mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2024-12-22 08:20:57 +01:00
Merge pull request #8088 from bunnei/fixup-nvflinger
Follow-up fixes for NVFlinger rewrite
This commit is contained in:
commit
99654721eb
9 changed files with 136 additions and 547 deletions
|
@ -21,7 +21,7 @@ Status BufferItemConsumer::AcquireBuffer(BufferItem* item, std::chrono::nanoseco
|
|||
return Status::BadValue;
|
||||
}
|
||||
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
|
||||
if (const auto status = AcquireBufferLocked(item, present_when); status != Status::NoError) {
|
||||
if (status != Status::NoBufferAvailable) {
|
||||
|
@ -40,7 +40,7 @@ Status BufferItemConsumer::AcquireBuffer(BufferItem* item, std::chrono::nanoseco
|
|||
}
|
||||
|
||||
Status BufferItemConsumer::ReleaseBuffer(const BufferItem& item, Fence& release_fence) {
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
|
||||
if (const auto status = AddReleaseFenceLocked(item.buf, item.graphic_buffer, release_fence);
|
||||
status != Status::NoError) {
|
||||
|
|
|
@ -1,206 +0,0 @@
|
|||
// Copyright 2018 yuzu emulator team
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_writable_event.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/service/kernel_helpers.h"
|
||||
#include "core/hle/service/nvflinger/buffer_queue.h"
|
||||
|
||||
namespace Service::NVFlinger {
|
||||
|
||||
BufferQueue::BufferQueue(Kernel::KernelCore& kernel, u32 id_, u64 layer_id_,
|
||||
KernelHelpers::ServiceContext& service_context_)
|
||||
: id(id_), layer_id(layer_id_), service_context{service_context_} {
|
||||
buffer_wait_event = service_context.CreateEvent("BufferQueue:WaitEvent");
|
||||
}
|
||||
|
||||
BufferQueue::~BufferQueue() {
|
||||
service_context.CloseEvent(buffer_wait_event);
|
||||
}
|
||||
|
||||
void BufferQueue::SetPreallocatedBuffer(u32 slot, const IGBPBuffer& igbp_buffer) {
|
||||
ASSERT(slot < buffer_slots);
|
||||
LOG_WARNING(Service, "Adding graphics buffer {}", slot);
|
||||
|
||||
{
|
||||
std::unique_lock lock{free_buffers_mutex};
|
||||
free_buffers.push_back(slot);
|
||||
}
|
||||
free_buffers_condition.notify_one();
|
||||
|
||||
buffers[slot] = {
|
||||
.slot = slot,
|
||||
.status = Buffer::Status::Free,
|
||||
.igbp_buffer = igbp_buffer,
|
||||
.transform = {},
|
||||
.crop_rect = {},
|
||||
.swap_interval = 0,
|
||||
.multi_fence = {},
|
||||
};
|
||||
|
||||
buffer_wait_event->GetWritableEvent().Signal();
|
||||
}
|
||||
|
||||
std::optional<std::pair<u32, Service::Nvidia::MultiFence*>> BufferQueue::DequeueBuffer(u32 width,
|
||||
u32 height) {
|
||||
// Wait for first request before trying to dequeue
|
||||
{
|
||||
std::unique_lock lock{free_buffers_mutex};
|
||||
free_buffers_condition.wait(lock, [this] { return !free_buffers.empty() || !is_connect; });
|
||||
}
|
||||
|
||||
if (!is_connect) {
|
||||
// Buffer was disconnected while the thread was blocked, this is most likely due to
|
||||
// emulation being stopped
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
std::unique_lock lock{free_buffers_mutex};
|
||||
|
||||
auto f_itr = free_buffers.begin();
|
||||
auto slot = buffers.size();
|
||||
|
||||
while (f_itr != free_buffers.end()) {
|
||||
const Buffer& buffer = buffers[*f_itr];
|
||||
if (buffer.status == Buffer::Status::Free && buffer.igbp_buffer.width == width &&
|
||||
buffer.igbp_buffer.height == height) {
|
||||
slot = *f_itr;
|
||||
free_buffers.erase(f_itr);
|
||||
break;
|
||||
}
|
||||
++f_itr;
|
||||
}
|
||||
if (slot == buffers.size()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
buffers[slot].status = Buffer::Status::Dequeued;
|
||||
return {{buffers[slot].slot, &buffers[slot].multi_fence}};
|
||||
}
|
||||
|
||||
const IGBPBuffer& BufferQueue::RequestBuffer(u32 slot) const {
|
||||
ASSERT(slot < buffers.size());
|
||||
ASSERT(buffers[slot].status == Buffer::Status::Dequeued);
|
||||
ASSERT(buffers[slot].slot == slot);
|
||||
|
||||
return buffers[slot].igbp_buffer;
|
||||
}
|
||||
|
||||
void BufferQueue::QueueBuffer(u32 slot, BufferTransformFlags transform,
|
||||
const Common::Rectangle<int>& crop_rect, u32 swap_interval,
|
||||
Service::Nvidia::MultiFence& multi_fence) {
|
||||
ASSERT(slot < buffers.size());
|
||||
ASSERT(buffers[slot].status == Buffer::Status::Dequeued);
|
||||
ASSERT(buffers[slot].slot == slot);
|
||||
|
||||
buffers[slot].status = Buffer::Status::Queued;
|
||||
buffers[slot].transform = transform;
|
||||
buffers[slot].crop_rect = crop_rect;
|
||||
buffers[slot].swap_interval = swap_interval;
|
||||
buffers[slot].multi_fence = multi_fence;
|
||||
std::unique_lock lock{queue_sequence_mutex};
|
||||
queue_sequence.push_back(slot);
|
||||
}
|
||||
|
||||
void BufferQueue::CancelBuffer(u32 slot, const Service::Nvidia::MultiFence& multi_fence) {
|
||||
ASSERT(slot < buffers.size());
|
||||
ASSERT(buffers[slot].status != Buffer::Status::Free);
|
||||
ASSERT(buffers[slot].slot == slot);
|
||||
|
||||
buffers[slot].status = Buffer::Status::Free;
|
||||
buffers[slot].multi_fence = multi_fence;
|
||||
buffers[slot].swap_interval = 0;
|
||||
|
||||
{
|
||||
std::unique_lock lock{free_buffers_mutex};
|
||||
free_buffers.push_back(slot);
|
||||
}
|
||||
free_buffers_condition.notify_one();
|
||||
|
||||
buffer_wait_event->GetWritableEvent().Signal();
|
||||
}
|
||||
|
||||
std::optional<std::reference_wrapper<const BufferQueue::Buffer>> BufferQueue::AcquireBuffer() {
|
||||
std::unique_lock lock{queue_sequence_mutex};
|
||||
std::size_t buffer_slot = buffers.size();
|
||||
// Iterate to find a queued buffer matching the requested slot.
