gl_state: Rework to enable individual applies

This commit is contained in:
ReinUsesLisp 2019-02-27 02:21:33 -03:00
parent a6d5ff05dc
commit 78bd66d037
3 changed files with 408 additions and 423 deletions

View file

@ -63,7 +63,6 @@ public:
UpdatePipeline();
state.draw.shader_program = 0;
state.draw.program_pipeline = pipeline.handle;
state.geometry_shaders.enabled = (gs != 0);
}
private:

View file

@ -10,16 +10,62 @@
namespace OpenGL {
OpenGLState OpenGLState::cur_state;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
OpenGLState OpenGLState::cur_state;
bool OpenGLState::s_rgb_used;
namespace {
template <typename T>
bool UpdateValue(T& current_value, const T new_value) {
const bool changed = current_value != new_value;
current_value = new_value;
return changed;
}
template <typename T1, typename T2>
bool UpdateTie(T1 current_value, const T2 new_value) {
const bool changed = current_value != new_value;
current_value = new_value;
return changed;
}
void Enable(GLenum cap, bool enable) {
if (enable) {
glEnable(cap);
} else {
glDisable(cap);
}
}
void Enable(GLenum cap, GLuint index, bool enable) {
if (enable) {
glEnablei(cap, index);
} else {
glDisablei(cap, index);
}
}
void Enable(GLenum cap, bool& current_value, bool new_value) {
if (UpdateValue(current_value, new_value))
Enable(cap, new_value);
}
void Enable(GLenum cap, GLuint index, bool& current_value, bool new_value) {
if (UpdateValue(current_value, new_value))
Enable(cap, index, new_value);
}
} // namespace
OpenGLState::OpenGLState() {
// These all match default OpenGL values
geometry_shaders.enabled = false;
framebuffer_srgb.enabled = false;
multisample_control.alpha_to_coverage = false;
multisample_control.alpha_to_one = false;
cull.enabled = false;
cull.mode = GL_BACK;
cull.front_face = GL_CCW;
@ -30,14 +76,15 @@ OpenGLState::OpenGLState() {
primitive_restart.enabled = false;
primitive_restart.index = 0;
for (auto& item : color_mask) {
item.red_enabled = GL_TRUE;
item.green_enabled = GL_TRUE;
item.blue_enabled = GL_TRUE;
item.alpha_enabled = GL_TRUE;
}
stencil.test_enabled = false;
auto reset_stencil = [](auto& config) {
const auto ResetStencil = [](auto& config) {
config.test_func = GL_ALWAYS;
config.test_ref = 0;
config.test_mask = 0xFFFFFFFF;
@ -46,8 +93,10 @@ OpenGLState::OpenGLState() {
config.action_depth_pass = GL_KEEP;
config.action_stencil_fail = GL_KEEP;
};
reset_stencil(stencil.front);
reset_stencil(stencil.back);
stencil.test_enabled = false;
ResetStencil(stencil.front);
ResetStencil(stencil.back);
for (auto& item : viewports) {
item.x = 0;
item.y = 0;
@ -61,6 +110,7 @@ OpenGLState::OpenGLState() {
item.scissor.width = 0;
item.scissor.height = 0;
}
for (auto& item : blend) {
item.enabled = true;
item.rgb_equation = GL_FUNC_ADD;
@ -70,11 +120,14 @@ OpenGLState::OpenGLState() {
item.src_a_func = GL_ONE;
item.dst_a_func = GL_ZERO;
}
independant_blend.enabled = false;
blend_color.red = 0.0f;
blend_color.green = 0.0f;
blend_color.blue = 0.0f;
blend_color.alpha = 0.0f;
logic_op.enabled = false;
logic_op.operation = GL_COPY;
@ -91,9 +144,12 @@ OpenGLState::OpenGLState() {
clip_distance = {};
point.size = 1;
fragment_color_clamp.enabled = false;
depth_clamp.far_plane = false;
depth_clamp.near_plane = false;
polygon_offset.fill_enable = false;
polygon_offset.line_enable = false;
polygon_offset.point_enable = false;
@ -103,18 +159,87 @@ OpenGLState::OpenGLState() {
}
void OpenGLState::ApplyDefaultState() {
glEnable(GL_BLEND);
glDisable(GL_FRAMEBUFFER_SRGB);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_PRIMITIVE_RESTART);
glDisable(GL_STENCIL_TEST);
glEnable(GL_BLEND);
