
|
||||
|
@ -122,10 +108,11 @@ struct GPU::Impl {
|
|||
}
|
||||
|
||||
/// Request a host GPU memory flush from the CPU.
|
||||
u64 RequestSyncOperation(std::function<void()>&& action) {
|
||||
template <typename Func>
|
||||
[[nodiscard]] u64 RequestSyncOperation(Func&& action) {
|
||||
std::unique_lock lck{sync_request_mutex};
|
||||
const u64 fence = ++last_sync_fence;
|
||||
sync_requests.emplace_back(std::move(action), fence);
|
||||
sync_requests.emplace_back(action);
|
||||
return fence;
|
||||
}
|
||||
|
||||
|
@ -143,12 +130,12 @@ struct GPU::Impl {
|
|||
void TickWork() {
|
||||
std::unique_lock lck{sync_request_mutex};
|
||||
while (!sync_requests.empty()) {
|
||||
auto& request = sync_requests.front();
|
||||
auto request = std::move(sync_requests.front());
|
||||
sync_requests.pop_front();
|
||||
sync_request_mutex.unlock();
|
||||
request.first();
|
||||
request();
|
||||
current_sync_fence.fetch_add(1, std::memory_order_release);
|
||||
sync_request_mutex.lock();
|
||||
sync_requests.pop_front();
|
||||
sync_request_cv.notify_all();
|
||||
}
|
||||
}
|
||||
|
@ -235,6 +222,7 @@ struct GPU::Impl {
|
|||
/// This can be used to launch any necessary threads and register any necessary
|
||||
/// core timing events.
|
||||
void Start() {
|
||||
Settings::UpdateGPUAccuracy();
|
||||
gpu_thread.StartThread(*renderer, renderer->Context(), *scheduler);
|
||||
}
|
||||
|
||||
|
@ -264,7 +252,7 @@ struct GPU::Impl {
|
|||
|
||||
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
|
||||
void FlushRegion(DAddr addr, u64 size) {
|
||||
rasterizer->FlushRegion(addr, size);
|
||||
gpu_thread.FlushRegion(addr, size);
|
||||
}
|
||||
|
||||
VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size) {
|
||||
|
@ -284,7 +272,7 @@ struct GPU::Impl {
|
|||
|
||||
/// Notify rasterizer that any caches of the specified region should be invalidated
|
||||
void InvalidateRegion(DAddr addr, u64 size) {
|
||||
rasterizer->InvalidateRegion(addr, size);
|
||||
gpu_thread.InvalidateRegion(addr, size);
|
||||
}
|
||||
|
||||
bool OnCPUWrite(DAddr addr, u64 size) {
|
||||
|
@ -293,7 +281,57 @@ struct GPU::Impl {
|
|||
|
||||
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
|
||||
void FlushAndInvalidateRegion(DAddr addr, u64 size) {
|
||||
rasterizer->FlushAndInvalidateRegion(addr, size);
|
||||
gpu_thread.FlushAndInvalidateRegion(addr, size);
|
||||
}
|
||||
|
||||
void RequestComposite(std::vector<Tegra::FramebufferConfig>&& layers,
|
||||
std::vector<Service::Nvidia::NvFence>&& fences) {
|
||||
size_t num_fences{fences.size()};
|
||||
size_t current_request_counter{};
|
||||
{
|
||||
std::unique_lock<std::mutex> lk(request_swap_mutex);
|
||||
if (free_swap_counters.empty()) {
|
||||
current_request_counter = request_swap_counters.size();
|
||||
request_swap_counters.emplace_back(num_fences);
|
||||
} else {
|
||||
current_request_counter = free_swap_counters.front();
|
||||
request_swap_counters[current_request_counter] = num_fences;
|
||||
free_swap_counters.pop_front();
|
||||
}
|
||||
}
|
||||
const auto wait_fence =
|
||||
RequestSyncOperation([this, current_request_counter, &layers, &fences, num_fences] {
|
||||
auto& syncpoint_manager = host1x.GetSyncpointManager();
|
||||
if (num_fences == 0) {
|
||||
renderer->Composite(layers);
|
||||
}
|
||||
const auto executer = [this, current_request_counter, layers_copy = layers]() {
|
||||
{
|
||||
std::unique_lock<std::mutex> lk(request_swap_mutex);
|
||||
if (--request_swap_counters[current_request_counter] != 0) {
|
||||
return;
|
||||
}
|
||||
free_swap_counters.push_back(current_request_counter);
|
||||
}
|
||||
renderer->Composite(layers_copy);
|
||||
};
|
||||
for (size_t i = 0; i < num_fences; i++) {
|
||||
syncpoint_manager.RegisterGuestAction(fences[i].id, fences[i].value, executer);
|
||||
}
|
||||
});
|
||||
gpu_thread.TickGPU();
|
||||
WaitForSyncOperation(wait_fence);
|
||||
}
|
||||
|
||||
std::vector<u8> GetAppletCaptureBuffer() {
|
||||
std::vector<u8> out;
|
||||
|
||||
const auto wait_fence =
|
||||
RequestSyncOperation([&] { out = renderer->GetAppletCaptureBuffer(); });
|
||||
gpu_thread.TickGPU();
|
||||
WaitForSyncOperation(wait_fence);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
GPU& gpu;
|
||||
|
@ -310,12 +348,16 @@ struct GPU::Impl {
|
|||
/// When true, we are about to shut down emulation session, so terminate outstanding tasks
|
||||
std::atomic_bool shutting_down{};
|
||||
|
||||
std::array<std::atomic<u32>, Service::Nvidia::MaxSyncPoints> syncpoints{};
|
||||
|
||||
std::array<std::list<u32>, Service::Nvidia::MaxSyncPoints> syncpt_interrupts;
|
||||
|
||||
std::mutex sync_mutex;
|
||||
std::mutex device_mutex;
|
||||
|
||||
std::condition_variable sync_cv;
|
||||
|
||||
std::list<std::pair<std::function<void()>, u64>> sync_requests;
|
||||
std::list<std::function<void()>> sync_requests;
|
||||
std::atomic<u64> current_sync_fence{};
|
||||