|
||||
while (buffer_slot == buffers.size() && !queue_sequence.empty()) {
|
||||
const auto slot = static_cast<std::size_t>(queue_sequence.front());
|
||||
ASSERT(slot < buffers.size());
|
||||
if (buffers[slot].status == Buffer::Status::Queued) {
|
||||
ASSERT(buffers[slot].slot == slot);
|
||||
buffer_slot = slot;
|
||||
}
|
||||
queue_sequence.pop_front();
|
||||
}
|
||||
if (buffer_slot == buffers.size()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
buffers[buffer_slot].status = Buffer::Status::Acquired;
|
||||
return {{buffers[buffer_slot]}};
|
||||
}
|
||||
|
||||
void BufferQueue::ReleaseBuffer(u32 slot) {
|
||||
ASSERT(slot < buffers.size());
|
||||
ASSERT(buffers[slot].status == Buffer::Status::Acquired);
|
||||
ASSERT(buffers[slot].slot == slot);
|
||||
|
||||
buffers[slot].status = Buffer::Status::Free;
|
||||
{
|
||||
std::unique_lock lock{free_buffers_mutex};
|
||||
free_buffers.push_back(slot);
|
||||
}
|
||||
free_buffers_condition.notify_one();
|
||||
|
||||
buffer_wait_event->GetWritableEvent().Signal();
|
||||
}
|
||||
|
||||
void BufferQueue::Connect() {
|
||||
std::unique_lock lock{queue_sequence_mutex};
|
||||
queue_sequence.clear();
|
||||
is_connect = true;
|
||||
}
|
||||
|
||||
void BufferQueue::Disconnect() {
|
||||
buffers.fill({});
|
||||
{
|
||||
std::unique_lock lock{queue_sequence_mutex};
|
||||
queue_sequence.clear();
|
||||
}
|
||||
buffer_wait_event->GetWritableEvent().Signal();
|
||||
is_connect = false;
|
||||
free_buffers_condition.notify_one();
|
||||
}
|
||||
|
||||
u32 BufferQueue::Query(QueryType type) {
|
||||
LOG_WARNING(Service, "(STUBBED) called type={}", type);
|
||||
|
||||
switch (type) {
|
||||
case QueryType::NativeWindowFormat:
|
||||
return static_cast<u32>(PixelFormat::RGBA8888);
|
||||
case QueryType::NativeWindowWidth:
|
||||
case QueryType::NativeWindowHeight:
|
||||
break;
|
||||
case QueryType::NativeWindowMinUndequeuedBuffers:
|
||||
return 0;
|
||||
case QueryType::NativeWindowConsumerUsageBits:
|
||||
return 0;
|
||||
}
|
||||
UNIMPLEMENTED_MSG("Unimplemented query type={}", type);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Kernel::KWritableEvent& BufferQueue::GetWritableBufferWaitEvent() {
|
||||
return buffer_wait_event->GetWritableEvent();
|
||||
}
|
||||
|
||||
Kernel::KReadableEvent& BufferQueue::GetBufferWaitEvent() {
|
||||
return buffer_wait_event->GetReadableEvent();
|
||||
}
|
||||
|
||||
} // namespace Service::NVFlinger
|
|
@ -1,154 +0,0 @@
|
|||
// Copyright 2018 yuzu emulator team
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <condition_variable>
|
||||
#include <list>
|
||||
#include <mutex>
|
||||
#include <optional>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/math_util.h"
|
||||
#include "common/swap.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/service/nvdrv/nvdata.h"
|
||||
|
||||
namespace Kernel {
|
||||
class KernelCore;
|
||||
class KEvent;
|
||||
class KReadableEvent;
|
||||
class KWritableEvent;
|
||||
} // namespace Kernel
|
||||
|
||||
namespace Service::KernelHelpers {
|
||||
class ServiceContext;
|
||||
} // namespace Service::KernelHelpers
|
||||
|
||||
namespace Service::NVFlinger {
|
||||
|
||||
constexpr u32 buffer_slots = 0x40;
|
||||
struct IGBPBuffer {
|
||||
u32_le magic;
|
||||
u32_le width;
|
||||
u32_le height;
|
||||
u32_le stride;
|
||||
u32_le format;
|
||||
u32_le usage;
|
||||
INSERT_PADDING_WORDS(1);
|
||||
u32_le index;
|
||||
INSERT_PADDING_WORDS(3);
|
||||
u32_le gpu_buffer_id;
|
||||
INSERT_PADDING_WORDS(6);
|
||||
u32_le external_format;
|
||||
INSERT_PADDING_WORDS(10);
|
||||
u32_le nvmap_handle;
|
||||
u32_le offset;
|
||||
INSERT_PADDING_WORDS(60);
|
||||
};
|
||||
|
||||
static_assert(sizeof(IGBPBuffer) == 0x16C, "IGBPBuffer has wrong size");
|
||||
|
||||