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_SCISSOR_TEST);
}
void OpenGLState::ApplyFramebufferState() const {
if (UpdateValue(cur_state.draw.read_framebuffer, draw.read_framebuffer)) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, draw.read_framebuffer);
}
if (UpdateValue(cur_state.draw.draw_framebuffer, draw.draw_framebuffer)) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, draw.draw_framebuffer);
}
}
void OpenGLState::ApplyVertexArrayState() const {
if (UpdateValue(cur_state.draw.vertex_array, draw.vertex_array)) {
glBindVertexArray(draw.vertex_array);
}
}
void OpenGLState::ApplyShaderProgram() const {
if (UpdateValue(cur_state.draw.shader_program, draw.shader_program)) {
glUseProgram(draw.shader_program);
}
}
void OpenGLState::ApplyProgramPipeline() const {
if (UpdateValue(cur_state.draw.program_pipeline, draw.program_pipeline)) {
glBindProgramPipeline(draw.program_pipeline);
}
}
void OpenGLState::ApplyClipDistances() const {
for (std::size_t i = 0; i < clip_distance.size(); ++i) {
Enable(GL_CLIP_DISTANCE0 + static_cast<GLenum>(i), cur_state.clip_distance[i],
clip_distance[i]);
}
}
void OpenGLState::ApplyPointSize() const {
if (UpdateValue(cur_state.point.size, point.size)) {
glPointSize(point.size);
}
}
void OpenGLState::ApplyFragmentColorClamp() const {
if (UpdateValue(cur_state.fragment_color_clamp.enabled, fragment_color_clamp.enabled)) {
glClampColor(GL_CLAMP_FRAGMENT_COLOR_ARB,
fragment_color_clamp.enabled ? GL_TRUE : GL_FALSE);
}
}
void OpenGLState::ApplyMultisample() const {
Enable(GL_SAMPLE_ALPHA_TO_COVERAGE, cur_state.multisample_control.alpha_to_coverage,
multisample_control.alpha_to_coverage);
Enable(GL_SAMPLE_ALPHA_TO_ONE, cur_state.multisample_control.alpha_to_one,
multisample_control.alpha_to_one);
}
void OpenGLState::ApplyDepthClamp() const {
if (depth_clamp.far_plane == cur_state.depth_clamp.far_plane &&
depth_clamp.near_plane == cur_state.depth_clamp.near_plane) {
return;
}
cur_state.depth_clamp = depth_clamp;
UNIMPLEMENTED_IF_MSG(depth_clamp.far_plane != depth_clamp.near_plane,
"Unimplemented Depth Clamp Separation!");
Enable(GL_DEPTH_CLAMP, depth_clamp.far_plane || depth_clamp.near_plane);
}
void OpenGLState::ApplySRgb() const {
if (framebuffer_srgb.enabled != cur_state.framebuffer_srgb.enabled) {
if (cur_state.framebuffer_srgb.enabled == framebuffer_srgb.enabled)
return;
cur_state.framebuffer_srgb.enabled = framebuffer_srgb.enabled;
if (framebuffer_srgb.enabled) {
// Track if sRGB is used
s_rgb_used = true;
@ -123,112 +248,291 @@ void OpenGLState::ApplySRgb() const {
glDisable(GL_FRAMEBUFFER_SRGB);
}
}
}
void OpenGLState::ApplyCulling() const {
if (cull.enabled != cur_state.cull.enabled) {
if (cull.enabled) {
glEnable(GL_CULL_FACE);
} else {
glDisable(GL_CULL_FACE);
}
}
Enable(GL_CULL_FACE, cur_state.cull.enabled, cull.enabled);
if (cull.mode != cur_state.cull.mode) {
if (UpdateValue(cur_state.cull.mode, cull.mode)) {
glCullFace(cull.mode);
}
if (cull.front_face != cur_state.cull.front_face) {
if (UpdateValue(cur_state.cull.front_face, cull.front_face)) {
glFrontFace(cull.front_face);
}
}
void OpenGLState::ApplyColorMask() const {
if (independant_blend.enabled) {
for (size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
for (std::size_t i = 0; i < Maxwell::NumRenderTargets; ++i) {
const auto& updated = color_mask[i];
const auto& current = cur_state.color_mask[i];
auto& current = cur_state.color_mask[i];
if (updated.red_enabled != current.red_enabled ||
updated.green_enabled != current.green_enabled ||
updated.blue_enabled != current.blue_enabled ||
updated.alpha_enabled != current.alpha_enabled) {
current = updated;
glColorMaski(static_cast<GLuint>(i), updated.red_enabled, updated.green_enabled,