u64 last_sync_fence{};
|
||||
std::mutex sync_request_mutex;
|
||||
|
@ -331,13 +373,182 @@ struct GPU::Impl {
|
|||
Tegra::Control::ChannelState* current_channel;
|
||||
s32 bound_channel{-1};
|
||||
|
||||
std::unique_ptr<Tegra::MemoryManager> memory_manager;
|
||||
std::vector<u32> command_buffer;
|
||||
std::unique_ptr<FenceManager> fence_manager;
|
||||
|
||||
static constexpr size_t COMMAND_BUFFER_SIZE = 4 * 1024 * 1024;
|
||||
std::deque<size_t> free_swap_counters;
|
||||
std::deque<size_t> request_swap_counters;
|
||||
std::mutex request_swap_mutex;
|
||||
};
|
||||
|
||||
// ... (rest of the implementation remains the same)
|
||||
GPU::GPU(Core::System& system, bool is_async, bool use_nvdec)
|
||||
: impl{std::make_unique<Impl>(*this, system, is_async, use_nvdec)} {}
|
||||
|
||||
GPU::~GPU() = default;
|
||||
|
||||
std::shared_ptr<Control::ChannelState> GPU::AllocateChannel() {
|
||||
return impl->AllocateChannel();
|
||||
}
|
||||
|
||||
void GPU::InitChannel(Control::ChannelState& to_init, u64 program_id) {
|
||||
impl->InitChannel(to_init, program_id);
|
||||
}
|
||||
|
||||
void GPU::BindChannel(s32 channel_id) {
|
||||
impl->BindChannel(channel_id);
|
||||
}
|
||||
|
||||
void GPU::ReleaseChannel(Control::ChannelState& to_release) {
|
||||
impl->ReleaseChannel(to_release);
|
||||
}
|
||||
|
||||
void GPU::InitAddressSpace(Tegra::MemoryManager& memory_manager) {
|
||||
impl->InitAddressSpace(memory_manager);
|
||||
}
|
||||
|
||||
void GPU::BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer) {
|
||||
impl->BindRenderer(std::move(renderer));
|
||||
}
|
||||
|
||||
void GPU::FlushCommands() {
|
||||
impl->FlushCommands();
|
||||
}
|
||||
|
||||
void GPU::InvalidateGPUCache() {
|
||||
impl->InvalidateGPUCache();
|
||||
}
|
||||
|
||||
void GPU::OnCommandListEnd() {
|
||||
impl->OnCommandListEnd();
|
||||
}
|
||||
|
||||
u64 GPU::RequestFlush(DAddr addr, std::size_t size) {
|
||||
return impl->RequestSyncOperation(
|
||||
[this, addr, size]() { impl->rasterizer->FlushRegion(addr, size); });
|
||||
}
|
||||
|
||||
u64 GPU::CurrentSyncRequestFence() const {
|
||||
return impl->CurrentSyncRequestFence();
|
||||
}
|
||||
|
||||
void GPU::WaitForSyncOperation(u64 fence) {
|
||||
return impl->WaitForSyncOperation(fence);
|
||||
}
|
||||
|
||||
void GPU::TickWork() {
|
||||
impl->TickWork();
|
||||
}
|
||||
|
||||
/// Gets a mutable reference to the Host1x interface
|
||||
Host1x::Host1x& GPU::Host1x() {
|
||||
return impl->host1x;
|
||||
}
|
||||
|
||||
/// Gets an immutable reference to the Host1x interface.
|
||||
const Host1x::Host1x& GPU::Host1x() const {
|
||||
return impl->host1x;
|
||||
}
|
||||
|
||||
Engines::Maxwell3D& GPU::Maxwell3D() {
|
||||
return impl->Maxwell3D();
|
||||
}
|
||||
|
||||
const Engines::Maxwell3D& GPU::Maxwell3D() const {
|
||||
return impl->Maxwell3D();
|
||||
}
|
||||
|
||||
Engines::KeplerCompute& GPU::KeplerCompute() {
|
||||
return impl->KeplerCompute();
|
||||
}
|
||||
|
||||
const Engines::KeplerCompute& GPU::KeplerCompute() const {
|
||||
return impl->KeplerCompute();
|
||||
}
|
||||
|
||||
Tegra::DmaPusher& GPU::DmaPusher() {
|
||||
return impl->DmaPusher();
|
||||
}
|
||||
|
||||
const Tegra::DmaPusher& GPU::DmaPusher() const {
|
||||
return impl->DmaPusher();
|
||||
}
|
||||
|
||||
VideoCore::RendererBase& GPU::Renderer() {
|
||||
return impl->Renderer();
|
||||
}
|
||||
|
||||
const VideoCore::RendererBase& GPU::Renderer() const {
|
||||
return impl->Renderer();
|
||||
}
|
||||
|
||||
VideoCore::ShaderNotify& GPU::ShaderNotify() {
|
||||
return impl->ShaderNotify();
|
||||
}
|
||||
|
||||
const VideoCore::ShaderNotify& GPU::ShaderNotify() const {
|
||||
return impl->ShaderNotify();
|
||||
}
|
||||
|
||||
void GPU::RequestComposite(std::vector<Tegra::FramebufferConfig>&& layers,
|
||||
std::vector<Service::Nvidia::NvFence>&& fences) {
|
||||
impl->RequestComposite(std::move(layers), std::move(fences));
|
||||
}
|
||||
|
||||
std::vector<u8> GPU::GetAppletCaptureBuffer() {
|
||||
return impl->GetAppletCaptureBuffer();
|
||||
}
|
||||
|
||||
u64 GPU::GetTicks() const {
|
||||
return impl->GetTicks();
|
||||
}
|
||||
|
||||
bool GPU::IsAsync() const {
|
||||
return impl->IsAsync();
|
||||
}
|
||||
|
||||
bool GPU::UseNvdec() const {
|
||||
return impl->UseNvdec();
|
||||
}
|
||||
|
||||
void GPU::RendererFrameEndNotify() {
|
||||
impl->RendererFrameEndNotify();
|
||||
}
|
||||
|
||||
void GPU::Start() {
|
||||
impl->Start();
|
||||
}
|
||||
|
||||
void GPU::NotifyShutdown() {
|
||||
impl->NotifyShutdown();
|
||||
}
|
||||
|
||||
void GPU::ObtainContext() {
|
||||
impl->ObtainContext();
|
||||
}
|
||||
|
||||
void GPU::ReleaseContext() {
|
||||
impl->ReleaseContext();
|
||||
}
|
||||
|
||||
void GPU::PushGPUEntries(s32 channel, Tegra::CommandList&& entries) {
|
||||
impl->PushGPUEntries(channel, std::move(entries));
|
||||
}
|
||||
|
||||
VideoCore::RasterizerDownloadArea GPU::OnCPURead(PAddr addr, u64 size) {