class BufferQueue final {
|
||||
public:
|
||||
enum class QueryType {
|
||||
NativeWindowWidth = 0,
|
||||
NativeWindowHeight = 1,
|
||||
NativeWindowFormat = 2,
|
||||
/// The minimum number of buffers that must remain un-dequeued after a buffer has been
|
||||
/// queued
|
||||
NativeWindowMinUndequeuedBuffers = 3,
|
||||
/// The consumer gralloc usage bits currently set by the consumer
|
||||
NativeWindowConsumerUsageBits = 10,
|
||||
};
|
||||
|
||||
explicit BufferQueue(Kernel::KernelCore& kernel, u32 id_, u64 layer_id_,
|
||||
KernelHelpers::ServiceContext& service_context_);
|
||||
~BufferQueue();
|
||||
|
||||
enum class BufferTransformFlags : u32 {
|
||||
/// No transform flags are set
|
||||
Unset = 0x00,
|
||||
/// Flip source image horizontally (around the vertical axis)
|
||||
FlipH = 0x01,
|
||||
/// Flip source image vertically (around the horizontal axis)
|
||||
FlipV = 0x02,
|
||||
/// Rotate source image 90 degrees clockwise
|
||||
Rotate90 = 0x04,
|
||||
/// Rotate source image 180 degrees
|
||||
Rotate180 = 0x03,
|
||||
/// Rotate source image 270 degrees clockwise
|
||||
Rotate270 = 0x07,
|
||||
};
|
||||
|
||||
enum class PixelFormat : u32 {
|
||||
RGBA8888 = 1,
|
||||
RGBX8888 = 2,
|
||||
RGB888 = 3,
|
||||
RGB565 = 4,
|
||||
BGRA8888 = 5,
|
||||
RGBA5551 = 6,
|
||||
RRGBA4444 = 7,
|
||||
};
|
||||
|
||||
struct Buffer {
|
||||
enum class Status { Free = 0, Queued = 1, Dequeued = 2, Acquired = 3 };
|
||||
|
||||
u32 slot;
|
||||
Status status = Status::Free;
|
||||
IGBPBuffer igbp_buffer;
|
||||
BufferTransformFlags transform;
|
||||
Common::Rectangle<int> crop_rect;
|
||||
u32 swap_interval;
|
||||
Service::Nvidia::MultiFence multi_fence;
|
||||
};
|
||||
|
||||
void SetPreallocatedBuffer(u32 slot, const IGBPBuffer& igbp_buffer);
|
||||
std::optional<std::pair<u32, Service::Nvidia::MultiFence*>> DequeueBuffer(u32 width,
|
||||
u32 height);
|
||||
const IGBPBuffer& RequestBuffer(u32 slot) const;
|
||||
void QueueBuffer(u32 slot, BufferTransformFlags transform,
|
||||
const Common::Rectangle<int>& crop_rect, u32 swap_interval,
|
||||
Service::Nvidia::MultiFence& multi_fence);
|
||||
void CancelBuffer(u32 slot, const Service::Nvidia::MultiFence& multi_fence);
|
||||
std::optional<std::reference_wrapper<const Buffer>> AcquireBuffer();
|
||||
void ReleaseBuffer(u32 slot);
|
||||
void Connect();
|
||||
void Disconnect();
|
||||
u32 Query(QueryType type);
|
||||
|
||||
u32 GetId() const {
|
||||
return id;
|
||||
}
|
||||
|
||||
bool IsConnected() const {
|
||||
return is_connect;
|
||||
}
|
||||
|
||||
Kernel::KWritableEvent& GetWritableBufferWaitEvent();
|
||||
|
||||
Kernel::KReadableEvent& GetBufferWaitEvent();
|
||||
|
||||
private:
|
||||
BufferQueue(const BufferQueue&) = delete;
|
||||
|
||||
u32 id{};
|
||||
u64 layer_id{};
|
||||
std::atomic_bool is_connect{};
|
||||
|
||||
std::list<u32> free_buffers;
|
||||
std::array<Buffer, buffer_slots> buffers;
|
||||
std::list<u32> queue_sequence;
|
||||
Kernel::KEvent* buffer_wait_event{};
|
||||
|
||||
std::mutex free_buffers_mutex;
|
||||
std::condition_variable free_buffers_condition;
|
||||
|
||||
std::mutex queue_sequence_mutex;
|
||||
|
||||
KernelHelpers::ServiceContext& service_context;
|
||||
};
|
||||
|
||||
} // namespace Service::NVFlinger
|
|
@ -20,122 +20,102 @@ BufferQueueConsumer::~BufferQueueConsumer() = default;
|
|||
Status BufferQueueConsumer::AcquireBuffer(BufferItem* out_buffer,
|
||||
std::chrono::nanoseconds expected_present,
|
||||
u64 max_frame_number) {
|
||||
s32 num_dropped_buffers{};
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
std::shared_ptr<IProducerListener> listener;
|
||||
{
|
||||
std::unique_lock lock(core->mutex);
|
||||
// Check that the consumer doesn't currently have the maximum number of buffers acquired.