updated.blue_enabled, updated.alpha_enabled);
}
}
} else {
const auto& updated = color_mask[0];
const auto& current = cur_state.color_mask[0];
if (updated.red_enabled != current.red_enabled ||
updated.green_enabled != current.green_enabled ||
updated.blue_enabled != current.blue_enabled ||
updated.alpha_enabled != current.alpha_enabled) {
glColorMask(updated.red_enabled, updated.green_enabled, updated.blue_enabled,
updated.alpha_enabled);
}
}
}
void OpenGLState::ApplyDepth() const {
if (depth.test_enabled != cur_state.depth.test_enabled) {
if (depth.test_enabled) {
glEnable(GL_DEPTH_TEST);
} else {
glDisable(GL_DEPTH_TEST);
}
}
Enable(GL_DEPTH_TEST, cur_state.depth.test_enabled, depth.test_enabled);
if (depth.test_func != cur_state.depth.test_func) {
if (cur_state.depth.test_func != depth.test_func) {
cur_state.depth.test_func = depth.test_func;
glDepthFunc(depth.test_func);
}
if (depth.write_mask != cur_state.depth.write_mask) {
if (cur_state.depth.write_mask != depth.write_mask) {
cur_state.depth.write_mask = depth.write_mask;
glDepthMask(depth.write_mask);
}
}
void OpenGLState::ApplyPrimitiveRestart() const {
if (primitive_restart.enabled != cur_state.primitive_restart.enabled) {
if (primitive_restart.enabled) {
glEnable(GL_PRIMITIVE_RESTART);
} else {
glDisable(GL_PRIMITIVE_RESTART);
}
}
Enable(GL_PRIMITIVE_RESTART, cur_state.primitive_restart.enabled, primitive_restart.enabled);
if (primitive_restart.index != cur_state.primitive_restart.index) {
if (cur_state.primitive_restart.index != primitive_restart.index) {
cur_state.primitive_restart.index = primitive_restart.index;
glPrimitiveRestartIndex(primitive_restart.index);
}
}
void OpenGLState::ApplyStencilTest() const {
if (stencil.test_enabled != cur_state.stencil.test_enabled) {
if (stencil.test_enabled) {
glEnable(GL_STENCIL_TEST);
} else {
glDisable(GL_STENCIL_TEST);
}
}
Enable(GL_STENCIL_TEST, cur_state.stencil.test_enabled, stencil.test_enabled);
const auto ConfigStencil = [](GLenum face, const auto& config, const auto& prev_config) {
if (config.test_func != prev_config.test_func || config.test_ref != prev_config.test_ref ||
config.test_mask != prev_config.test_mask) {
const auto ConfigStencil = [](GLenum face, const auto& config, auto& current) {
if (current.test_func != config.test_func || current.test_ref != config.test_ref ||
current.test_mask != config.test_mask) {
current.test_func = config.test_func;
current.test_ref = config.test_ref;
current.test_mask = config.test_mask;
glStencilFuncSeparate(face, config.test_func, config.test_ref, config.test_mask);
}
if (config.action_depth_fail != prev_config.action_depth_fail ||
config.action_depth_pass != prev_config.action_depth_pass ||
config.action_stencil_fail != prev_config.action_stencil_fail) {
if (current.action_depth_fail != config.action_depth_fail ||
current.action_depth_pass != config.action_depth_pass ||
current.action_stencil_fail != config.action_stencil_fail) {
current.action_depth_fail = config.action_depth_fail;
current.action_depth_pass = config.action_depth_pass;
current.action_stencil_fail = config.action_stencil_fail;
glStencilOpSeparate(face, config.action_stencil_fail, config.action_depth_fail,
config.action_depth_pass);
}
if (config.write_mask != prev_config.write_mask) {
if (current.write_mask != config.write_mask) {
current.write_mask = config.write_mask;
glStencilMaskSeparate(face, config.write_mask);
}
};
ConfigStencil(GL_FRONT, stencil.front, cur_state.stencil.front);
ConfigStencil(GL_BACK, stencil.back, cur_state.stencil.back);
}
// Viewport does not affects glClearBuffer so emulate viewport using scissor test