|
||||
return impl->OnCPURead(addr, size);
|
||||
}
|
||||
|
||||
void GPU::FlushRegion(DAddr addr, u64 size) {
|
||||
impl->FlushRegion(addr, size);
|
||||
}
|
||||
|
||||
void GPU::InvalidateRegion(DAddr addr, u64 size) {
|
||||
impl->InvalidateRegion(addr, size);
|
||||
}
|
||||
|
||||
bool GPU::OnCPUWrite(DAddr addr, u64 size) {
|
||||
return impl->OnCPUWrite(addr, size);
|
||||
}
|
||||
|
||||
void GPU::FlushAndInvalidateRegion(DAddr addr, u64 size) {
|
||||
impl->FlushAndInvalidateRegion(addr, size);
|
||||
}
|
||||
|
||||
} // namespace Tegra
|
||||
|
|
|
@ -1,221 +0,0 @@
|
|||
#include "video_core/optimized_rasterizer.h"
|
||||
#include "common/settings.h"
|
||||
#include "video_core/gpu.h"
|
||||
#include "video_core/memory_manager.h"
|
||||
#include "video_core/engines/maxwell_3d.h"
|
||||
|
||||
namespace VideoCore {
|
||||
|
||||
OptimizedRasterizer::OptimizedRasterizer(Core::System& system, Tegra::GPU& gpu)
|
||||
: system{system}, gpu{gpu}, memory_manager{gpu.MemoryManager()} {
|
||||
InitializeShaderCache();
|
||||
}
|
||||
|
||||
OptimizedRasterizer::~OptimizedRasterizer() = default;
|
||||
|
||||
void OptimizedRasterizer::Draw(bool is_indexed, u32 instance_count) {
|
||||
MICROPROFILE_SCOPE(GPU_Rasterization);
|
||||
|
||||
PrepareRendertarget();
|
||||
UpdateDynamicState();
|
||||
|
||||
if (is_indexed) {
|
||||
DrawIndexed(instance_count);
|
||||
} else {
|
||||
DrawArrays(instance_count);
|
||||
}
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::Clear(u32 layer_count) {
|
||||
MICROPROFILE_SCOPE(GPU_Rasterization);
|
||||
|
||||
PrepareRendertarget();
|
||||
ClearFramebuffer(layer_count);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::DispatchCompute() {
|
||||
MICROPROFILE_SCOPE(GPU_Compute);
|
||||
|
||||
PrepareCompute();
|
||||
LaunchComputeShader();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::ResetCounter(VideoCommon::QueryType type) {
|
||||
query_cache.ResetCounter(type);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::Query(GPUVAddr gpu_addr, VideoCommon::QueryType type,
|
||||
VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport) {
|
||||
query_cache.Query(gpu_addr, type, flags, payload, subreport);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::FlushAll() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
FlushShaderCache();
|
||||
FlushRenderTargets();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::FlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
if (which == VideoCommon::CacheType::All || which == VideoCommon::CacheType::Unified) {
|
||||
FlushMemoryRegion(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
bool OptimizedRasterizer::MustFlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
|
||||
if (which == VideoCommon::CacheType::All || which == VideoCommon::CacheType::Unified) {
|
||||
return IsRegionCached(addr, size);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
RasterizerDownloadArea OptimizedRasterizer::GetFlushArea(DAddr addr, u64 size) {
|
||||
return GetFlushableArea(addr, size);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::InvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
if (which == VideoCommon::CacheType::All || which == VideoCommon::CacheType::Unified) {
|
||||
InvalidateMemoryRegion(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::OnCacheInvalidation(PAddr addr, u64 size) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
InvalidateCachedRegion(addr, size);
|
||||
}
|
||||
|
||||
bool OptimizedRasterizer::OnCPUWrite(PAddr addr, u64 size) {
|
||||
return HandleCPUWrite(addr, size);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::InvalidateGPUCache() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
InvalidateAllCache();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::UnmapMemory(DAddr addr, u64 size) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
UnmapGPUMemoryRegion(addr, size);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
UpdateMappedGPUMemory(as_id, addr, size);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::FlushAndInvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
if (which == VideoCommon::CacheType::All || which == VideoCommon::CacheType::Unified) {
|
||||
FlushAndInvalidateMemoryRegion(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::WaitForIdle() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
WaitForGPUIdle();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::FragmentBarrier() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
InsertFragmentBarrier();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::TiledCacheBarrier() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
InsertTiledCacheBarrier();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::FlushCommands() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
SubmitCommands();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::TickFrame() {