|
||||
const s32 num_acquired_buffers{
|
||||
static_cast<s32>(std::count_if(slots.begin(), slots.end(), [](const auto& slot) {
|
||||
return slot.buffer_state == BufferState::Acquired;
|
||||
}))};
|
||||
|
||||
// Check that the consumer doesn't currently have the maximum number of buffers acquired.
|
||||
const s32 num_acquired_buffers{
|
||||
static_cast<s32>(std::count_if(slots.begin(), slots.end(), [](const auto& slot) {
|
||||
return slot.buffer_state == BufferState::Acquired;
|
||||
}))};
|
||||
if (num_acquired_buffers >= core->max_acquired_buffer_count + 1) {
|
||||
LOG_ERROR(Service_NVFlinger, "max acquired buffer count reached: {} (max {})",
|
||||
num_acquired_buffers, core->max_acquired_buffer_count);
|
||||
return Status::InvalidOperation;
|
||||
}
|
||||
|
||||
if (num_acquired_buffers >= core->max_acquired_buffer_count + 1) {
|
||||
LOG_ERROR(Service_NVFlinger, "max acquired buffer count reached: {} (max {})",
|
||||
num_acquired_buffers, core->max_acquired_buffer_count);
|
||||
return Status::InvalidOperation;
|
||||
}
|
||||
// Check if the queue is empty.
|
||||
if (core->queue.empty()) {
|
||||
return Status::NoBufferAvailable;
|
||||
}
|
||||
|
||||
// Check if the queue is empty.
|
||||
if (core->queue.empty()) {
|
||||
return Status::NoBufferAvailable;
|
||||
}
|
||||
auto front(core->queue.begin());
|
||||
|
||||
auto front(core->queue.begin());
|
||||
// If expected_present is specified, we may not want to return a buffer yet.
|
||||
if (expected_present.count() != 0) {
|
||||
constexpr auto MAX_REASONABLE_NSEC = 1000000000LL; // 1 second
|
||||
|
||||
// If expected_present is specified, we may not want to return a buffer yet.
|
||||
if (expected_present.count() != 0) {
|
||||
constexpr auto MAX_REASONABLE_NSEC = 1000000000LL; // 1 second
|
||||
// The expected_present argument indicates when the buffer is expected to be presented
|
||||
// on-screen.
|
||||
while (core->queue.size() > 1 && !core->queue[0].is_auto_timestamp) {
|
||||
const auto& buffer_item{core->queue[1]};
|
||||
|
||||
// The expected_present argument indicates when the buffer is expected to be
|
||||
// presented on-screen.
|
||||
while (core->queue.size() > 1 && !core->queue[0].is_auto_timestamp) {
|
||||
const auto& buffer_item{core->queue[1]};
|
||||
|
||||
// If dropping entry[0] would leave us with a buffer that the consumer is not yet
|
||||
// ready for, don't drop it.
|
||||
if (max_frame_number && buffer_item.frame_number > max_frame_number) {
|
||||
break;
|
||||
}
|
||||
|
||||
// If entry[1] is timely, drop entry[0] (and repeat).
|
||||
const auto desired_present = buffer_item.timestamp;
|
||||
if (desired_present < expected_present.count() - MAX_REASONABLE_NSEC ||
|
||||
desired_present > expected_present.count()) {
|
||||
// This buffer is set to display in the near future, or desired_present is
|
||||
// garbage.
|
||||
LOG_DEBUG(Service_NVFlinger, "nodrop desire={} expect={}", desired_present,
|
||||
expected_present.count());
|
||||
break;
|
||||
}
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "drop desire={} expect={} size={}", desired_present,
|
||||
expected_present.count(), core->queue.size());
|
||||
|
||||
if (core->StillTracking(*front)) {
|
||||
// Front buffer is still in mSlots, so mark the slot as free
|
||||
slots[front->slot].buffer_state = BufferState::Free;
|
||||
core->free_buffers.push_back(front->slot);
|
||||
listener = core->connected_producer_listener;
|
||||
++num_dropped_buffers;
|
||||
}
|
||||
|
||||
core->queue.erase(front);
|
||||
front = core->queue.begin();
|
||||
// If dropping entry[0] would leave us with a buffer that the consumer is not yet ready
|
||||
// for, don't drop it.
|
||||
if (max_frame_number && buffer_item.frame_number > max_frame_number) {
|
||||
break;
|
||||
}
|
||||
|
||||
// See if the front buffer is ready to be acquired.
|
||||
const auto desired_present = front->timestamp;
|
||||
const auto buffer_is_due =
|
||||
desired_present <= expected_present.count() ||
|
||||
desired_present > expected_present.count() + MAX_REASONABLE_NSEC;
|
||||
const auto consumer_is_ready =
|
||||
max_frame_number > 0 ? front->frame_number <= max_frame_number : true;
|
||||
|
||||
if (!buffer_is_due || !consumer_is_ready) {
|
||||
LOG_DEBUG(Service_NVFlinger, "defer desire={} expect={}", desired_present,
|
||||
// If entry[1] is timely, drop entry[0] (and repeat).
