diff --git a/src/core/arm/dynarmic/arm_dynarmic.cpp b/src/core/arm/dynarmic/arm_dynarmic.cpp index f1506b3728..700c4afff9 100644 --- a/src/core/arm/dynarmic/arm_dynarmic.cpp +++ b/src/core/arm/dynarmic/arm_dynarmic.cpp @@ -116,7 +116,7 @@ public: num_interpreted_instructions = 0; } u64 GetTicksRemaining() override { - return std::max(parent.system.CoreTiming().GetDowncount(), 0); + return std::max(parent.system.CoreTiming().GetDowncount(), s64{0}); } u64 GetCNTPCT() override { return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks()); diff --git a/src/core/arm/unicorn/arm_unicorn.cpp b/src/core/arm/unicorn/arm_unicorn.cpp index 97d5c2a8ad..d4f41bfc18 100644 --- a/src/core/arm/unicorn/arm_unicorn.cpp +++ b/src/core/arm/unicorn/arm_unicorn.cpp @@ -156,7 +156,7 @@ void ARM_Unicorn::Run() { if (GDBStub::IsServerEnabled()) { ExecuteInstructions(std::max(4000000, 0)); } else { - ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), 0)); + ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), s64{0})); } } diff --git a/src/core/core_cpu.cpp b/src/core/core_cpu.cpp index 21c410e342..6bd9639c6e 100644 --- a/src/core/core_cpu.cpp +++ b/src/core/core_cpu.cpp @@ -85,24 +85,16 @@ void Cpu::RunLoop(bool tight_loop) { // instead advance to the next event and try to yield to the next thread if (Kernel::GetCurrentThread() == nullptr) { LOG_TRACE(Core, "Core-{} idling", core_index); - - if (IsMainCore()) { - // TODO(Subv): Only let CoreTiming idle if all 4 cores are idling. - core_timing.Idle(); - core_timing.Advance(); - } - + core_timing.Idle(); + core_timing.Advance(); PrepareReschedule(); } else { - if (IsMainCore()) { - core_timing.Advance(); - } - if (tight_loop) { arm_interface->Run(); } else { arm_interface->Step(); } + core_timing.Advance(); } Reschedule(); diff --git a/src/core/core_timing.cpp b/src/core/core_timing.cpp index a58f7b131d..0e95706856 100644 --- a/src/core/core_timing.cpp +++ b/src/core/core_timing.cpp @@ -15,7 +15,7 @@ namespace Core::Timing { -constexpr int MAX_SLICE_LENGTH = 20000; +constexpr int MAX_SLICE_LENGTH = 10000; struct CoreTiming::Event { s64 time; @@ -38,10 +38,12 @@ CoreTiming::CoreTiming() = default; CoreTiming::~CoreTiming() = default; void CoreTiming::Initialize() { - downcount = MAX_SLICE_LENGTH; + downcounts.fill(MAX_SLICE_LENGTH); + time_slice.fill(MAX_SLICE_LENGTH); slice_length = MAX_SLICE_LENGTH; global_timer = 0; idled_cycles = 0; + current_context = 0; // The time between CoreTiming being initialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before @@ -110,7 +112,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) { u64 CoreTiming::GetTicks() const { u64 ticks = static_cast(global_timer); if (!is_global_timer_sane) { - ticks += slice_length - downcount; + ticks += accumulated_ticks; } return ticks; } @@ -120,7 +122,8 @@ u64 CoreTiming::GetIdleTicks() const { } void CoreTiming::AddTicks(u64 ticks) { - downcount -= static_cast(ticks); + accumulated_ticks += ticks; + downcounts[current_context] -= static_cast(ticks); } void CoreTiming::ClearPendingEvents() { @@ -141,22 +144,35 @@ void CoreTiming::RemoveEvent(const EventType* event_type) { void CoreTiming::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); - if (downcount <= cycles) { + if (downcounts[current_context] <= cycles) { return; } // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int // here. Account for cycles already executed by adjusting the g.slice_length - slice_length -= downcount - static_cast(cycles); - downcount = static_cast(cycles); + downcounts[current_context] = static_cast(cycles); +} + +std::optional CoreTiming::NextAvailableCore(const s64 needed_ticks) const { + const u64 original_context = current_context; + u64 next_context = (original_context + 1) % num_cpu_cores; + while (next_context != original_context) { + if (time_slice[next_context] >= needed_ticks) { + return {next_context}; + } else if (time_slice[next_context] >= 0) { + return std::nullopt; + } + next_context = (next_context + 1) % num_cpu_cores; + } + return std::nullopt; } void CoreTiming::Advance() { std::unique_lock guard(inner_mutex); - const int cycles_executed = slice_length - downcount; + const