|
||||
MICROPROFILE_SCOPE(GPU_Synchronization);
|
||||
|
||||
EndFrame();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::PrepareRendertarget() {
|
||||
const auto& regs{gpu.Maxwell3D().regs};
|
||||
const auto& framebuffer{regs.framebuffer};
|
||||
|
||||
render_targets.resize(framebuffer.num_color_buffers);
|
||||
for (std::size_t index = 0; index < framebuffer.num_color_buffers; ++index) {
|
||||
render_targets[index] = GetColorBuffer(index);
|
||||
}
|
||||
|
||||
depth_stencil = GetDepthBuffer();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::UpdateDynamicState() {
|
||||
const auto& regs{gpu.Maxwell3D().regs};
|
||||
|
||||
UpdateViewport(regs.viewport_transform);
|
||||
UpdateScissor(regs.scissor_test);
|
||||
UpdateDepthBias(regs.polygon_offset_units, regs.polygon_offset_clamp, regs.polygon_offset_factor);
|
||||
UpdateBlendConstants(regs.blend_color);
|
||||
UpdateStencilFaceMask(regs.stencil_front_func_mask, regs.stencil_back_func_mask);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::DrawIndexed(u32 instance_count) {
|
||||
const auto& draw_state{gpu.Maxwell3D().draw_manager->GetDrawState()};
|
||||
const auto& index_buffer{memory_manager.ReadBlockUnsafe(draw_state.index_buffer.Address(),
|
||||
draw_state.index_buffer.size)};
|
||||
|
||||
shader_cache.BindComputeShader();
|
||||
shader_cache.BindGraphicsShader();
|
||||
|
||||
DrawElementsInstanced(draw_state.topology, draw_state.index_buffer.count,
|
||||
draw_state.index_buffer.format, index_buffer.data(), instance_count);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::DrawArrays(u32 instance_count) {
|
||||
const auto& draw_state{gpu.Maxwell3D().draw_manager->GetDrawState()};
|
||||
|
||||
shader_cache.BindComputeShader();
|
||||
shader_cache.BindGraphicsShader();
|
||||
|
||||
DrawArraysInstanced(draw_state.topology, draw_state.vertex_buffer.first,
|
||||
draw_state.vertex_buffer.count, instance_count);
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::ClearFramebuffer(u32 layer_count) {
|
||||
const auto& regs{gpu.Maxwell3D().regs};
|
||||
const auto& clear_state{regs.clear_buffers};
|
||||
|
||||
if (clear_state.R || clear_state.G || clear_state.B || clear_state.A) {
|
||||
ClearColorBuffers(clear_state.R, clear_state.G, clear_state.B, clear_state.A,
|
||||
regs.clear_color[0], regs.clear_color[1], regs.clear_color[2],
|
||||
regs.clear_color[3], layer_count);
|
||||
}
|
||||
|
||||
if (clear_state.Z || clear_state.S) {
|
||||
ClearDepthStencilBuffer(clear_state.Z, clear_state.S, regs.clear_depth, regs.clear_stencil,
|
||||
layer_count);
|
||||
}
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::PrepareCompute() {
|
||||
shader_cache.BindComputeShader();
|
||||
}
|
||||
|
||||
void OptimizedRasterizer::LaunchComputeShader() {
|
||||
const auto& launch_desc{gpu.KeplerCompute().launch_description};
|
||||
DispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
|
||||
}
|
||||
|
||||
} // namespace VideoCore
|
|
@ -1,73 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "common/common_types.h"
|
||||
#include "video_core/rasterizer_interface.h"
|
||||
#include "video_core/engines/maxwell_3d.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Tegra {
|
||||
class GPU;
|
||||
class MemoryManager;
|
||||
}
|
||||
|
||||
namespace VideoCore {
|
||||
|
||||
class ShaderCache;
|
||||
class QueryCache;
|
||||
|
||||
class OptimizedRasterizer final : public RasterizerInterface {
|
||||
public:
|
||||
explicit OptimizedRasterizer(Core::System& system, Tegra::GPU& gpu);
|
||||
~OptimizedRasterizer() override;
|
||||
|
||||
void Draw(bool is_indexed, u32 instance_count) override;
|
||||
void Clear(u32 layer_count) override;
|
||||
void DispatchCompute() override;
|
||||
void ResetCounter(VideoCommon::QueryType type) override;
|
||||
void Query(GPUVAddr gpu_addr, VideoCommon::QueryType type,
|
||||
VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport) override;
|
||||
void FlushAll() override;
|
||||
void FlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) override;
|
||||
bool MustFlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) override;
|
||||
RasterizerDownloadArea GetFlushArea(DAddr addr, u64 size) override;
|
||||
void InvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType which) override;
|
||||
void OnCacheInvalidation(PAddr addr, u64 size) override;
|
||||
bool OnCPUWrite(PAddr addr, u64 size) override;
|
||||
void InvalidateGPUCache() override;
|
||||
void UnmapMemory(DAddr addr, u64 size) override;
|
||||
void ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) override;
|
||||
void FlushAndInvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType which) override;
|
||||
void WaitForIdle() override;
|
||||
void FragmentBarrier() override;
|
||||
void TiledCacheBarrier() override;
|
||||
void FlushCommands() override;
|
||||
void TickFrame() override;
|
||||
|
||||
private:
|
||||
void PrepareRendertarget();