|
||||
const auto desired_present = buffer_item.timestamp;
|
||||
if (desired_present < expected_present.count() - MAX_REASONABLE_NSEC ||
|
||||
desired_present > expected_present.count()) {
|
||||
// This buffer is set to display in the near future, or desired_present is garbage.
|
||||
LOG_DEBUG(Service_NVFlinger, "nodrop desire={} expect={}", desired_present,
|
||||
expected_present.count());
|
||||
return Status::PresentLater;
|
||||
break;
|
||||
}
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "accept desire={} expect={}", desired_present,
|
||||
LOG_DEBUG(Service_NVFlinger, "drop desire={} expect={} size={}", desired_present,
|
||||
expected_present.count(), core->queue.size());
|
||||
|
||||
if (core->StillTracking(*front)) {
|
||||
// Front buffer is still in mSlots, so mark the slot as free
|
||||
slots[front->slot].buffer_state = BufferState::Free;
|
||||
}
|
||||
|
||||
core->queue.erase(front);
|
||||
front = core->queue.begin();
|
||||
}
|
||||
|
||||
// See if the front buffer is ready to be acquired.
|
||||
const auto desired_present = front->timestamp;
|
||||
if (desired_present > expected_present.count() &&
|
||||
desired_present < expected_present.count() + MAX_REASONABLE_NSEC) {
|
||||
LOG_DEBUG(Service_NVFlinger, "defer desire={} expect={}", desired_present,
|
||||
expected_present.count());
|
||||
return Status::PresentLater;
|
||||
}
|
||||
|
||||
const auto slot = front->slot;
|
||||
*out_buffer = *front;
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "acquiring slot={}", slot);
|
||||
|
||||
// If the front buffer is still being tracked, update its slot state
|
||||
if (core->StillTracking(*front)) {
|
||||
slots[slot].acquire_called = true;
|
||||
slots[slot].needs_cleanup_on_release = false;
|
||||
slots[slot].buffer_state = BufferState::Acquired;
|
||||
slots[slot].fence = Fence::NoFence();
|
||||
}
|
||||
|
||||
// If the buffer has previously been acquired by the consumer, set graphic_buffer to nullptr
|
||||
// to avoid unnecessarily remapping this buffer on the consumer side.
|
||||
if (out_buffer->acquire_called) {
|
||||
out_buffer->graphic_buffer = nullptr;
|
||||
}
|
||||
|
||||
core->queue.erase(front);
|
||||
|
||||
// We might have freed a slot while dropping old buffers, or the producer may be blocked
|
||||
// waiting for the number of buffers in the queue to decrease.
|
||||
core->SignalDequeueCondition();
|
||||
LOG_DEBUG(Service_NVFlinger, "accept desire={} expect={}", desired_present,
|
||||
expected_present.count());
|
||||
}
|
||||
|
||||
if (listener != nullptr) {
|
||||
for (s32 i = 0; i < num_dropped_buffers; ++i) {
|
||||
listener->OnBufferReleased();
|
||||
}
|
||||
const auto slot = front->slot;
|
||||
*out_buffer = *front;
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "acquiring slot={}", slot);
|
||||
|
||||
// If the front buffer is still being tracked, update its slot state
|
||||
if (core->StillTracking(*front)) {
|
||||
slots[slot].acquire_called = true;
|
||||
slots[slot].needs_cleanup_on_release = false;
|
||||
slots[slot].buffer_state = BufferState::Acquired;
|
||||
slots[slot].fence = Fence::NoFence();
|
||||
}
|
||||
|
||||
// If the buffer has previously been acquired by the consumer, set graphic_buffer to nullptr to
|
||||
// avoid unnecessarily remapping this buffer on the consumer side.
|
||||
if (out_buffer->acquire_called) {
|
||||
out_buffer->graphic_buffer = nullptr;
|
||||
}
|
||||
|
||||
core->queue.erase(front);
|
||||
|
||||
// We might have freed a slot while dropping old buffers, or the producer may be blocked
|
||||
// waiting for the number of buffers in the queue to decrease.
|
||||
core->SignalDequeueCondition();
|
||||
|
||||
return Status::NoError;
|
||||
}
|
||||
|
||||
|
@ -147,7 +127,7 @@ Status BufferQueueConsumer::ReleaseBuffer(s32 slot, u64 frame_number, const Fenc
|
|||
|
||||
std::shared_ptr<IProducerListener> listener;
|
||||
{
|
||||
std::unique_lock lock(core->mutex);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
// If the frame number has changed because the buffer has been reallocated, we can ignore
|
||||
// this ReleaseBuffer for the old buffer.
