suyu/src/video_core/gpu.cpp
2024-03-08 22:44:03 +00:00

554 lines
17 KiB
C++

// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <list>
#include <memory>
#include "common/assert.h"
#include "common/microprofile.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/frontend/emu_window.h"
#include "core/frontend/graphics_context.h"
#include "core/hle/service/nvdrv/nvdata.h"
#include "core/perf_stats.h"
#include "video_core/cdma_pusher.h"
#include "video_core/control/channel_state.h"
#include "video_core/control/scheduler.h"
#include "video_core/dma_pusher.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/gpu_thread.h"
#include "video_core/host1x/host1x.h"
#include "video_core/host1x/syncpoint_manager.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/shader_notify.h"
namespace Tegra {
struct GPU::Impl {
explicit Impl(GPU& gpu_, Core::System& system_, bool is_async_, bool use_nvdec_)
: gpu{gpu_}, system{system_}, host1x{system.Host1x()}, use_nvdec{use_nvdec_},
shader_notify{std::make_unique<VideoCore::ShaderNotify>()}, is_async{is_async_},
gpu_thread{system_, is_async_}, scheduler{std::make_unique<Control::Scheduler>(gpu)} {}
~Impl() = default;
std::shared_ptr<Control::ChannelState> CreateChannel(s32 channel_id) {
auto channel_state = std::make_shared<Tegra::Control::ChannelState>(channel_id);
channels.emplace(channel_id, channel_state);
scheduler->DeclareChannel(channel_state);
return channel_state;
}
void BindChannel(s32 channel_id) {
if (bound_channel == channel_id) {
return;
}
auto it = channels.find(channel_id);
ASSERT(it != channels.end());
bound_channel = channel_id;
current_channel = it->second.get();
rasterizer->BindChannel(*current_channel);
}
std::shared_ptr<Control::ChannelState> AllocateChannel() {
return CreateChannel(new_channel_id++);
}
void InitChannel(Control::ChannelState& to_init, u64 program_id) {
to_init.Init(system, gpu, program_id);
to_init.BindRasterizer(rasterizer);
rasterizer->InitializeChannel(to_init);
}
void InitAddressSpace(Tegra::MemoryManager& memory_manager) {
memory_manager.BindRasterizer(rasterizer);
}
void ReleaseChannel(Control::ChannelState& to_release) {
UNIMPLEMENTED();
}
/// Binds a renderer to the GPU.
void BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer_) {
renderer = std::move(renderer_);
rasterizer = renderer->ReadRasterizer();
host1x.MemoryManager().BindInterface(rasterizer);
host1x.GMMU().BindRasterizer(rasterizer);
}
/// Flush all current written commands into the host GPU for execution.
void FlushCommands() {
rasterizer->FlushCommands();
}
/// Synchronizes CPU writes with Host GPU memory.
void InvalidateGPUCache() {
std::function<void(PAddr, size_t)> callback_writes(
[this](PAddr address, size_t size) { rasterizer->OnCacheInvalidation(address, size); });
system.GatherGPUDirtyMemory(callback_writes);
}
/// Signal the ending of command list.
void OnCommandListEnd() {
rasterizer->ReleaseFences(false);
Settings::UpdateGPUAccuracy();
}
/// Request a host GPU memory flush from the CPU.
template <typename Func>
[[nodiscard]] u64 RequestSyncOperation(Func&& action) {
std::unique_lock lck{sync_request_mutex};
const u64 fence = ++last_sync_fence;
sync_requests.emplace_back(action);
return fence;
}
/// Obtains current flush request fence id.
[[nodiscard]] u64 CurrentSyncRequestFence() const {
return current_sync_fence.load(std::memory_order_relaxed);
}
void WaitForSyncOperation(const u64 fence) {
std::unique_lock lck{sync_request_mutex};
sync_request_cv.wait(lck, [this, fence] { return CurrentSyncRequestFence() >= fence; });
}
/// Tick pending requests within the GPU.
void TickWork() {
std::unique_lock lck{sync_request_mutex};
while (!sync_requests.empty()) {
auto request = std::move(sync_requests.front());
sync_requests.pop_front();
sync_request_mutex.unlock();
request();
current_sync_fence.fetch_add(1, std::memory_order_release);
sync_request_mutex.lock();
sync_request_cv.notify_all();
}
}
/// Returns a reference to the Maxwell3D GPU engine.