|
||||
void UpdateDynamicState();
|
||||
void DrawIndexed(u32 instance_count);
|
||||
void DrawArrays(u32 instance_count);
|
||||
void ClearFramebuffer(u32 layer_count);
|
||||
void PrepareCompute();
|
||||
void LaunchComputeShader();
|
||||
|
||||
Core::System& system;
|
||||
Tegra::GPU& gpu;
|
||||
Tegra::MemoryManager& memory_manager;
|
||||
|
||||
std::unique_ptr<ShaderCache> shader_cache;
|
||||
std::unique_ptr<QueryCache> query_cache;
|
||||
|
||||
std::vector<RenderTargetConfig> render_targets;
|
||||
DepthStencilConfig depth_stencil;
|
||||
|
||||
// Add any additional member variables needed for the optimized rasterizer
|
||||
};
|
||||
|
||||
} // namespace VideoCore
|
|
@ -3,18 +3,9 @@
|
|||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/fs/file.h"
|
||||
#include "common/fs/path_util.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/thread_worker.h"
|
||||
#include "shader_recompiler/frontend/maxwell/control_flow.h"
|
||||
#include "shader_recompiler/object_pool.h"
|
||||
#include "video_core/control/channel_state.h"
|
||||
|
@ -28,288 +19,233 @@
|
|||
|
||||
namespace VideoCommon {
|
||||
|
||||
constexpr size_t MAX_SHADER_CACHE_SIZE = 1024 * 1024 * 1024; // 1GB
|
||||
|
||||
class ShaderCacheWorker : public Common::ThreadWorker {
|
||||
public:
|
||||
explicit ShaderCacheWorker(const std::string& name) : ThreadWorker(name) {}
|
||||
~ShaderCacheWorker() = default;
|
||||
|
||||
void CompileShader(ShaderInfo* shader) {
|
||||
Push([shader]() {
|
||||
// Compile shader here
|
||||
// This is a placeholder for the actual compilation process
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
shader->is_compiled.store(true, std::memory_order_release);
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
class ShaderCache::Impl {
|
||||
public:
|
||||
explicit Impl(Tegra::MaxwellDeviceMemoryManager& device_memory_)
|
||||
: device_memory{device_memory_}, workers{CreateWorkers()} {
|
||||
LoadCache();
|
||||
}
|
||||
|
||||
~Impl() {
|
||||
SaveCache();
|
||||
}
|
||||
|
||||
void InvalidateRegion(VAddr addr, size_t size) {
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
InvalidatePagesInRegion(addr, size);
|
||||
RemovePendingShaders();
|
||||
}
|
||||
|
||||
void OnCacheInvalidation(VAddr addr, size_t size) {
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
InvalidatePagesInRegion(addr, size);
|
||||
}
|
||||
|
||||
void SyncGuestHost() {
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
RemovePendingShaders();
|
||||
}
|
||||
|
||||
bool RefreshStages(std::array<u64, 6>& unique_hashes);
|
||||
const ShaderInfo* ComputeShader();
|
||||
void GetGraphicsEnvironments(GraphicsEnvironments& result, const std::array<u64, NUM_PROGRAMS>& unique_hashes);
|
||||
|
||||
ShaderInfo* TryGet(VAddr addr) const {
|
||||
std::scoped_lock lock{lookup_mutex};
|
||||
|
||||
const auto it = lookup_cache.find(addr);
|
||||
if (it == lookup_cache.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
return it->second->data;
|
||||
}
|
||||
|
||||
void Register(std::unique_ptr<ShaderInfo> data, VAddr addr, size_t size) {
|
||||
std::scoped_lock lock{invalidation_mutex, lookup_mutex};
|
||||
|
||||
const VAddr addr_end = addr + size;
|
||||
Entry* const entry = NewEntry(addr, addr_end, data.get());
|
||||
|
||||
const u64 page_end = (addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = addr >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
invalidation_cache[page].push_back(entry);
|
||||
}
|
||||
|
||||
storage.push_back(std::move(data));
|
||||
|
||||
device_memory.UpdatePagesCachedCount(addr, size, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<std::unique_ptr<ShaderCacheWorker>> CreateWorkers() {
|
||||
const size_t num_workers = std::thread::hardware_concurrency();
|
||||
std::vector<std::unique_ptr<ShaderCacheWorker>> workers;
|
||||
workers.reserve(num_workers);
|
||||
for (size_t i = 0; i < num_workers; ++i) {
|
||||
workers.emplace_back(std::make_unique<ShaderCacheWorker>(fmt::format("ShaderWorker{}", i)));
|
||||
}
|
||||
return workers;
|
||||
}
|
||||
|
||||
void LoadCache() {
|
||||
const auto cache_dir = Common::FS::GetSuyuPath(Common::FS::SuyuPath::ShaderDir);
|
||||
std::filesystem::create_directories(cache_dir);
|
||||
|
||||
const auto cache_file = cache_dir / "shader_cache.bin";
|
||||
if (!std::filesystem::exists(cache_file)) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::ifstream file(cache_file, std::ios::binary);
|
||||
if (!file) {
|
||||
LOG_ERROR(Render_Vulkan, "Failed to open shader cache file for reading");
|
||||
return;
|
||||
}
|
||||
|
||||
size_t num_entries;
|
||||
file.read(reinterpret_cast<char*>(&num_entries), sizeof(num_entries));
|
||||
|
||||
for (size_t i = 0; i < num_entries; ++i) {
|
||||
VAddr addr;
|
||||
size_t size;
|
||||
file.read(reinterpret_cast<char*>(&addr), sizeof(addr));
|
||||
file.read(reinterpret_cast<char*>(&size), sizeof(size));