|
||||
|
@ -170,8 +150,6 @@ Status BufferQueueConsumer::ReleaseBuffer(s32 slot, u64 frame_number, const Fenc
|
|||
slots[slot].fence = release_fence;
|
||||
slots[slot].buffer_state = BufferState::Free;
|
||||
|
||||
core->free_buffers.push_back(slot);
|
||||
|
||||
listener = core->connected_producer_listener;
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "releasing slot {}", slot);
|
||||
|
@ -189,7 +167,7 @@ Status BufferQueueConsumer::ReleaseBuffer(s32 slot, u64 frame_number, const Fenc
|
|||
return Status::BadValue;
|
||||
}
|
||||
|
||||
core->dequeue_condition.notify_all();
|
||||
core->SignalDequeueCondition();
|
||||
}
|
||||
|
||||
// Call back without lock held
|
||||
|
@ -209,7 +187,7 @@ Status BufferQueueConsumer::Connect(std::shared_ptr<IConsumerListener> consumer_
|
|||
|
||||
LOG_DEBUG(Service_NVFlinger, "controlled_by_app={}", controlled_by_app);
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
|
|
|
@ -10,16 +10,12 @@
|
|||
|
||||
namespace Service::android {
|
||||
|
||||
BufferQueueCore::BufferQueueCore() : lock{mutex, std::defer_lock} {
|
||||
for (s32 slot = 0; slot < BufferQueueDefs::NUM_BUFFER_SLOTS; ++slot) {
|
||||
free_slots.insert(slot);
|
||||
}
|
||||
}
|
||||
BufferQueueCore::BufferQueueCore() = default;
|
||||
|
||||
BufferQueueCore::~BufferQueueCore() = default;
|
||||
|
||||
void BufferQueueCore::NotifyShutdown() {
|
||||
std::unique_lock lk(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
|
||||
is_shutting_down = true;
|
||||
|
||||
|
@ -35,7 +31,7 @@ bool BufferQueueCore::WaitForDequeueCondition() {
|
|||
return false;
|
||||
}
|
||||
|
||||
dequeue_condition.wait(lock);
|
||||
dequeue_condition.wait(mutex);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -86,26 +82,15 @@ s32 BufferQueueCore::GetPreallocatedBufferCountLocked() const {
|
|||
void BufferQueueCore::FreeBufferLocked(s32 slot) {
|
||||
LOG_DEBUG(Service_NVFlinger, "slot {}", slot);
|
||||
|
||||
const auto had_buffer = slots[slot].graphic_buffer != nullptr;
|
||||
|
||||
slots[slot].graphic_buffer.reset();
|
||||
|
||||
if (slots[slot].buffer_state == BufferState::Acquired) {
|
||||
slots[slot].needs_cleanup_on_release = true;
|
||||
}
|
||||
|
||||
if (slots[slot].buffer_state != BufferState::Free) {
|
||||
free_slots.insert(slot);
|
||||
} else if (had_buffer) {
|
||||
// If the slot was FREE, but we had a buffer, we need to move this slot from the free
|
||||
// buffers list to the the free slots list.
|
||||
free_buffers.remove(slot);
|
||||
free_slots.insert(slot);
|
||||
}
|
||||
|
||||
slots[slot].buffer_state = BufferState::Free;
|
||||
slots[slot].frame_number = UINT32_MAX;
|
||||
slots[slot].acquire_called = false;
|
||||
slots[slot].frame_number = 0;
|
||||
slots[slot].fence = Fence::NoFence();
|
||||
}
|
||||
|
||||
|
@ -126,8 +111,7 @@ bool BufferQueueCore::StillTracking(const BufferItem& item) const {
|
|||
|
||||
void BufferQueueCore::WaitWhileAllocatingLocked() const {
|
||||
while (is_allocating) {
|
||||
std::unique_lock lk(mutex);
|
||||
is_allocating_condition.wait(lk);
|
||||
is_allocating_condition.wait(mutex);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -49,24 +49,8 @@ private:
|
|||
bool StillTracking(const BufferItem& item) const;
|
||||
void WaitWhileAllocatingLocked() const;
|
||||
|
||||
private:
|
||||
class AutoLock final {
|
||||
public:
|
||||
AutoLock(std::shared_ptr<BufferQueueCore>& core_) : core{core_} {
|
||||
core->lock.lock();
|
||||
}
|
||||
|
||||
~AutoLock() {
|
||||
core->lock.unlock();
|
||||
}
|
||||
|
||||
private:
|
||||
std::shared_ptr<BufferQueueCore>& core;
|
||||
};
|
||||
|
||||
private:
|
||||
mutable std::mutex mutex;
|
||||
mutable std::unique_lock<std::mutex> lock;
|
||||
bool is_abandoned{};
|
||||
bool consumer_controlled_by_app{};
|
||||
std::shared_ptr<IConsumerListener> consumer_listener;
|
||||
|
@ -75,10 +59,8 @@ private:
|
|||
std::shared_ptr<IProducerListener> connected_producer_listener;
|
||||
BufferQueueDefs::SlotsType slots{};
|
||||
std::vector<BufferItem> queue;
|
||||
std::set<s32> free_slots;
|
||||
std::list<s32> free_buffers;
|
||||
s32 override_max_buffer_count{};
|
||||
mutable std::condition_variable dequeue_condition;
|
||||
mutable std::condition_variable_any dequeue_condition;
|
||||
const bool use_async_buffer{}; // This is always disabled on HOS
|
||||
bool dequeue_buffer_cannot_block{};
|
||||
PixelFormat default_buffer_format{PixelFormat::Rgba8888};
|
||||
|
@ -90,7 +72,7 @@ private:
|
|||
u64 frame_counter{};
|
||||
u32 transform_hint{};
|
||||
bool is_allocating{};
|
||||
mutable std::condition_variable is_allocating_condition;
|
||||
mutable std::condition_variable_any is_allocating_condition;
|
||||
bool allow_allocation{true};
|
||||
u64 buffer_age{};
|
||||
bool is_shutting_down{};
|
||||
|
|
|
@ -38,7 +38,7 @@ BufferQueueProducer::~BufferQueueProducer() {
|
|||
Status BufferQueueProducer::RequestBuffer(s32 slot, std::shared_ptr<GraphicBuffer>* buf) {
|
||||
LOG_DEBUG(Service_NVFlinger, "slot {}", slot);
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
|
@ -65,7 +65,7 @@ Status BufferQueueProducer::SetBufferCount(s32 buffer_count) {
|
|||
std::shared_ptr<IConsumerListener> listener;
|
||||
|
||||
{
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
core->WaitWhileAllocatingLocked();
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
|
@ -156,6 +156,14 @@ Status BufferQueueProducer::WaitForFreeSlotThenRelock(bool async, s32* found,
|
|||
case BufferState::Acquired:
|
||||
++acquired_count;
|
||||
break;
|
||||
case BufferState::Free:
|
||||
// We return the oldest of the free buffers to avoid stalling the producer if
|
||||
// possible, since the consumer may still have pending reads of in-flight buffers
|
||||
if (*found == BufferQueueCore::INVALID_BUFFER_SLOT ||
|
||||
slots[s].frame_number < slots[*found].frame_number) {
|
||||
*found = s;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -183,27 +191,12 @@ Status BufferQueueProducer::WaitForFreeSlotThenRelock(bool async, s32* found,
|
|||
}
|
||||
}
|
||||
|
||||
*found = BufferQueueCore::INVALID_BUFFER_SLOT;
|
||||
|
||||
// If we disconnect and reconnect quickly, we can be in a state where our slots are empty
|
||||
// but we have many buffers in the queue. This can cause us to run out of memory if we
|
||||
// outrun the consumer. Wait here if it looks like we have too many buffers queued up.
