This amends cases where crashes can occur that were missed due to the
odd way the previous code was set up (using 3DS memory regions that
don't exist).
Using member variables for referencing the segments array increases the
size of the class in memory for little benefit. The same behavior can be
achieved through the use of accessors that just return the relevant
segment.
Avoids using a u32 to compare against a range of size_t, which can be a
source of warnings. While we're at it, compress a std::tie into a
structured binding.
General moving to keep kernel object types separate from the direct
kernel code. Also essentially a preliminary cleanup before eliminating
global kernel state in the kernel code.
This introduces a slightly more generic variant of WriteBuffer().
Notably, this variant doesn't constrain the arguments to only accepting
std::vector instances. It accepts whatever adheres to the
ContiguousContainer concept in the C++ standard library.
This essentially means, std::array, std::string, and std::vector can be
used directly with this interface. The interface no longer forces you to
solely use containers that dynamically allocate.
To ensure our overloads play nice with one another, we only enable the
container-based WriteBuffer if the argument is not a pointer, otherwise
we fall back to the pointer-based one.
The reason this would never be true is that ideal_processor is a u8 and
THREADPROCESSORID_DEFAULT is an s32. In this case, it boils down to how
arithmetic conversions are performed before performing the comparison.
If an unsigned value has a lesser conversion rank (aka smaller size)
than the signed type being compared, then the unsigned value is promoted
to the signed value (i.e. u8 -> s32 happens before the comparison). No
sign-extension occurs here either.
An alternative phrasing:
Say we have a variable named core and it's given a value of -2.
u8 core = -2;
This becomes 254 due to the lack of sign. During integral promotion to
the signed type, this still remains as 254, and therefore the condition
will always be true, because no matter what value the u8 is given it
will never be -2 in terms of 32 bits.
Now, if one type was a s32 and one was a u32, this would be entirely
different, since they have the same bit width (and the signed type would
be converted to unsigned instead of the other way around) but would
still have its representation preserved in terms of bits, allowing the
comparison to be false in some cases, as opposed to being true all the
time.
---
We also get rid of two signed/unsigned comparison warnings while we're
at it.
Previously, the buffer_index parameter was unused, causing all writes to
use the buffer index of zero, which is not necessarily what is wanted
all the time.
Thankfully, all current usages don't use a buffer index other than zero,
so this just prevents a bug before it has a chance to spring.
This would result in a lot of allocations and related object
construction, just to toss it all away immediately after the call.
These are definitely not intentional, and it was intended that all of
these should have been accessing the static function GetInstance()
through the name itself, not constructed instances.