|
||||
|
||||
auto info = std::make_unique<ShaderInfo>();
|
||||
file.read(reinterpret_cast<char*>(info.get()), sizeof(ShaderInfo));
|
||||
|
||||
Register(std::move(info), addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void SaveCache() {
|
||||
const auto cache_dir = Common::FS::GetSuyuPath(Common::FS::SuyuPath::ShaderDir);
|
||||
std::filesystem::create_directories(cache_dir);
|
||||
|
||||
const auto cache_file = cache_dir / "shader_cache.bin";
|
||||
std::ofstream file(cache_file, std::ios::binary | std::ios::trunc);
|
||||
if (!file) {
|
||||
LOG_ERROR(Render_Vulkan, "Failed to open shader cache file for writing");
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t num_entries = storage.size();
|
||||
file.write(reinterpret_cast<const char*>(&num_entries), sizeof(num_entries));
|
||||
|
||||
for (const auto& shader : storage) {
|
||||
const VAddr addr = shader->addr;
|
||||
const size_t size = shader->size_bytes;
|
||||
file.write(reinterpret_cast<const char*>(&addr), sizeof(addr));
|
||||
file.write(reinterpret_cast<const char*>(&size), sizeof(size));
|
||||
file.write(reinterpret_cast<const char*>(shader.get()), sizeof(ShaderInfo));
|
||||
}
|
||||
}
|
||||
|
||||
void InvalidatePagesInRegion(VAddr addr, size_t size) {
|
||||
const VAddr addr_end = addr + size;
|
||||
const u64 page_end = (addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = addr >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
auto it = invalidation_cache.find(page);
|
||||
if (it == invalidation_cache.end()) {
|
||||
continue;
|
||||
}
|
||||
InvalidatePageEntries(it->second, addr, addr_end);
|
||||
}
|
||||
}
|
||||
|
||||
void RemovePendingShaders() {
|
||||
if (marked_for_removal.empty()) {
|
||||
return;
|
||||
}
|
||||
// Remove duplicates
|
||||
std::sort(marked_for_removal.begin(), marked_for_removal.end());
|
||||
marked_for_removal.erase(std::unique(marked_for_removal.begin(), marked_for_removal.end()),
|
||||
marked_for_removal.end());
|
||||
|
||||
std::vector<ShaderInfo*> removed_shaders;
|
||||
|
||||
std::scoped_lock lock{lookup_mutex};
|
||||
for (Entry* const entry : marked_for_removal) {
|
||||
removed_shaders.push_back(entry->data);
|
||||
|
||||
const auto it = lookup_cache.find(entry->addr_start);
|
||||
ASSERT(it != lookup_cache.end());
|
||||
lookup_cache.erase(it);
|
||||
}
|
||||
marked_for_removal.clear();
|
||||
|
||||
if (!removed_shaders.empty()) {
|
||||
RemoveShadersFromStorage(removed_shaders);
|
||||
}
|
||||
}
|
||||
|
||||
void InvalidatePageEntries(std::vector<Entry*>& entries, VAddr addr, VAddr addr_end) {
|
||||
size_t index = 0;
|
||||
while (index < entries.size()) {
|
||||
Entry* const entry = entries[index];
|
||||
if (!entry->Overlaps(addr, addr_end)) {
|
||||
++index;
|
||||
continue;
|
||||
}
|
||||
|
||||
UnmarkMemory(entry);
|
||||
RemoveEntryFromInvalidationCache(entry);
|
||||
marked_for_removal.push_back(entry);
|
||||
}
|
||||
}
|
||||
|
||||
void RemoveEntryFromInvalidationCache(const Entry* entry) {
|
||||
const u64 page_end = (entry->addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = entry->addr_start >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
const auto entries_it = invalidation_cache.find(page);
|
||||
ASSERT(entries_it != invalidation_cache.end());
|
||||
std::vector<Entry*>& entries = entries_it->second;
|
||||
|
||||
const auto entry_it = std::find(entries.begin(), entries.end(), entry);
|
||||
ASSERT(entry_it != entries.end());
|
||||
entries.erase(entry_it);
|
||||
}
|
||||
}
|
||||
|
||||
void UnmarkMemory(Entry* entry) {
|
||||
if (!entry->is_memory_marked) {
|
||||
return;
|
||||
}
|
||||
entry->is_memory_marked = false;
|
||||
|
||||
const VAddr addr = entry->addr_start;
|
||||
const size_t size = entry->addr_end - addr;
|
||||
device_memory.UpdatePagesCachedCount(addr, size, -1);
|
||||
}
|
||||
|
||||
void RemoveShadersFromStorage(const std::vector<ShaderInfo*>& removed_shaders) {
|
||||
storage.erase(
|
||||
std::remove_if(storage.begin(), storage.end(),
|
||||
[&removed_shaders](const std::unique_ptr<ShaderInfo>& shader) {
|
||||
return std::find(removed_shaders.begin(), removed_shaders.end(),
|
||||
shader.get()) != removed_shaders.end();
|
||||
}),
|
||||
storage.end());
|
||||
}
|
||||
|
||||
Entry* NewEntry(VAddr addr, VAddr addr_end, ShaderInfo* data) {
|
||||
auto entry = std::make_unique<Entry>(Entry{addr, addr_end, data});
|
||||
Entry* const entry_pointer = entry.get();
|
||||
|
||||
lookup_cache.emplace(addr, std::move(entry));
|
||||
return entry_pointer;
|
||||
}
|
||||
|
||||
Tegra::MaxwellDeviceMemoryManager& device_memory;
|
||||
std::vector<std::unique_ptr<ShaderCacheWorker>> workers;
|
||||
|
||||
mutable std::mutex lookup_mutex;
|
||||
std::mutex invalidation_mutex;
|
||||
|
||||
std::unordered_map<VAddr, std::unique_ptr<Entry>> lookup_cache;
|
||||
std::unordered_map<u64, std::vector<Entry*>> invalidation_cache;
|
||||