void OpenGLState::ApplyViewport() const {
for (GLuint i = 0; i < static_cast<GLuint>(Maxwell::NumViewports); ++i) {
const auto& updated = viewports[i];
auto& current = cur_state.viewports[i];
if (current.x != updated.x || current.y != updated.y || current.width != updated.width ||
current.height != updated.height) {
current.x = updated.x;
current.y = updated.y;
current.width = updated.width;
current.height = updated.height;
glViewportIndexedf(i, static_cast<GLfloat>(updated.x), static_cast<GLfloat>(updated.y),
static_cast<GLfloat>(updated.width),
static_cast<GLfloat>(updated.height));
}
if (current.depth_range_near != updated.depth_range_near ||
current.depth_range_far != updated.depth_range_far) {
current.depth_range_near = updated.depth_range_near;
current.depth_range_far = updated.depth_range_far;
glDepthRangeIndexed(i, updated.depth_range_near, updated.depth_range_far);
}
Enable(GL_SCISSOR_TEST, i, current.scissor.enabled, updated.scissor.enabled);
if (current.scissor.x != updated.scissor.x || current.scissor.y != updated.scissor.y ||
current.scissor.width != updated.scissor.width ||
current.scissor.height != updated.scissor.height) {
current.scissor.x = updated.scissor.x;
current.scissor.y = updated.scissor.y;
current.scissor.width = updated.scissor.width;
current.scissor.height = updated.scissor.height;
glScissorIndexed(i, updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
}
}
void OpenGLState::ApplyGlobalBlending() const {
const Blend& updated = blend[0];
Blend& current = cur_state.blend[0];
Enable(GL_BLEND, current.enabled, updated.enabled);
if (current.src_rgb_func != updated.src_rgb_func ||
current.dst_rgb_func != updated.dst_rgb_func || current.src_a_func != updated.src_a_func ||
current.dst_a_func != updated.dst_a_func) {
current.src_rgb_func = updated.src_rgb_func;
current.dst_rgb_func = updated.dst_rgb_func;
current.src_a_func = updated.src_a_func;
current.dst_a_func = updated.dst_a_func;
glBlendFuncSeparate(updated.src_rgb_func, updated.dst_rgb_func, updated.src_a_func,
updated.dst_a_func);
}
if (current.rgb_equation != updated.rgb_equation || current.a_equation != updated.a_equation) {
current.rgb_equation = updated.rgb_equation;
current.a_equation = updated.a_equation;
glBlendEquationSeparate(updated.rgb_equation, updated.a_equation);
}
}
void OpenGLState::ApplyTargetBlending(std::size_t target, bool force) const {
const Blend& updated = blend[target];
Blend& current = cur_state.blend[target];
if (current.enabled != updated.enabled || force) {
current.enabled = updated.enabled;
Enable(GL_BLEND, static_cast<GLuint>(target), updated.enabled);
}
if (UpdateTie(std::tie(current.src_rgb_func, current.dst_rgb_func, current.src_a_func,
current.dst_a_func),
std::tie(updated.src_rgb_func, updated.dst_rgb_func, updated.src_a_func,
updated.dst_a_func))) {
glBlendFuncSeparatei(static_cast<GLuint>(target), updated.src_rgb_func,
updated.dst_rgb_func, updated.src_a_func, updated.dst_a_func);
}
if (UpdateTie(std::tie(current.rgb_equation, current.a_equation),
std::tie(updated.rgb_equation, updated.a_equation))) {
glBlendEquationSeparatei(static_cast<GLuint>(target), updated.rgb_equation,
updated.a_equation);
}
}
void OpenGLState::ApplyBlending() const {
if (independant_blend.enabled) {
const bool force = independant_blend.enabled != cur_state.independant_blend.enabled;
for (std::size_t target = 0; target < Maxwell::NumRenderTargets; ++target) {
ApplyTargetBlending(target, force);
}
} else {
ApplyGlobalBlending();
}
cur_state.independant_blend.enabled = independant_blend.enabled;
if (UpdateTie(
std::tie(cur_state.blend_color.red, cur_state.blend_color.green,