|
||||
const bool too_many_buffers = core->queue.size() > static_cast<size_t>(max_buffer_count);
|
||||
if (too_many_buffers) {
|
||||
LOG_ERROR(Service_NVFlinger, "queue size is {}, waiting", core->queue.size());
|
||||
} else {
|
||||
if (!core->free_buffers.empty()) {
|
||||
auto slot = core->free_buffers.begin();
|
||||
*found = *slot;
|
||||
core->free_buffers.erase(slot);
|
||||
} else if (core->allow_allocation && !core->free_slots.empty()) {
|
||||
auto slot = core->free_slots.begin();
|
||||
// Only return free slots up to the max buffer count
|
||||
if (*slot < max_buffer_count) {
|
||||
*found = *slot;
|
||||
core->free_slots.erase(slot);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If no buffer is found, or if the queue has too many buffers outstanding, wait for a
|
||||
|
@ -240,7 +233,7 @@ Status BufferQueueProducer::DequeueBuffer(s32* out_slot, Fence* out_fence, bool
|
|||
Status return_flags = Status::NoError;
|
||||
bool attached_by_consumer = false;
|
||||
{
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
core->WaitWhileAllocatingLocked();
|
||||
if (format == PixelFormat::NoFormat) {
|
||||
format = core->default_buffer_format;
|
||||
|
@ -317,12 +310,13 @@ Status BufferQueueProducer::DequeueBuffer(s32* out_slot, Fence* out_fence, bool
|
|||
}
|
||||
|
||||
{
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
return Status::NoInit;
|
||||
}
|
||||
|
||||
slots[*out_slot].frame_number = UINT32_MAX;
|
||||
slots[*out_slot].graphic_buffer = graphic_buffer;
|
||||
}
|
||||
}
|
||||
|
@ -339,7 +333,7 @@ Status BufferQueueProducer::DequeueBuffer(s32* out_slot, Fence* out_fence, bool
|
|||
Status BufferQueueProducer::DetachBuffer(s32 slot) {
|
||||
LOG_DEBUG(Service_NVFlinger, "slot {}", slot);
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
return Status::NoInit;
|
||||
|
@ -374,7 +368,7 @@ Status BufferQueueProducer::DetachNextBuffer(std::shared_ptr<GraphicBuffer>* out
|
|||
return Status::BadValue;
|
||||
}
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
core->WaitWhileAllocatingLocked();
|
||||
|
||||
|
@ -382,12 +376,21 @@ Status BufferQueueProducer::DetachNextBuffer(std::shared_ptr<GraphicBuffer>* out
|
|||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
return Status::NoInit;
|
||||
}
|
||||
if (core->free_buffers.empty()) {
|
||||
return Status::NoMemory;
|
||||
|
||||
// Find the oldest valid slot
|
||||
int found = BufferQueueCore::INVALID_BUFFER_SLOT;
|
||||
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
|
||||
if (slots[s].buffer_state == BufferState::Free && slots[s].graphic_buffer != nullptr) {
|
||||
if (found == BufferQueueCore::INVALID_BUFFER_SLOT ||
|
||||
slots[s].frame_number < slots[found].frame_number) {
|
||||
found = s;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const s32 found = core->free_buffers.front();
|
||||
core->free_buffers.remove(found);
|
||||
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
|
||||
return Status::NoMemory;
|
||||
}
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "Detached slot {}", found);
|
||||
|
||||
|
@ -409,7 +412,7 @@ Status BufferQueueProducer::AttachBuffer(s32* out_slot,
|
|||
return Status::BadValue;
|
||||
}
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
core->WaitWhileAllocatingLocked();
|
||||
|
||||
Status return_flags = Status::NoError;
|
||||
|
@ -469,7 +472,7 @@ Status BufferQueueProducer::QueueBuffer(s32 slot, const QueueBufferInput& input,
|
|||
BufferItem item;
|
||||
|
||||
{
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
|
@ -554,7 +557,9 @@ Status BufferQueueProducer::QueueBuffer(s32 slot, const QueueBufferInput& input,
|
|||
// mark it as freed
|
||||
if (core->StillTracking(*front)) {
|
||||
slots[front->slot].buffer_state = BufferState::Free;
|
||||
core->free_buffers.push_front(front->slot);
|
||||
// Reset the frame number of the freed buffer so that it is the first in line to
|
||||
// be dequeued again
|
||||
slots[front->slot].frame_number = 0;
|
||||
}
|
||||
// Overwrite the droppable buffer with the incoming one
|
||||
*front = item;
|
||||
|
@ -582,10 +587,9 @@ Status BufferQueueProducer::QueueBuffer(s32 slot, const QueueBufferInput& input,