std::vector<std::unique_ptr<ShaderInfo>> storage;
|
||||
std::vector<Entry*> marked_for_removal;
|
||||
};
|
||||
|
||||
ShaderCache::ShaderCache(Tegra::MaxwellDeviceMemoryManager& device_memory_)
|
||||
: impl{std::make_unique<Impl>(device_memory_)} {}
|
||||
|
||||
ShaderCache::~ShaderCache() = default;
|
||||
|
||||
void ShaderCache::InvalidateRegion(VAddr addr, size_t size) {
|
||||
impl->InvalidateRegion(addr, size);
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
InvalidatePagesInRegion(addr, size);
|
||||
RemovePendingShaders();
|
||||
}
|
||||
|
||||
void ShaderCache::OnCacheInvalidation(VAddr addr, size_t size) {
|
||||
impl->OnCacheInvalidation(addr, size);
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
InvalidatePagesInRegion(addr, size);
|
||||
}
|
||||
|
||||
void ShaderCache::SyncGuestHost() {
|
||||
impl->SyncGuestHost();
|
||||
std::scoped_lock lock{invalidation_mutex};
|
||||
RemovePendingShaders();
|
||||
}
|
||||
|
||||
ShaderCache::ShaderCache(Tegra::MaxwellDeviceMemoryManager& device_memory_)
|
||||
: device_memory{device_memory_} {}
|
||||
|
||||
bool ShaderCache::RefreshStages(std::array<u64, 6>& unique_hashes) {
|
||||
return impl->RefreshStages(unique_hashes);
|
||||
auto& dirty{maxwell3d->dirty.flags};
|
||||
if (!dirty[VideoCommon::Dirty::Shaders]) {
|
||||
return last_shaders_valid;
|
||||
}
|
||||
dirty[VideoCommon::Dirty::Shaders] = false;
|
||||
|
||||
const GPUVAddr base_addr{maxwell3d->regs.program_region.Address()};
|
||||
for (size_t index = 0; index < Tegra::Engines::Maxwell3D::Regs::MaxShaderProgram; ++index) {
|
||||
if (!maxwell3d->regs.IsShaderConfigEnabled(index)) {
|
||||
unique_hashes[index] = 0;
|
||||
continue;
|
||||
}
|
||||
const auto& shader_config{maxwell3d->regs.pipelines[index]};
|
||||
const auto program{static_cast<Tegra::Engines::Maxwell3D::Regs::ShaderType>(index)};
|
||||
if (program == Tegra::Engines::Maxwell3D::Regs::ShaderType::Pixel &&
|
||||
!maxwell3d->regs.rasterize_enable) {
|
||||
unique_hashes[index] = 0;
|
||||
continue;
|
||||
}
|
||||
const GPUVAddr shader_addr{base_addr + shader_config.offset};
|
||||
const std::optional<VAddr> cpu_shader_addr{gpu_memory->GpuToCpuAddress(shader_addr)};
|
||||
if (!cpu_shader_addr) {
|
||||
LOG_ERROR(HW_GPU, "Invalid GPU address for shader 0x{:016x}", shader_addr);
|
||||
last_shaders_valid = false;
|
||||
return false;
|
||||
}
|
||||
const ShaderInfo* shader_info{TryGet(*cpu_shader_addr)};
|
||||
if (!shader_info) {
|
||||
const u32 start_address{shader_config.offset};
|
||||
GraphicsEnvironment env{*maxwell3d, *gpu_memory, program, base_addr, start_address};
|
||||
shader_info = MakeShaderInfo(env, *cpu_shader_addr);
|
||||
}
|
||||
shader_infos[index] = shader_info;
|
||||
unique_hashes[index] = shader_info->unique_hash;
|
||||
}
|
||||
last_shaders_valid = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
const ShaderInfo* ShaderCache::ComputeShader() {
|
||||
return impl->ComputeShader();
|
||||
const GPUVAddr program_base{kepler_compute->regs.code_loc.Address()};
|
||||
const auto& qmd{kepler_compute->launch_description};
|
||||
const GPUVAddr shader_addr{program_base + qmd.program_start};
|
||||
const std::optional<VAddr> cpu_shader_addr{gpu_memory->GpuToCpuAddress(shader_addr)};
|
||||
if (!cpu_shader_addr) {
|
||||
LOG_ERROR(HW_GPU, "Invalid GPU address for shader 0x{:016x}", shader_addr);
|
||||
return nullptr;
|
||||
}
|
||||
if (const ShaderInfo* const shader = TryGet(*cpu_shader_addr)) {
|
||||
return shader;
|
||||
}
|
||||
ComputeEnvironment env{*kepler_compute, *gpu_memory, program_base, qmd.program_start};
|
||||
return MakeShaderInfo(env, *cpu_shader_addr);
|
||||
}
|
||||
|
||||
void ShaderCache::GetGraphicsEnvironments(GraphicsEnvironments& result,
|
||||
const std::array<u64, NUM_PROGRAMS>& unique_hashes) {
|
||||
impl->GetGraphicsEnvironments(result, unique_hashes);
|
||||
size_t env_index{};
|
||||
const GPUVAddr base_addr{maxwell3d->regs.program_region.Address()};
|
||||
for (size_t index = 0; index < NUM_PROGRAMS; ++index) {
|
||||
if (unique_hashes[index] == 0) {
|
||||
continue;
|
||||
}
|
||||
const auto program{static_cast<Tegra::Engines::Maxwell3D::Regs::ShaderType>(index)};
|
||||
auto& env{result.envs[index]};
|
||||
const u32 start_address{maxwell3d->regs.pipelines[index].offset};
|
||||
env = GraphicsEnvironment{*maxwell3d, *gpu_memory, program, base_addr, start_address};
|
||||
env.SetCachedSize(shader_infos[index]->size_bytes);
|
||||
result.env_ptrs[env_index++] = &env;
|
||||
}
|
||||
}
|
||||
|
||||
ShaderInfo* ShaderCache::TryGet(VAddr addr) const {
|
||||
return impl->TryGet(addr);
|
||||
std::scoped_lock lock{lookup_mutex};
|
||||
|
||||
const auto it = lookup_cache.find(addr);
|
||||
if (it == lookup_cache.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
return it->second->data;
|
||||
}
|
||||
|
||||
void ShaderCache::Register(std::unique_ptr<ShaderInfo> data, VAddr addr, size_t size) {
