This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
* common: fs: fs_types: Create filesystem types
Contains various filesystem types used by the Common::FS library
* common: fs: fs_util: Add std::string to std::u8string conversion utility
* common: fs: path_util: Add utlity functions for paths
Contains various utility functions for getting or manipulating filesystem paths used by the Common::FS library
* common: fs: file: Rewrite the IOFile implementation
* common: fs: Reimplement Common::FS library using std::filesystem
* common: fs: fs_paths: Add fs_paths to replace common_paths
* common: fs: path_util: Add the rest of the path functions
* common: Remove the previous Common::FS implementation
* general: Remove unused fs includes
* string_util: Remove unused function and include
* nvidia_flags: Migrate to the new Common::FS library
* settings: Migrate to the new Common::FS library
* logging: backend: Migrate to the new Common::FS library
* core: Migrate to the new Common::FS library
* perf_stats: Migrate to the new Common::FS library
* reporter: Migrate to the new Common::FS library
* telemetry_session: Migrate to the new Common::FS library
* key_manager: Migrate to the new Common::FS library
* bis_factory: Migrate to the new Common::FS library
* registered_cache: Migrate to the new Common::FS library
* xts_archive: Migrate to the new Common::FS library
* service: acc: Migrate to the new Common::FS library
* applets/profile: Migrate to the new Common::FS library
* applets/web: Migrate to the new Common::FS library
* service: filesystem: Migrate to the new Common::FS library
* loader: Migrate to the new Common::FS library
* gl_shader_disk_cache: Migrate to the new Common::FS library
* nsight_aftermath_tracker: Migrate to the new Common::FS library
* vulkan_library: Migrate to the new Common::FS library
* configure_debug: Migrate to the new Common::FS library
* game_list_worker: Migrate to the new Common::FS library
* config: Migrate to the new Common::FS library
* configure_filesystem: Migrate to the new Common::FS library
* configure_per_game_addons: Migrate to the new Common::FS library
* configure_profile_manager: Migrate to the new Common::FS library
* configure_ui: Migrate to the new Common::FS library
* input_profiles: Migrate to the new Common::FS library
* yuzu_cmd: config: Migrate to the new Common::FS library
* yuzu_cmd: Migrate to the new Common::FS library
* vfs_real: Migrate to the new Common::FS library
* vfs: Migrate to the new Common::FS library
* vfs_libzip: Migrate to the new Common::FS library
* service: bcat: Migrate to the new Common::FS library
* yuzu: main: Migrate to the new Common::FS library
* vfs_real: Delete the contents of an existing file in CreateFile
Current usages of CreateFile expect to delete the contents of an existing file, retain this behavior for now.
* input_profiles: Don't iterate the input profile dir if it does not exist
Silences an error produced in the log if the directory does not exist.
* game_list_worker: Skip parsing file if the returned VfsFile is nullptr
Prevents crashes in GetLoader when the virtual file is nullptr
* common: fs: Validate paths for path length
* service: filesystem: Open the mod load directory as read only
Migrates a remaining common file over to the Common namespace, making it
consistent with the rest of common files.
This also allows for high-traffic FS related code to alias the
filesystem function namespace as
namespace FS = Common::FS;
for more concise typing.
Previously the map of entries was being cleared while looping through each game directory, this resulted into all game directories except the last game dir to lose content metadata information. Fix this by clearing the entries only once.
Oddly enough the scan that feeds the manual content provider is hardcoded to scan 2 nested directories deep.
This effectively rendered the scan subdirectories setting useless as the manual content provider cannot find any games located more than 2 nested directories deep.
Furthermore, this behavior causes game files to be picked up by the manual content provider even if scan subdirectories is disabled.
FIx this by utilizing the behavior described when populating the game list for populating the content provider.
Allows reporting more cases where logic errors may exist, such as
implicit fallthrough cases, etc.
We currently ignore unused parameters, since we currently have many
cases where this is intentional (virtual interfaces).
While we're at it, we can also tidy up any existing code that causes
warnings. This also uncovered a few bugs as well.
We can simply enable CMAKE_AUTOUIC and let CMake take care of handling
the UI code generation for targets.
As part of letting CMake automatically handle the header file parsing,
we must not name includes with "ui_*" unless they're related to the
output of the Qt UIC compiler. Because of this, we need to rename
ui_settings, given it would conflict with this restriction.
Stays consistent in our code with using Qt's provided mechanisms, and
also properly handles Unicode paths (which file streams on Windows don't
do very well).
Similarly, here we can avoid doing unnecessary work twice by retrieving
the file type only once and comparing it against relevant operands,
avoiding potential unnecessary object construction/destruction.
While GetFileType() is indeed a getter function, that doesn't mean it's
a trivial function, given some case require reading from the data or
constructing other objects in the background. Instead, only do necessary
work once.
We can just return a new instance of this when it's requested. This only
ever holds pointers to the existing registed caches, so it's not a large
object. Plus, this also gets rid of the need to keep around a separate
member function just to properly clear out the union.
Gets rid of one of five globals in the filesystem code.
We don't need to call out to our own file handling functions when we're
going to construct a QFileInfo instance right after it. We also don't
need to convert to a std::string again just to compare the file
extension.
As the add-ons column takes the most processing time out of any (as it needs to search registration for updates/dlc, patch control NCAs, search for mods, etc.), an option was added to disable it. This does not affect the application of add-ons. In large game collections, this decreases game list refresh time by as much as 70%.
Using fmt here requires unnecessary string conversions back into
QString. Instead, we can just use QString's formatting and get the end
result of the formatting operation in the proper type.
The data retrieved in these cases are ultimately chiefly owned by either
the RegisteredCache instance itself, or the filesystem factories. Both
these should live throughout the use of their contained data. If they
don't, it should be considered an interface/design issue, and using
shared_ptr instances here would mask that, as the data would always be
prolonged after the main owner's lifetime ended.
This makes the lifetime of the data explicit and makes it harder to
accidentally create cyclic references. It also makes the interface
slightly more flexible than the previous API, as a shared_ptr can be
created from a unique_ptr, but not the other way around, so this allows
for that use-case if it ever becomes necessary in some form.
Neither of these functions require the use of shared ownership of the
returned pointer. This makes it more difficult to create reference
cycles with, and makes the interface more generic, as std::shared_ptr
instances can be created from a std::unique_ptr, but the vice-versa
isn't possible. This also alters relevant functions to take NCA
arguments by const reference rather than a const reference to a
std::shared_ptr. These functions don't alter the ownership of the memory
used by the NCA instance, so we can make the interface more generic by
not assuming anything about the type of smart pointer the NCA is
contained within and make it the caller's responsibility to ensure the
supplied NCA is valid.
Lets us keep the generic portions of the compatibility list code
together, and allows us to introduce a type alias that makes it so we
don't need to type out a very long type declaration anymore, making the
immediate readability of some code better.