cur_state.blend_color.blue, cur_state.blend_color.alpha),
std::tie(blend_color.red, blend_color.green, blend_color.blue, blend_color.alpha))) {
glBlendColor(blend_color.red, blend_color.green, blend_color.blue, blend_color.alpha);
}
}
void OpenGLState::ApplyLogicOp() const {
Enable(GL_COLOR_LOGIC_OP, cur_state.logic_op.enabled, logic_op.enabled);
if (UpdateValue(cur_state.logic_op.operation, logic_op.operation)) {
glLogicOp(logic_op.operation);
}
}
void OpenGLState::ApplyPolygonOffset() const {
Enable(GL_POLYGON_OFFSET_FILL, cur_state.polygon_offset.fill_enable,
polygon_offset.fill_enable);
Enable(GL_POLYGON_OFFSET_LINE, cur_state.polygon_offset.line_enable,
polygon_offset.line_enable);
Enable(GL_POLYGON_OFFSET_POINT, cur_state.polygon_offset.point_enable,
polygon_offset.point_enable);
if (UpdateTie(std::tie(cur_state.polygon_offset.factor, cur_state.polygon_offset.units,
cur_state.polygon_offset.clamp),
std::tie(polygon_offset.factor, polygon_offset.units, polygon_offset.clamp))) {
if (GLAD_GL_EXT_polygon_offset_clamp && polygon_offset.clamp != 0) {
glPolygonOffsetClamp(polygon_offset.factor, polygon_offset.units, polygon_offset.clamp);
} else {
UNIMPLEMENTED_IF_MSG(polygon_offset.clamp != 0,
"Unimplemented Depth polygon offset clamp.");
glPolygonOffset(polygon_offset.factor, polygon_offset.units);
}
}
}
void OpenGLState::ApplyTextures() const {
bool has_delta{};
std::size_t first{};
std::size_t last{};
std::array<GLuint, Maxwell::NumTextureSamplers> textures;
for (std::size_t i = 0; i < std::size(texture_units); ++i) {
const auto& texture_unit = texture_units[i];
auto& cur_state_texture_unit = cur_state.texture_units[i];
textures[i] = texture_unit.texture;
if (cur_state_texture_unit.texture == textures[i])
continue;
cur_state_texture_unit.texture = textures[i];
if (!has_delta) {
first = i;
has_delta = true;
}
last = i;
}
if (has_delta) {
glBindTextures(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
textures.data() + first);
}
}
void OpenGLState::ApplySamplers() const {
bool has_delta{};
std::size_t first{};
std::size_t last{};
std::array<GLuint, Maxwell::NumTextureSamplers> samplers;
for (std::size_t i = 0; i < std::size(samplers); ++i) {
if (cur_state.texture_units[i].sampler == texture_units[i].sampler)
continue;
cur_state.texture_units[i].sampler = texture_units[i].sampler;
samplers[i] = texture_units[i].sampler;
if (!has_delta) {
first = i;
has_delta = true;
}
last = i;
}
if (has_delta) {
glBindSamplers(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
samplers.data() + first);
}
}
void OpenGLState::Apply() const {
ApplyFramebufferState();
ApplyVertexArrayState();
ApplyShaderProgram();
ApplyProgramPipeline();
ApplyClipDistances();
ApplyPointSize();
ApplyFragmentColorClamp();
ApplyMultisample();
ApplyDepthClamp();
ApplyColorMask();
ApplyViewport();
ApplyStencilTest();
ApplySRgb();
ApplyCulling();
ApplyDepth();
ApplyPrimitiveRestart();
ApplyBlending();
ApplyLogicOp();
ApplyTextures();
ApplySamplers();
ApplyPolygonOffset();
}
void OpenGLState::EmulateViewportWithScissor() {
auto& current = viewports[0];
if (current.scissor.enabled) {
@ -251,332 +555,6 @@ void OpenGLState::EmulateViewportWithScissor() {
}
}
void OpenGLState::ApplyViewport() const {
if (geometry_shaders.enabled) {
for (GLuint i = 0; i < static_cast<GLuint>(Tegra::Engines::Maxwell3D::Regs::NumViewports);
i++) {
const auto& current = cur_state.viewports[i];
const auto& updated = viewports[i];
if (updated.x != current.x || updated.y != current.y ||
updated.width != current.width || updated.height != current.height) {
glViewportIndexedf(
i, static_cast<GLfloat>(updated.x), static_cast<GLfloat>(updated.y),