u64 cycles_executed = accumulated_ticks; + time_slice[current_context] = std::max(0, time_slice[current_context] - accumulated_ticks); global_timer += cycles_executed; - slice_length = MAX_SLICE_LENGTH; is_global_timer_sane = true; @@ -173,24 +189,46 @@ void CoreTiming::Advance() { // Still events left (scheduled in the future) if (!event_queue.empty()) { - slice_length = static_cast( - std::min(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); + const s64 needed_ticks = + std::min(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); + const auto next_core = NextAvailableCore(needed_ticks); + if (next_core) { + downcounts[*next_core] = needed_ticks; + } } - downcount = slice_length; + accumulated_ticks = 0; + + downcounts[current_context] = time_slice[current_context]; +} + +void CoreTiming::ResetRun() { + downcounts.fill(MAX_SLICE_LENGTH); + time_slice.fill(MAX_SLICE_LENGTH); + current_context = 0; + // Still events left (scheduled in the future) + if (!event_queue.empty()) { + const s64 needed_ticks = + std::min(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); + downcounts[current_context] = needed_ticks; + } + + is_global_timer_sane = false; + accumulated_ticks = 0; } void CoreTiming::Idle() { - idled_cycles += downcount; - downcount = 0; + accumulated_ticks += downcounts[current_context]; + idled_cycles += downcounts[current_context]; + downcounts[current_context] = 0; } std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE}; } -int CoreTiming::GetDowncount() const { - return downcount; +s64 CoreTiming::GetDowncount() const { + return downcounts[current_context]; } } // namespace Core::Timing diff --git a/src/core/core_timing.h b/src/core/core_timing.h index 161c7007da..3bb88c810e 100644 --- a/src/core/core_timing.h +++ b/src/core/core_timing.h @@ -7,6 +7,7 @@ #include #include #include +#include #include #include #include @@ -104,7 +105,19 @@ public: std::chrono::microseconds GetGlobalTimeUs() const; - int GetDowncount() const; + void ResetRun(); + + s64 GetDowncount() const; + + void SwitchContext(u64 new_context) { + current_context = new_context; + } + + bool CanCurrentContextRun() const { + return time_slice[current_context] > 0; + } + + std::optional NextAvailableCore(const s64 needed_ticks) const; private: struct Event; @@ -112,10 +125,16 @@ private: /// Clear all pending events. This should ONLY be done on exit. void ClearPendingEvents(); + static constexpr u64 num_cpu_cores = 4; + s64 global_timer = 0; s64 idled_cycles = 0; - int slice_length = 0; - int downcount = 0; + s64 slice_length = 0; + u64 accumulated_ticks = 0; + std::array downcounts{}; + // Slice of time assigned to each core per run. + std::array time_slice{}; + u64 current_context = 0; // Are we in a function that has been called from Advance() // If events are scheduled from a function that gets called from Advance(), diff --git a/src/core/cpu_core_manager.cpp b/src/core/cpu_core_manager.cpp index 8fcb4eeb15..16b384076e 100644 --- a/src/core/cpu_core_manager.cpp +++ b/src/core/cpu_core_manager.cpp @@ -6,6 +6,7 @@ #include "core/arm/exclusive_monitor.h" #include "core/core.h" #include "core/core_cpu.h" +#include "core/core_timing.h" #include "core/cpu_core_manager.h" #include "core/gdbstub/gdbstub.h" #include "core/settings.h" @@ -122,13 +123,19 @@ void CpuCoreManager::RunLoop(bool tight_loop) { } } - for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) { - cores[active_core]->RunLoop(tight_loop); - if (Settings::values.use_multi_core) { - // Cores 1-3 are run on other threads in this mode - break; + auto& core_timing = system.CoreTiming(); + core_timing.ResetRun(); + bool keep_running{}; + do { + keep_running = false; + for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) { + core_timing.SwitchContext(active_core); + if (core_timing.CanCurrentContextRun()) { + cores[active_core]->RunLoop(tight_loop); + } + keep_running |= core_timing.CanCurrentContextRun(); } - } + } while (keep_running); if (GDBStub::IsServerEnabled()) { GDBStub::SetCpuStepFlag(false); diff --git a/src/tests/core/core_timing.cpp b/src/tests/core/core_timing.cpp index f8be8fd19f..3443bf05e9 100644 --- a/src/tests/core/core_timing.cpp +++ b/src/tests/core/core_timing.cpp @@ -6,6 +6,7 @@ #include #include +#include #include #include "common/file_util.h" #include "core/core.h" @@ -13,7 +14,7 @@ // Numbers are chosen randomly to make sure the correct one is given. static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; -static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals +static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals static std::bitset callbacks_ran_flags; static u64 expected_callback = 0; @@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) { REQUIRE(lateness == cycles_late); } +static u64 callbacks_done = 0; + +void EmptyCallback(u64 userdata, s64 cycles_late) { + ++callbacks_done; +} + struct ScopeInit final { ScopeInit() { core_timing.Initialize(); @@ -39,18 +46,19 @@ struct ScopeInit final { Core::Timing::CoreTiming core_timing; }; -static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount, +static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0, int expected_lateness = 0, int cpu_downcount = 0) { callbacks_ran_flags = 0; expected_callback = CB_IDS[idx]; lateness = expected_lateness; // Pretend we executed X cycles of instructions. + core_timing.SwitchContext(context); core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount); core_timing.Advance(); + core_timing.SwitchContext((context + 1) % 4); REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); - REQUIRE(downcount == core_timing.GetDowncount()); } TEST_CASE("CoreTiming[BasicOrder]", "[core]") { @@ -64,9 +72,10 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") { Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 - core_timing.Advance(); + core_timing.ResetRun(); // D -> B -> C -> A -> E + core_timing.SwitchContext(0); core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); REQUIRE(1000 == core_timing.GetDowncount()); core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]); @@ -78,98 +87,46 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") { core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); REQUIRE(100 == core_timing.GetDowncount()); - AdvanceAndCheck(core_timing, 3, 400); - AdvanceAndCheck(core_timing, 1, 300); - AdvanceAndCheck(core_timing, 2, 200); - AdvanceAndCheck(core_timing, 0, 200); - AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH); + AdvanceAndCheck(core_timing, 3, 0); + AdvanceAndCheck(core_timing, 1, 1); + AdvanceAndCheck(core_timing, 2, 2); + AdvanceAndCheck(core_timing, 0, 3); + AdvanceAndCheck(core_timing, 4, 0); } -TEST_CASE("CoreTiming[Threadsave]", "[core]") { - ScopeInit guard; - auto& core_timing = guard.core_timing; - - Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>); - Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); - Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>); - Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>); - Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>); - - // Enter slice 0 - core_timing.Advance(); - - // D -> B -> C -> A -> E - core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); - // Manually force since ScheduleEvent doesn't call it - core_timing.ForceExceptionCheck(1000); - REQUIRE(1000 == core_timing.GetDowncount()); - core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]); - // Manually force since ScheduleEvent doesn't call it - core_timing.ForceExceptionCheck(500); - REQUIRE(500 == core_timing.GetDowncount()); - core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]); - // Manually force since ScheduleEvent doesn't call it - core_timing.ForceExceptionCheck(800); - REQUIRE(500 == core_timing.GetDowncount()); - core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]); - // Manually force since ScheduleEvent doesn't call it - core_timing.ForceExceptionCheck(100); - REQUIRE(100 == core_timing.GetDowncount()); - core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); - // Manually force since ScheduleEvent doesn't call it - core_timing.ForceExceptionCheck(1200); - REQUIRE(100 == core_timing.GetDowncount()); - - AdvanceAndCheck(core_timing, 3, 400); - AdvanceAndCheck(core_timing, 1, 300); - AdvanceAndCheck(core_timing, 2, 200); - AdvanceAndCheck(core_timing, 