[[nodiscard]] Engines::Maxwell3D& Maxwell3D() {
ASSERT(current_channel);
return *current_channel->maxwell_3d;
}
/// Returns a const reference to the Maxwell3D GPU engine.
[[nodiscard]] const Engines::Maxwell3D& Maxwell3D() const {
ASSERT(current_channel);
return *current_channel->maxwell_3d;
}
/// Returns a reference to the KeplerCompute GPU engine.
[[nodiscard]] Engines::KeplerCompute& KeplerCompute() {
ASSERT(current_channel);
return *current_channel->kepler_compute;
}
/// Returns a reference to the KeplerCompute GPU engine.
[[nodiscard]] const Engines::KeplerCompute& KeplerCompute() const {
ASSERT(current_channel);
return *current_channel->kepler_compute;
}
/// Returns a reference to the GPU DMA pusher.
[[nodiscard]] Tegra::DmaPusher& DmaPusher() {
ASSERT(current_channel);
return *current_channel->dma_pusher;
}
/// Returns a const reference to the GPU DMA pusher.
[[nodiscard]] const Tegra::DmaPusher& DmaPusher() const {
ASSERT(current_channel);
return *current_channel->dma_pusher;
}
/// Returns a reference to the underlying renderer.
[[nodiscard]] VideoCore::RendererBase& Renderer() {
return *renderer;
}
/// Returns a const reference to the underlying renderer.
[[nodiscard]] const VideoCore::RendererBase& Renderer() const {
return *renderer;
}
/// Returns a reference to the shader notifier.
[[nodiscard]] VideoCore::ShaderNotify& ShaderNotify() {
return *shader_notify;
}
/// Returns a const reference to the shader notifier.
[[nodiscard]] const VideoCore::ShaderNotify& ShaderNotify() const {
return *shader_notify;
}
[[nodiscard]] u64 GetTicks() const {
u64 gpu_tick = system.CoreTiming().GetGPUTicks();
if (Settings::values.use_fast_gpu_time.GetValue()) {
gpu_tick /= 256;
}
return gpu_tick;
}
[[nodiscard]] bool IsAsync() const {
return is_async;
}
[[nodiscard]] bool UseNvdec() const {
return use_nvdec;
}
void RendererFrameEndNotify() {
system.GetPerfStats().EndGameFrame();
}
/// Performs any additional setup necessary in order to begin GPU emulation.
/// This can be used to launch any necessary threads and register any necessary
/// core timing events.
void Start() {
Settings::UpdateGPUAccuracy();
gpu_thread.StartThread(*renderer, renderer->Context(), *scheduler);
}
void NotifyShutdown() {
std::unique_lock lk{sync_mutex};
shutting_down.store(true, std::memory_order::relaxed);
sync_cv.notify_all();
}
/// Obtain the CPU Context
void ObtainContext() {
if (!cpu_context) {
cpu_context = renderer->GetRenderWindow().CreateSharedContext();
}
cpu_context->MakeCurrent();
}
/// Release the CPU Context
void ReleaseContext() {
cpu_context->DoneCurrent();
}
/// Push GPU command entries to be processed
void PushGPUEntries(s32 channel, Tegra::CommandList&& entries) {
gpu_thread.SubmitList(channel, std::move(entries));
}
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(DAddr addr, u64 size) {
gpu_thread.FlushRegion(addr, size);
}
VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size) {
auto raster_area = rasterizer->GetFlushArea(addr, size);
if (raster_area.preemtive) {
return raster_area;
}
raster_area.preemtive = true;
const u64 fence = RequestSyncOperation([this, &raster_area]() {
rasterizer->FlushRegion(raster_area.start_address,
raster_area.end_address - raster_area.start_address);
});
gpu_thread.TickGPU();
WaitForSyncOperation(fence);
return raster_area;
}
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(DAddr addr, u64 size) {
gpu_thread.InvalidateRegion(addr, size);
}
bool OnCPUWrite(DAddr addr, u64 size) {
return rasterizer->OnCPUWrite(addr, size);
}
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(DAddr addr, u64 size) {
gpu_thread.FlushAndInvalidateRegion(addr, size);
}
void RequestComposite(std::vector<Tegra::FramebufferConfig>&& layers,
std::vector<Service::Nvidia::NvFence>&& fences) {
size_t num_fences{fences.size()};
size_t current_request_counter{};
{
std::unique_lock<std::mutex> lk(request_swap_mutex);
if (free_swap_counters.empty()) {