static_cast<GLfloat>(updated.width), static_cast<GLfloat>(updated.height));
}
if (updated.depth_range_near != current.depth_range_near ||
updated.depth_range_far != current.depth_range_far) {
glDepthRangeIndexed(i, updated.depth_range_near, updated.depth_range_far);
}
if (updated.scissor.enabled != current.scissor.enabled) {
if (updated.scissor.enabled) {
glEnablei(GL_SCISSOR_TEST, i);
} else {
glDisablei(GL_SCISSOR_TEST, i);
}
}
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
glScissorIndexed(i, updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
}
} else {
const auto& current = cur_state.viewports[0];
const auto& updated = viewports[0];
if (updated.x != current.x || updated.y != current.y || updated.width != current.width ||
updated.height != current.height) {
glViewport(updated.x, updated.y, updated.width, updated.height);
}
if (updated.depth_range_near != current.depth_range_near ||
updated.depth_range_far != current.depth_range_far) {
glDepthRange(updated.depth_range_near, updated.depth_range_far);
}
if (updated.scissor.enabled != current.scissor.enabled) {
if (updated.scissor.enabled) {
glEnable(GL_SCISSOR_TEST);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
glScissor(updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
}
}
void OpenGLState::ApplyGlobalBlending() const {
const Blend& current = cur_state.blend[0];
const Blend& updated = blend[0];
if (updated.enabled != current.enabled) {
if (updated.enabled) {
glEnable(GL_BLEND);
} else {
glDisable(GL_BLEND);
}
}
if (!updated.enabled) {
return;
}
if (updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparate(updated.src_rgb_func, updated.dst_rgb_func, updated.src_a_func,
updated.dst_a_func);
}
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
glBlendEquationSeparate(updated.rgb_equation, updated.a_equation);
}
}
void OpenGLState::ApplyTargetBlending(std::size_t target, bool force) const {
const Blend& updated = blend[target];
const Blend& current = cur_state.blend[target];
if (updated.enabled != current.enabled || force) {
if (updated.enabled) {
glEnablei(GL_BLEND, static_cast<GLuint>(target));
} else {
glDisablei(GL_BLEND, static_cast<GLuint>(target));
}
}
if (updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparatei(static_cast<GLuint>(target), updated.src_rgb_func,
updated.dst_rgb_func, updated.src_a_func, updated.dst_a_func);
}
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
glBlendEquationSeparatei(static_cast<GLuint>(target), updated.rgb_equation,
updated.a_equation);
}
}
void OpenGLState::ApplyBlending() const {
if (independant_blend.enabled) {
for (size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
ApplyTargetBlending(i,
independant_blend.enabled != cur_state.independant_blend.enabled);
}
} else {
ApplyGlobalBlending();
}
if (blend_color.red != cur_state.blend_color.red ||
blend_color.green != cur_state.blend_color.green ||
blend_color.blue != cur_state.blend_color.blue ||
blend_color.alpha != cur_state.blend_color.alpha) {
glBlendColor(blend_color.red, blend_color.green, blend_color.blue, blend_color.alpha);
}
}
void OpenGLState::ApplyLogicOp() const {
if (logic_op.enabled != cur_state.logic_op.enabled) {
if (logic_op.enabled) {
glEnable(GL_COLOR_LOGIC_OP);
} else {
glDisable(GL_COLOR_LOGIC_OP);
}
}
if (logic_op.operation != cur_state.logic_op.operation) {
glLogicOp(logic_op.operation);
}
}
void OpenGLState::ApplyPolygonOffset() const {
const bool fill_enable_changed =
polygon_offset.fill_enable != cur_state.polygon_offset.fill_enable;
const bool line_enable_changed =
polygon_offset.line_enable != cur_state.polygon_offset.line_enable;