0, 200); - AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH); -} - -namespace SharedSlotTest { -static unsigned int counter = 0; - -template -void FifoCallback(u64 userdata, s64 cycles_late) { - static_assert(ID < CB_IDS.size(), "ID out of range"); - callbacks_ran_flags.set(ID); - REQUIRE(CB_IDS[ID] == userdata); - REQUIRE(ID == counter); - REQUIRE(lateness == cycles_late); - ++counter; -} -} // namespace SharedSlotTest - -TEST_CASE("CoreTiming[SharedSlot]", "[core]") { - using namespace SharedSlotTest; +TEST_CASE("CoreTiming[FairSharing]", "[core]") { ScopeInit guard; auto& core_timing = guard.core_timing; - Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", FifoCallback<0>); - Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", FifoCallback<1>); - Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", FifoCallback<2>); - Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", FifoCallback<3>); - Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", FifoCallback<4>); + Core::Timing::EventType* empty_callback = + core_timing.RegisterEvent("empty_callback", EmptyCallback); - core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); - core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); - core_timing.ScheduleEvent(1000, cb_c, CB_IDS[2]); - core_timing.ScheduleEvent(1000, cb_d, CB_IDS[3]); - core_timing.ScheduleEvent(1000, cb_e, CB_IDS[4]); + callbacks_done = 0; + u64 MAX_CALLBACKS = 10; + for (std::size_t i = 0; i < 10; i++) { + core_timing.ScheduleEvent(i * 3333U, empty_callback, 0); + } - // Enter slice 0 - core_timing.Advance(); - REQUIRE(1000 == core_timing.GetDowncount()); + const s64 advances = MAX_SLICE_LENGTH / 10; + core_timing.ResetRun(); + u64 current_time = core_timing.GetTicks(); + bool keep_running{}; + do { + keep_running = false; + for (u32 active_core = 0; active_core < 4; ++active_core) { + core_timing.SwitchContext(active_core); + if (core_timing.CanCurrentContextRun()) { + core_timing.AddTicks(std::min(advances, core_timing.GetDowncount())); + core_timing.Advance(); + } + keep_running |= core_timing.CanCurrentContextRun(); + } + } while (keep_running); + u64 current_time_2 = core_timing.GetTicks(); - callbacks_ran_flags = 0; - counter = 0; - lateness = 0; - core_timing.AddTicks(core_timing.GetDowncount()); - core_timing.Advance(); - REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount()); - REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong()); + REQUIRE(MAX_CALLBACKS == callbacks_done); + REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4); } TEST_CASE("Core::Timing[PredictableLateness]", "[core]") { @@ -180,13 +137,13 @@ TEST_CASE("Core::Timing[PredictableLateness]", "[core]") { Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); // Enter slice 0 - core_timing.Advance(); + core_timing.ResetRun(); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]); - AdvanceAndCheck(core_timing, 0, 90, 10, -10); // (100 - 10) - AdvanceAndCheck(core_timing, 1, MAX_SLICE_LENGTH, 50, -50); + AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10) + AdvanceAndCheck(core_timing, 1, 1, 50, -50); } namespace ChainSchedulingTest { @@ -220,7 +177,7 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { }); // Enter slice 0 - core_timing.Advance(); + core_timing.ResetRun(); core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); @@ -229,19 +186,19 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { REQUIRE(800 == core_timing.GetDowncount()); reschedules = 3; - AdvanceAndCheck(core_timing, 0, 200); // cb_a - AdvanceAndCheck(core_timing, 1, 1000); // cb_b, cb_rs + AdvanceAndCheck(core_timing, 0, 0); // cb_a + AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs REQUIRE(2 == reschedules); core_timing.AddTicks(core_timing.GetDowncount()); core_timing.Advance(); // cb_rs + core_timing.SwitchContext(3); REQUIRE(1 == reschedules); REQUIRE(200 == core_timing.GetDowncount()); - AdvanceAndCheck(core_timing, 2, 800); // cb_c + AdvanceAndCheck(core_timing, 2, 3); // cb_c core_timing.AddTicks(core_timing.GetDowncount()); core_timing.Advance(); // cb_rs REQUIRE(0 == reschedules); - REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount()); }