current_request_counter = request_swap_counters.size();
request_swap_counters.emplace_back(num_fences);
} else {
current_request_counter = free_swap_counters.front();
request_swap_counters[current_request_counter] = num_fences;
free_swap_counters.pop_front();
}
}
const auto wait_fence =
RequestSyncOperation([this, current_request_counter, &layers, &fences, num_fences] {
auto& syncpoint_manager = host1x.GetSyncpointManager();
if (num_fences == 0) {
renderer->Composite(layers);
}
const auto executer = [this, current_request_counter, layers_copy = layers]() {
{
std::unique_lock<std::mutex> lk(request_swap_mutex);
if (--request_swap_counters[current_request_counter] != 0) {
return;
}
free_swap_counters.push_back(current_request_counter);
}
renderer->Composite(layers_copy);
};
for (size_t i = 0; i < num_fences; i++) {
syncpoint_manager.RegisterGuestAction(fences[i].id, fences[i].value, executer);
}
});
gpu_thread.TickGPU();
WaitForSyncOperation(wait_fence);
}
std::vector<u8> GetAppletCaptureBuffer() {
std::vector<u8> out;
const auto wait_fence =
RequestSyncOperation([&] { out = renderer->GetAppletCaptureBuffer(); });
gpu_thread.TickGPU();
WaitForSyncOperation(wait_fence);
return out;
}
GPU& gpu;
Core::System& system;
Host1x::Host1x& host1x;
std::unique_ptr<VideoCore::RendererBase> renderer;
VideoCore::RasterizerInterface* rasterizer = nullptr;
const bool use_nvdec;
s32 new_channel_id{1};
/// Shader build notifier
std::unique_ptr<VideoCore::ShaderNotify> shader_notify;
/// When true, we are about to shut down emulation session, so terminate outstanding tasks
std::atomic_bool shutting_down{};
std::array<std::atomic<u32>, Service::Nvidia::MaxSyncPoints> syncpoints{};
std::array<std::list<u32>, Service::Nvidia::MaxSyncPoints> syncpt_interrupts;
std::mutex sync_mutex;
std::mutex device_mutex;
std::condition_variable sync_cv;
std::list<std::function<void()>> sync_requests;
std::atomic<u64> current_sync_fence{};
u64 last_sync_fence{};
std::mutex sync_request_mutex;
std::condition_variable sync_request_cv;
const bool is_async;
VideoCommon::GPUThread::ThreadManager gpu_thread;
std::unique_ptr<Core::Frontend::GraphicsContext> cpu_context;
std::unique_ptr<Tegra::Control::Scheduler> scheduler;
std::unordered_map<s32, std::shared_ptr<Tegra::Control::ChannelState>> channels;
Tegra::Control::ChannelState* current_channel;
s32 bound_channel{-1};
std::deque<size_t> free_swap_counters;
std::deque<size_t> request_swap_counters;
std::mutex request_swap_mutex;
};
GPU::GPU(Core::System& system, bool is_async, bool use_nvdec)
: impl{std::make_unique<Impl>(*this, system, is_async, use_nvdec)} {}
GPU::~GPU() = default;
std::shared_ptr<Control::ChannelState> GPU::AllocateChannel() {
return impl->AllocateChannel();
}
void GPU::InitChannel(Control::ChannelState& to_init, u64 program_id) {
impl->InitChannel(to_init, program_id);
}
void GPU::BindChannel(s32 channel_id) {
impl->BindChannel(channel_id);
}
void GPU::ReleaseChannel(Control::ChannelState& to_release) {
impl->ReleaseChannel(to_release);
}
void GPU::InitAddressSpace(Tegra::MemoryManager& memory_manager) {
impl->InitAddressSpace(memory_manager);
}
void GPU::BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer) {
impl->BindRenderer(std::move(renderer));
}
void GPU::FlushCommands() {
impl->FlushCommands();
}
void GPU::InvalidateGPUCache() {
impl->InvalidateGPUCache();
}
void GPU::OnCommandListEnd() {
impl->OnCommandListEnd();
}
u64 GPU::RequestFlush(DAddr addr, std::size_t size) {
return impl->RequestSyncOperation(
[this, addr, size]() { impl->rasterizer->FlushRegion(addr, size); });
}
u64 GPU::CurrentSyncRequestFence() const {
return impl->CurrentSyncRequestFence();
}
void GPU::WaitForSyncOperation(u64 fence) {
return impl->WaitForSyncOperation(fence);
}
void GPU::TickWork() {
impl->TickWork();
}
/// Gets a mutable reference to the Host1x interface
Host1x::Host1x& GPU::Host1x() {
return impl->host1x;
}
/// Gets an immutable reference to the Host1x interface.