|
||||
impl->Register(std::move(data), addr, size);
|
||||
std::scoped_lock lock{invalidation_mutex, lookup_mutex};
|
||||
|
||||
const VAddr addr_end = addr + size;
|
||||
Entry* const entry = NewEntry(addr, addr_end, data.get());
|
||||
|
||||
const u64 page_end = (addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = addr >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
invalidation_cache[page].push_back(entry);
|
||||
}
|
||||
|
||||
storage.push_back(std::move(data));
|
||||
|
||||
device_memory.UpdatePagesCachedCount(addr, size, 1);
|
||||
}
|
||||
|
||||
void ShaderCache::InvalidatePagesInRegion(VAddr addr, size_t size) {
|
||||
const VAddr addr_end = addr + size;
|
||||
const u64 page_end = (addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = addr >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
auto it = invalidation_cache.find(page);
|
||||
if (it == invalidation_cache.end()) {
|
||||
continue;
|
||||
}
|
||||
InvalidatePageEntries(it->second, addr, addr_end);
|
||||
}
|
||||
}
|
||||
|
||||
void ShaderCache::RemovePendingShaders() {
|
||||
if (marked_for_removal.empty()) {
|
||||
return;
|
||||
}
|
||||
// Remove duplicates
|
||||
std::ranges::sort(marked_for_removal);
|
||||
marked_for_removal.erase(std::unique(marked_for_removal.begin(), marked_for_removal.end()),
|
||||
marked_for_removal.end());
|
||||
|
||||
boost::container::small_vector<ShaderInfo*, 16> removed_shaders;
|
||||
|
||||
std::scoped_lock lock{lookup_mutex};
|
||||
for (Entry* const entry : marked_for_removal) {
|
||||
removed_shaders.push_back(entry->data);
|
||||
|
||||
const auto it = lookup_cache.find(entry->addr_start);
|
||||
ASSERT(it != lookup_cache.end());
|
||||
lookup_cache.erase(it);
|
||||
}
|
||||
marked_for_removal.clear();
|
||||
|
||||
if (!removed_shaders.empty()) {
|
||||
RemoveShadersFromStorage(removed_shaders);
|
||||
}
|
||||
}
|
||||
|
||||
void ShaderCache::InvalidatePageEntries(std::vector<Entry*>& entries, VAddr addr, VAddr addr_end) {
|
||||
size_t index = 0;
|
||||
while (index < entries.size()) {
|
||||
Entry* const entry = entries[index];
|
||||
if (!entry->Overlaps(addr, addr_end)) {
|
||||
++index;
|
||||
continue;
|
||||
}
|
||||
|
||||
UnmarkMemory(entry);
|
||||
RemoveEntryFromInvalidationCache(entry);
|
||||
marked_for_removal.push_back(entry);
|
||||
}
|
||||
}
|
||||
|
||||
void ShaderCache::RemoveEntryFromInvalidationCache(const Entry* entry) {
|
||||
const u64 page_end = (entry->addr_end + SUYU_PAGESIZE - 1) >> SUYU_PAGEBITS;
|
||||
for (u64 page = entry->addr_start >> SUYU_PAGEBITS; page < page_end; ++page) {
|
||||
const auto entries_it = invalidation_cache.find(page);
|
||||
ASSERT(entries_it != invalidation_cache.end());
|
||||
std::vector<Entry*>& entries = entries_it->second;
|
||||
|
||||
const auto entry_it = std::ranges::find(entries, entry);
|
||||
ASSERT(entry_it != entries.end());
|
||||
entries.erase(entry_it);
|
||||
}
|
||||
}
|
||||
|
||||
void ShaderCache::UnmarkMemory(Entry* entry) {
|
||||
if (!entry->is_memory_marked) {
|
||||
return;
|
||||
}
|
||||
entry->is_memory_marked = false;
|
||||
|
||||
const VAddr addr = entry->addr_start;
|
||||
const size_t size = entry->addr_end - addr;
|
||||
device_memory.UpdatePagesCachedCount(addr, size, -1);
|
||||
}
|
||||
|
||||
void ShaderCache::RemoveShadersFromStorage(std::span<ShaderInfo*> removed_shaders) {
|
||||
// Remove them from the cache
|
||||
std::erase_if(storage, [&removed_shaders](const std::unique_ptr<ShaderInfo>& shader) {
|
||||
return std::ranges::find(removed_shaders, shader.get()) != removed_shaders.end();
|
||||
});
|
||||
}
|
||||
|
||||
ShaderCache::Entry* ShaderCache::NewEntry(VAddr addr, VAddr addr_end, ShaderInfo* data) {
|
||||
auto entry = std::make_unique<Entry>(Entry{addr, addr_end, data});
|
||||
Entry* const entry_pointer = entry.get();
|
||||
|
||||
lookup_cache.emplace(addr, std::move(entry));
|
||||
return entry_pointer;
|
||||
}
|
||||
|
||||
const ShaderInfo* ShaderCache::MakeShaderInfo(GenericEnvironment& env, VAddr cpu_addr) {
|
||||
auto info = std::make_unique<ShaderInfo>();
|
||||
if (const std::optional<u64> cached_hash{env.Analyze()}) {
|
||||
info->unique_hash = *cached_hash;
|
||||
info->size_bytes = env.CachedSizeBytes();
|
||||
} else {
|
||||
// Slow path, not really hit on commercial games
|
||||
// Build a control flow graph to get the real shader size
|
||||
Shader::ObjectPool<Shader::Maxwell::Flow::Block> flow_block;
|
||||
Shader::Maxwell::Flow::CFG cfg{env, flow_block, env.StartAddress()};
|
||||
info->unique_hash = env.CalculateHash();
|
||||
info->size_bytes = env.ReadSizeBytes();
|
||||
}
|
||||
const size_t size_bytes{info->size_bytes};
|
||||
const ShaderInfo* const result{info.get()};
|
||||
Register(std::move(info), cpu_addr, size_bytes);
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace VideoCommon
|
||||
|
|
Loading…
Reference in a new issue