const bool point_enable_changed =
polygon_offset.point_enable != cur_state.polygon_offset.point_enable;
const bool factor_changed = polygon_offset.factor != cur_state.polygon_offset.factor;
const bool units_changed = polygon_offset.units != cur_state.polygon_offset.units;
const bool clamp_changed = polygon_offset.clamp != cur_state.polygon_offset.clamp;
if (fill_enable_changed) {
if (polygon_offset.fill_enable) {
glEnable(GL_POLYGON_OFFSET_FILL);
} else {
glDisable(GL_POLYGON_OFFSET_FILL);
}
}
if (line_enable_changed) {
if (polygon_offset.line_enable) {
glEnable(GL_POLYGON_OFFSET_LINE);
} else {
glDisable(GL_POLYGON_OFFSET_LINE);
}
}
if (point_enable_changed) {
if (polygon_offset.point_enable) {
glEnable(GL_POLYGON_OFFSET_POINT);
} else {
glDisable(GL_POLYGON_OFFSET_POINT);
}
}
if (factor_changed || units_changed || clamp_changed) {
if (GLAD_GL_EXT_polygon_offset_clamp && polygon_offset.clamp != 0) {
glPolygonOffsetClamp(polygon_offset.factor, polygon_offset.units, polygon_offset.clamp);
} else {
glPolygonOffset(polygon_offset.factor, polygon_offset.units);
UNIMPLEMENTED_IF_MSG(polygon_offset.clamp != 0,
"Unimplemented Depth polygon offset clamp.");
}
}
}
void OpenGLState::ApplyTextures() const {
bool has_delta{};
std::size_t first{};
std::size_t last{};
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumTextureSamplers> textures;
for (std::size_t i = 0; i < std::size(texture_units); ++i) {
const auto& texture_unit = texture_units[i];
const auto& cur_state_texture_unit = cur_state.texture_units[i];
textures[i] = texture_unit.texture;
if (textures[i] != cur_state_texture_unit.texture) {
if (!has_delta) {
first = i;
has_delta = true;
}
last = i;
}
}
if (has_delta) {
glBindTextures(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
textures.data() + first);
}
}
void OpenGLState::ApplySamplers() const {
bool has_delta{};
std::size_t first{};
std::size_t last{};
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumTextureSamplers> samplers;
for (std::size_t i = 0; i < std::size(samplers); ++i) {
samplers[i] = texture_units[i].sampler;
if (samplers[i] != cur_state.texture_units[i].sampler) {
if (!has_delta) {
first = i;
has_delta = true;
}
last = i;
}
}
if (has_delta) {
glBindSamplers(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
samplers.data() + first);
}
}
void OpenGLState::ApplyFramebufferState() const {
if (draw.read_framebuffer != cur_state.draw.read_framebuffer) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, draw.read_framebuffer);
}
if (draw.draw_framebuffer != cur_state.draw.draw_framebuffer) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, draw.draw_framebuffer);
}
}
void OpenGLState::ApplyVertexArrayState() const {
if (draw.vertex_array != cur_state.draw.vertex_array) {
glBindVertexArray(draw.vertex_array);
}
}
void OpenGLState::ApplyDepthClamp() const {
if (depth_clamp.far_plane == cur_state.depth_clamp.far_plane &&
depth_clamp.near_plane == cur_state.depth_clamp.near_plane) {
return;
}
UNIMPLEMENTED_IF_MSG(depth_clamp.far_plane != depth_clamp.near_plane,
"Unimplemented Depth Clamp Separation!");
if (depth_clamp.far_plane || depth_clamp.near_plane) {
glEnable(GL_DEPTH_CLAMP);
} else {
glDisable(GL_DEPTH_CLAMP);
}
}
void OpenGLState::Apply() const {
ApplyFramebufferState();
ApplyVertexArrayState();
// Shader program
if (draw.shader_program != cur_state.draw.shader_program) {
glUseProgram(draw.shader_program);
}
// Program pipeline
if (draw.program_pipeline != cur_state.draw.program_pipeline) {
glBindProgramPipeline(draw.program_pipeline);
}
// Clip distance
for (std::size_t i = 0; i < clip_distance.size(); ++i) {
if (clip_distance[i] != cur_state.clip_distance[i]) {
if (clip_distance[i]) {
glEnable(GL_CLIP_DISTANCE0 + static_cast<GLenum>(i));
} else {
glDisable(GL_CLIP_DISTANCE0 + static_cast<GLenum>(i));
}
}
}
// Point
if (point.size != cur_state.point.size) {
glPointSize(point.size);
}
if (fragment_color_clamp.enabled != cur_state.fragment_color_clamp.enabled) {
glClampColor(GL_CLAMP_FRAGMENT_COLOR_ARB,
fragment_color_clamp.enabled ? GL_TRUE : GL_FALSE);
}
if (multisample_control.alpha_to_coverage != cur_state.multisample_control.alpha_to_coverage) {
if (multisample_control.alpha_to_coverage) {
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE);
} else {
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE);
}
}
if (multisample_control.alpha_to_one != cur_state.multisample_control.alpha_to_one) {
if (multisample_control.alpha_to_one) {
glEnable(GL_SAMPLE_ALPHA_TO_ONE);
} else {
glDisable(GL_SAMPLE_ALPHA_TO_ONE);
}
}
ApplyDepthClamp();
ApplyColorMask();
ApplyViewport();
ApplyStencilTest();
ApplySRgb();
ApplyCulling();
ApplyDepth();
ApplyPrimitiveRestart();
ApplyBlending();
ApplyLogicOp();
ApplyTextures();
ApplySamplers();
ApplyPolygonOffset();
cur_state = *this;
}
OpenGLState& OpenGLState::UnbindTexture(GLuint handle) {
for (auto& unit : texture_units) {
if (unit.texture == handle) {

View file

@ -53,10 +53,6 @@ public:
bool near_plane;
} depth_clamp; // GL_DEPTH_CLAMP
struct {
bool enabled; // viewports arrays are only supported when geometry shaders are enabled.
} geometry_shaders;
struct {
bool enabled; // GL_CULL_FACE
GLenum mode; // GL_CULL_FACE_MODE
@ -184,34 +180,26 @@ public:
static OpenGLState GetCurState() {
return cur_state;
}
static bool GetsRGBUsed() {
return s_rgb_used;
}
static void ClearsRGBUsed() {
s_rgb_used = false;
}
/// Apply this state as the current OpenGL state
void Apply() const;
/// Apply only the state affecting the framebuffer
void ApplyFramebufferState() const;
/// Apply only the state affecting the vertex array
void ApplyVertexArrayState() const;
/// Set the initial OpenGL state
static void ApplyDefaultState();
/// Resets any references to the given resource
OpenGLState& UnbindTexture(GLuint handle);
OpenGLState& ResetSampler(GLuint handle);
OpenGLState& ResetProgram(GLuint handle);
OpenGLState& ResetPipeline(GLuint handle);
OpenGLState& ResetVertexArray(GLuint handle);
OpenGLState& ResetFramebuffer(GLuint handle);
void EmulateViewportWithScissor();
private:
static OpenGLState cur_state;
// Workaround for sRGB problems caused by
// QT not supporting srgb output
static bool s_rgb_used;
void ApplyFramebufferState() const;
void ApplyVertexArrayState() const;
void ApplyShaderProgram() const;
void ApplyProgramPipeline() const;
void ApplyClipDistances() const;
void ApplyPointSize() const;
void ApplyFragmentColorClamp() const;
void ApplyMultisample() const;
void ApplySRgb() const;
void ApplyCulling() const;
void ApplyColorMask() const;
@ -227,6 +215,26 @@ private:
void ApplySamplers() const;
void ApplyDepthClamp() const;
void ApplyPolygonOffset() const;
/// Set the initial OpenGL state
static void ApplyDefaultState();
/// Resets any references to the given resource
OpenGLState& UnbindTexture(GLuint handle);
OpenGLState& ResetSampler(GLuint handle);
OpenGLState& ResetProgram(GLuint handle);
OpenGLState& ResetPipeline(GLuint handle);
OpenGLState& ResetVertexArray(GLuint handle);
OpenGLState& ResetFramebuffer(GLuint handle);
/// Viewport does not affects glClearBuffer so emulate viewport using scissor test
void EmulateViewportWithScissor();
private:
static OpenGLState cur_state;
// Workaround for sRGB problems caused by QT not supporting srgb output
static bool s_rgb_used;
};
} // namespace OpenGL