const Host1x::Host1x& GPU::Host1x() const {
return impl->host1x;
}
Engines::Maxwell3D& GPU::Maxwell3D() {
return impl->Maxwell3D();
}
const Engines::Maxwell3D& GPU::Maxwell3D() const {
return impl->Maxwell3D();
}
Engines::KeplerCompute& GPU::KeplerCompute() {
return impl->KeplerCompute();
}
const Engines::KeplerCompute& GPU::KeplerCompute() const {
return impl->KeplerCompute();
}
Tegra::DmaPusher& GPU::DmaPusher() {
return impl->DmaPusher();
}
const Tegra::DmaPusher& GPU::DmaPusher() const {
return impl->DmaPusher();
}
VideoCore::RendererBase& GPU::Renderer() {
return impl->Renderer();
}
const VideoCore::RendererBase& GPU::Renderer() const {
return impl->Renderer();
}
VideoCore::ShaderNotify& GPU::ShaderNotify() {
return impl->ShaderNotify();
}
const VideoCore::ShaderNotify& GPU::ShaderNotify() const {
return impl->ShaderNotify();
}
void GPU::RequestComposite(std::vector<Tegra::FramebufferConfig>&& layers,
std::vector<Service::Nvidia::NvFence>&& fences) {
impl->RequestComposite(std::move(layers), std::move(fences));
}
std::vector<u8> GPU::GetAppletCaptureBuffer() {
return impl->GetAppletCaptureBuffer();
}
u64 GPU::GetTicks() const {
return impl->GetTicks();
}
bool GPU::IsAsync() const {
return impl->IsAsync();
}
bool GPU::UseNvdec() const {
return impl->UseNvdec();
}
void GPU::RendererFrameEndNotify() {
impl->RendererFrameEndNotify();
}
void GPU::Start() {
impl->Start();
}
void GPU::NotifyShutdown() {
impl->NotifyShutdown();
}
void GPU::ObtainContext() {
impl->ObtainContext();
}
void GPU::ReleaseContext() {
impl->ReleaseContext();
}
void GPU::PushGPUEntries(s32 channel, Tegra::CommandList&& entries) {
impl->PushGPUEntries(channel, std::move(entries));
}
VideoCore::RasterizerDownloadArea GPU::OnCPURead(PAddr addr, u64 size) {
return impl->OnCPURead(addr, size);
}
void GPU::FlushRegion(DAddr addr, u64 size) {
impl->FlushRegion(addr, size);
}
void GPU::InvalidateRegion(DAddr addr, u64 size) {
impl->InvalidateRegion(addr, size);
}
bool GPU::OnCPUWrite(DAddr addr, u64 size) {
return impl->OnCPUWrite(addr, size);
}
void GPU::FlushAndInvalidateRegion(DAddr addr, u64 size) {
impl->FlushAndInvalidateRegion(addr, size);
}
} // namespace Tegra