// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/assert.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "common/settings.h" #include "common/thread.h" #include "core/core.h" #include "core/frontend/graphics_context.h" #include "video_core/control/scheduler.h" #include "video_core/dma_pusher.h" #include "video_core/gpu.h" #include "video_core/gpu_thread.h" #include "video_core/host1x/host1x.h" #include "video_core/renderer_base.h" namespace VideoCommon::GPUThread { /// Runs the GPU thread static void RunThread(std::stop_token stop_token, Core::System& system, VideoCore::RendererBase& renderer, Core::Frontend::GraphicsContext& context, Tegra::Control::Scheduler& scheduler, SynchState& state) { std::string name = "GPU"; MicroProfileOnThreadCreate(name.c_str()); SCOPE_EXIT { MicroProfileOnThreadExit(); }; Common::SetCurrentThreadName(name.c_str()); Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical); system.RegisterHostThread(); auto current_context = context.Acquire(); VideoCore::RasterizerInterface* const rasterizer = renderer.ReadRasterizer(); CommandDataContainer next; while (!stop_token.stop_requested()) { state.queue.PopWait(next, stop_token); if (stop_token.stop_requested()) { break; } if (auto* submit_list = std::get_if(&next.data)) { scheduler.Push(submit_list->channel, std::move(submit_list->entries)); } else if (std::holds_alternative(next.data)) { system.GPU().TickWork(); } else if (const auto* flush = std::get_if(&next.data)) { rasterizer->FlushRegion(flush->addr, flush->size); } else if (const auto* invalidate = std::get_if(&next.data)) { rasterizer->OnCacheInvalidation(invalidate->addr, invalidate->size); } else { ASSERT(false); } state.signaled_fence.store(next.fence); if (next.block) { // We have to lock the write_lock to ensure that the condition_variable wait not get a // race between the check and the lock itself. std::scoped_lock lk{state.write_lock}; state.cv.notify_all(); } } } ThreadManager::ThreadManager(Core::System& system_, bool is_async_) : system{system_}, is_async{is_async_} {} ThreadManager::~ThreadManager() = default; void ThreadManager::StartThread(VideoCore::RendererBase& renderer, Core::Frontend::GraphicsContext& context, Tegra::Control::Scheduler& scheduler) { rasterizer = renderer.ReadRasterizer(); thread = std::jthread(RunThread, std::ref(system), std::ref(renderer), std::ref(context), std::ref(scheduler), std::ref(state)); } void ThreadManager::SubmitList(s32 channel, Tegra::CommandList&& entries) { PushCommand(SubmitListCommand(channel, std::move(entries))); } void ThreadManager::FlushRegion(DAddr addr, u64 size) { if (!is_async) { // Always flush with synchronous GPU mode PushCommand(FlushRegionCommand(addr, size)); return; } if (!Settings::IsGPULevelExtreme()) { return; } auto& gpu = system.GPU(); u64 fence = gpu.RequestFlush(addr, size); TickGPU(); gpu.WaitForSyncOperation(fence); } void ThreadManager::TickGPU() { PushCommand(GPUTickCommand()); } void ThreadManager::InvalidateRegion(DAddr addr, u64 size) { rasterizer->OnCacheInvalidation(addr, size); } void ThreadManager::FlushAndInvalidateRegion(DAddr addr, u64 size) { // Skip flush on asynch mode, as FlushAndInvalidateRegion is not used for anything too important rasterizer->OnCacheInvalidation(addr, size); } u64 ThreadManager::PushCommand(CommandData&& command_data, bool block) { if (!is_async) { // In synchronous GPU mode, block the caller until the command has executed block = true; } std::unique_lock lk(state.write_lock); const u64 fence{++state.last_fence}; state.queue.EmplaceWait(std::move(command_data), fence, block); if (block) { Common::CondvarWait(state.cv, lk, thread.get_stop_token(), [this, fence] { return fence <= state.signaled_fence.load(std::memory_order_relaxed); }); } return fence; } } // namespace VideoCommon::GPUThread