|
|||
// Call back without the main BufferQueue lock held, but with the callback lock held so we can
|
||||
// ensure that callbacks occur in order
|
||||
{
|
||||
std::unique_lock lock(callback_mutex);
|
||||
std::scoped_lock lock(callback_mutex);
|
||||
while (callback_ticket != current_callback_ticket) {
|
||||
std::unique_lock<std::mutex> lk(callback_mutex);
|
||||
callback_condition.wait(lk);
|
||||
callback_condition.wait(callback_mutex);
|
||||
}
|
||||
|
||||
if (frameAvailableListener != nullptr) {
|
||||
|
@ -604,7 +608,7 @@ Status BufferQueueProducer::QueueBuffer(s32 slot, const QueueBufferInput& input,
|
|||
void BufferQueueProducer::CancelBuffer(s32 slot, const Fence& fence) {
|
||||
LOG_DEBUG(Service_NVFlinger, "slot {}", slot);
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
if (core->is_abandoned) {
|
||||
LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned");
|
||||
|
@ -621,8 +625,8 @@ void BufferQueueProducer::CancelBuffer(s32 slot, const Fence& fence) {
|
|||
return;
|
||||
}
|
||||
|
||||
core->free_buffers.push_front(slot);
|
||||
slots[slot].buffer_state = BufferState::Free;
|
||||
slots[slot].frame_number = 0;
|
||||
slots[slot].fence = fence;
|
||||
|
||||
core->SignalDequeueCondition();
|
||||
|
@ -630,7 +634,7 @@ void BufferQueueProducer::CancelBuffer(s32 slot, const Fence& fence) {
|
|||
}
|
||||
|
||||
Status BufferQueueProducer::Query(NativeWindow what, s32* out_value) {
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
if (out_value == nullptr) {
|
||||
LOG_ERROR(Service_NVFlinger, "outValue was nullptr");
|
||||
|
@ -687,7 +691,7 @@ Status BufferQueueProducer::Query(NativeWindow what, s32* out_value) {
|
|||
Status BufferQueueProducer::Connect(const std::shared_ptr<IProducerListener>& listener,
|
||||
NativeWindowApi api, bool producer_controlled_by_app,
|
||||
QueueBufferOutput* output) {
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
LOG_DEBUG(Service_NVFlinger, "api = {} producer_controlled_by_app = {}", api,
|
||||
producer_controlled_by_app);
|
||||
|
@ -745,7 +749,7 @@ Status BufferQueueProducer::Disconnect(NativeWindowApi api) {
|
|||
std::shared_ptr<IConsumerListener> listener;
|
||||
|
||||
{
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
core->WaitWhileAllocatingLocked();
|
||||
|
||||
|
@ -795,10 +799,11 @@ Status BufferQueueProducer::SetPreallocatedBuffer(s32 slot,
|
|||
return Status::BadValue;
|
||||
}
|
||||
|
||||
BufferQueueCore::AutoLock lock(core);
|
||||
std::scoped_lock lock(core->mutex);
|
||||
|
||||
slots[slot] = {};
|
||||
slots[slot].graphic_buffer = buffer;
|
||||
slots[slot].frame_number = 0;
|
||||
|
||||
// Most games preallocate a buffer and pass a valid buffer here. However, it is possible for
|
||||
// this to be called with an empty buffer, Naruto Ultimate Ninja Storm is a game that does this.
|
||||
|
|
|
@ -77,7 +77,7 @@ private:
|
|||
std::mutex callback_mutex;
|
||||
s32 next_callback_ticket{};
|
||||
s32 current_callback_ticket{};
|
||||
std::condition_variable callback_condition;
|
||||
std::condition_variable_any callback_condition;
|
||||
};
|
||||
|
||||
} // namespace Service::android
|
||||
|
|
|
@ -18,7 +18,7 @@ ConsumerBase::ConsumerBase(std::unique_ptr<BufferQueueConsumer> consumer_)
|
|||
: consumer{std::move(consumer_)} {}
|
||||
|
||||
ConsumerBase::~ConsumerBase() {
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
|
||||
ASSERT_MSG(is_abandoned, "consumer is not abandoned!");
|
||||
}
|
||||
|
@ -36,17 +36,17 @@ void ConsumerBase::FreeBufferLocked(s32 slot_index) {
|
|||
}
|
||||
|
||||
void ConsumerBase::OnFrameAvailable(const BufferItem& item) {
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
LOG_DEBUG(Service_NVFlinger, "called");
|
||||
}
|
||||
|
||||
void ConsumerBase::OnFrameReplaced(const BufferItem& item) {
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
LOG_DEBUG(Service_NVFlinger, "called");
|
||||
}
|
||||
|
||||
void ConsumerBase::OnBuffersReleased() {
|
||||
std::unique_lock lock(mutex);
|
||||
std::scoped_lock lock(mutex);
|
||||
LOG_DEBUG(Service_NVFlinger, "called");
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue