// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/hle/kernel/process.h" #include "core/hle/lock.h" #include "core/memory.h" #include "core/memory_setup.h" #include "core/mmio.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" namespace Memory { enum class PageType { /// Page is unmapped and should cause an access error. Unmapped, /// Page is mapped to regular memory. This is the only type you can get pointers to. Memory, /// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and /// invalidation RasterizerCachedMemory, /// Page is mapped to a I/O region. Writing and reading to this page is handled by functions. Special, /// Page is mapped to a I/O region, but also needs to check for rasterizer cache flushing and /// invalidation RasterizerCachedSpecial, }; struct SpecialRegion { VAddr base; u32 size; MMIORegionPointer handler; }; /** * A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely * mimics the way a real CPU page table works, but instead is optimized for minimal decoding and * fetching requirements when accessing. In the usual case of an access to regular memory, it only * requires an indexed fetch and a check for NULL. */ struct PageTable { /** * Array of memory pointers backing each page. An entry can only be non-null if the * corresponding entry in the `attributes` array is of type `Memory`. */ std::array pointers; /** * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of * type `Special`. */ std::vector special_regions; /** * Array of fine grained page attributes. If it is set to any value other than `Memory`, then * the corresponding entry in `pointers` MUST be set to null. */ std::array attributes; /** * Indicates the number of externally cached resources touching a page that should be * flushed before the memory is accessed */ std::array cached_res_count; }; /// Singular page table used for the singleton process static PageTable main_page_table; /// Currently active page table static PageTable* current_page_table = &main_page_table; std::array* GetCurrentPageTablePointers() { return ¤t_page_table->pointers; } static void MapPages(u32 base, u32 size, u8* memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE); u32 end = base + size; while (base != end) { ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base); // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // null here if (current_page_table->attributes[base] == PageType::RasterizerCachedMemory || current_page_table->attributes[base] == PageType::RasterizerCachedSpecial) { RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(base << PAGE_BITS), PAGE_SIZE); } current_page_table->attributes[base] = type; current_page_table->pointers[base] = memory; current_page_table->cached_res_count[base] = 0; base += 1; if (memory != nullptr) memory += PAGE_SIZE; } } void InitMemoryMap() { main_page_table.pointers.fill(nullptr); main_page_table.attributes.fill(PageType::Unmapped); main_page_table.cached_res_count.fill(0); } void MapMemoryRegion(VAddr base, u32 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); } void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler}); } void UnmapRegion(VAddr base, u32 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process */ static u8* GetPointerFromVMA(VAddr vaddr) { u8* direct_pointer = nullptr; auto& vm_manager = Kernel::g_current_process->vm_manager; auto it = vm_manager.FindVMA(vaddr); ASSERT(it != vm_manager.vma_map.end()); auto& vma = it->second; switch (vma.type) { case Kernel::VMAType::AllocatedMemoryBlock: direct_pointer = vma.backing_block->data() + vma.offset; break; case Kernel::VMAType::BackingMemory: direct_pointer = vma.backing_memory; break; case Kernel::VMAType::Free: return nullptr; default: UNREACHABLE(); } return direct_pointer + (vaddr - vma.base); } /** * This function should only be called for virtual addreses with attribute `PageType::Special`. */ static MMIORegionPointer GetMMIOHandler(VAddr vaddr) { for (const auto& region : current_page_table->special_regions) { if (vaddr >= region.base && vaddr < (region.base + region.size)) { return region.handler; } } ASSERT_MSG(false, "Mapped IO page without a handler @ %08X", vaddr); return nullptr; // Should never happen } template T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr); template T Read(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); return value; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr); return 0; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushRegion(VirtualToPhysicalAddress(vaddr), sizeof(T)); T value; std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T)); return value; } case PageType::Special: return ReadMMIO(GetMMIOHandler(vaddr), vaddr); case PageType::RasterizerCachedSpecial: { RasterizerFlushRegion(VirtualToPhysicalAddress(vaddr), sizeof(T)); return ReadMMIO(GetMMIOHandler(vaddr), vaddr); } default: UNREACHABLE(); } } template void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data); template void Write(const VAddr vaddr, const T data) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); return; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); return; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(vaddr), sizeof(T)); std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T)); break; } case PageType::Special: WriteMMIO(GetMMIOHandler(vaddr), vaddr, data); break; case PageType::RasterizerCachedSpecial: { RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(vaddr), sizeof(T)); WriteMMIO(GetMMIOHandler(vaddr), vaddr, data); break; } default: UNREACHABLE(); } } bool IsValidVirtualAddress(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) return true; if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) return true; if (current_page_table->attributes[vaddr >> PAGE_BITS] != PageType::Special) return false; MMIORegionPointer mmio_region = GetMMIOHandler(vaddr); if (mmio_region) { return mmio_region->IsValidAddress(vaddr); } return false; } bool IsValidPhysicalAddress(const PAddr paddr) { return IsValidVirtualAddress(PhysicalToVirtualAddress(paddr)); } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) { return GetPointerFromVMA(vaddr); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return nullptr; } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') break; string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } u8* GetPhysicalPointer(PAddr address) { // TODO(Subv): This call should not go through the application's memory mapping. return GetPointer(PhysicalToVirtualAddress(address)); } void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) { if (start == 0) { return; } u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1; PAddr paddr = start; for (unsigned i = 0; i < num_pages; ++i) { VAddr vaddr = PhysicalToVirtualAddress(paddr); u8& res_count = current_page_table->cached_res_count[vaddr >> PAGE_BITS]; ASSERT_MSG(count_delta <= UINT8_MAX - res_count, "Rasterizer resource cache counter overflow!"); ASSERT_MSG(count_delta >= -res_count, "Rasterizer resource cache counter underflow!"); // Switch page type to cached if now cached if (res_count == 0) { PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (page_type) { case PageType::Memory: page_type = PageType::RasterizerCachedMemory; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; break; case PageType::Special: page_type = PageType::RasterizerCachedSpecial; break; default: UNREACHABLE(); } } res_count += count_delta; // Switch page type to uncached if now uncached if (res_count == 0) { PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (page_type) { case PageType::RasterizerCachedMemory: { u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); if (pointer == nullptr) { // It's possible that this function has called been while updating the pagetable // after unmapping a VMA. In that case the underlying VMA will no longer exist, // and we should just leave the pagetable entry blank. page_type = PageType::Unmapped; } else { page_type = PageType::Memory; current_page_table->pointers[vaddr >> PAGE_BITS] = pointer; } break; } case PageType::RasterizerCachedSpecial: page_type = PageType::Special; break; default: UNREACHABLE(); } } paddr += PAGE_SIZE; } } void RasterizerFlushRegion(PAddr start, u32 size) { if (VideoCore::g_renderer != nullptr) { VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size); } } void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) { if (VideoCore::g_renderer != nullptr) { VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size); } } u8 Read8(const VAddr addr) { return Read(addr); } u16 Read16(const VAddr addr) { return Read(addr); } u32 Read32(const VAddr addr) { return Read(addr); } u64 Read64(const VAddr addr) { return Read(addr); } void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) { size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset; switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); const u8* src_ptr = current_page_table->pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case PageType::Special: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, dest_buffer, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); std::memcpy(dest_buffer, GetPointerFromVMA(current_vaddr), copy_amount); break; } case PageType::RasterizerCachedSpecial: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); RasterizerFlushRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, dest_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) { size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset; switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); u8* dest_ptr = current_page_table->pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case PageType::Special: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, src_buffer, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); std::memcpy(GetPointerFromVMA(current_vaddr), src_buffer, copy_amount); break; } case PageType::RasterizerCachedSpecial: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void ZeroBlock(const VAddr dest_addr, const size_t size) { size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; static const std::array zeros = {}; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset; switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); u8* dest_ptr = current_page_table->pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } case PageType::Special: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, zeros.data(), copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); std::memset(GetPointerFromVMA(current_vaddr), 0, copy_amount); break; } case PageType::RasterizerCachedSpecial: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, zeros.data(), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) { size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset; switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size); ZeroBlock(dest_addr, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); const u8* src_ptr = current_page_table->pointers[page_index] + page_offset; WriteBlock(dest_addr, src_ptr, copy_amount); break; } case PageType::Special: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); std::vector buffer(copy_amount); GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, buffer.data(), buffer.size()); WriteBlock(dest_addr, buffer.data(), buffer.size()); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); WriteBlock(dest_addr, GetPointerFromVMA(current_vaddr), copy_amount); break; } case PageType::RasterizerCachedSpecial: { DEBUG_ASSERT(GetMMIOHandler(current_vaddr)); RasterizerFlushRegion(VirtualToPhysicalAddress(current_vaddr), copy_amount); std::vector buffer(copy_amount); GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, buffer.data(), buffer.size()); WriteBlock(dest_addr, buffer.data(), buffer.size()); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += copy_amount; src_addr += copy_amount; remaining_size -= copy_amount; } } template <> u8 ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr) { return mmio_handler->Read8(addr); } template <> u16 ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr) { return mmio_handler->Read16(addr); } template <> u32 ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr) { return mmio_handler->Read32(addr); } template <> u64 ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr) { return mmio_handler->Read64(addr); } template <> void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) { mmio_handler->Write8(addr, data); } template <> void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) { mmio_handler->Write16(addr, data); } template <> void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) { mmio_handler->Write32(addr, data); } template <> void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) { mmio_handler->Write64(addr, data); } PAddr VirtualToPhysicalAddress(const VAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return addr - VRAM_VADDR + VRAM_PADDR; } else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) { return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) { return addr - DSP_RAM_VADDR + DSP_RAM_PADDR; } else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) { return addr - IO_AREA_VADDR + IO_AREA_PADDR; } else if (addr >= N3DS_EXTRA_RAM_VADDR && addr < N3DS_EXTRA_RAM_VADDR_END) { return addr - N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_PADDR; } LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08X", addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } VAddr PhysicalToVirtualAddress(const PAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) { return addr - VRAM_PADDR + VRAM_VADDR; } else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) { return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapAreaAddress(); } else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) { return addr - DSP_RAM_PADDR + DSP_RAM_VADDR; } else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) { return addr - IO_AREA_PADDR + IO_AREA_VADDR; } else if (addr >= N3DS_EXTRA_RAM_PADDR && addr < N3DS_EXTRA_RAM_PADDR_END) { return addr - N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_VADDR; } LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08X", addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } } // namespace Memory