suyu/src/shader_recompiler/frontend/ir/ir_emitter.cpp

1585 lines
52 KiB
C++

// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/bit_cast.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/ir/value.h"
namespace Shader::IR {
namespace {
[[noreturn]] void ThrowInvalidType(Type type) {
throw InvalidArgument("Invalid type {}", type);
}
Value MakeLodClampPair(IREmitter& ir, const F32& bias_lod, const F32& lod_clamp) {
if (!bias_lod.IsEmpty() && !lod_clamp.IsEmpty()) {
return ir.CompositeConstruct(bias_lod, lod_clamp);
} else if (!bias_lod.IsEmpty()) {
return bias_lod;
} else if (!lod_clamp.IsEmpty()) {
return lod_clamp;
} else {
return Value{};
}
}
} // Anonymous namespace
U1 IREmitter::Imm1(bool value) const {
return U1{Value{value}};
}
U8 IREmitter::Imm8(u8 value) const {
return U8{Value{value}};
}
U16 IREmitter::Imm16(u16 value) const {
return U16{Value{value}};
}
U32 IREmitter::Imm32(u32 value) const {
return U32{Value{value}};
}
U32 IREmitter::Imm32(s32 value) const {
return U32{Value{static_cast<u32>(value)}};
}
F32 IREmitter::Imm32(f32 value) const {
return F32{Value{value}};
}
U64 IREmitter::Imm64(u64 value) const {
return U64{Value{value}};
}
U64 IREmitter::Imm64(s64 value) const {
return U64{Value{static_cast<u64>(value)}};
}
F64 IREmitter::Imm64(f64 value) const {
return F64{Value{value}};
}
void IREmitter::Branch(Block* label) {
label->AddImmediatePredecessor(block);
block->SetBranch(label);
Inst(Opcode::Branch, label);
}
void IREmitter::BranchConditional(const U1& condition, Block* true_label, Block* false_label) {
block->SetBranches(IR::Condition{true}, true_label, false_label);
true_label->AddImmediatePredecessor(block);
false_label->AddImmediatePredecessor(block);
Inst(Opcode::BranchConditional, condition, true_label, false_label);
}
void IREmitter::LoopMerge(Block* merge_block, Block* continue_target) {
Inst(Opcode::LoopMerge, merge_block, continue_target);
}
void IREmitter::SelectionMerge(Block* merge_block) {
Inst(Opcode::SelectionMerge, merge_block);
}
void IREmitter::Return() {
block->SetReturn();
Inst(Opcode::Return);
}
void IREmitter::DemoteToHelperInvocation(Block* continue_label) {
block->SetBranch(continue_label);
continue_label->AddImmediatePredecessor(block);
Inst(Opcode::DemoteToHelperInvocation, continue_label);
}
void IREmitter::Prologue() {
Inst(Opcode::Prologue);
}
void IREmitter::Epilogue() {
Inst(Opcode::Epilogue);
}
U32 IREmitter::GetReg(IR::Reg reg) {
return Inst<U32>(Opcode::GetRegister, reg);
}
void IREmitter::SetReg(IR::Reg reg, const U32& value) {
Inst(Opcode::SetRegister, reg, value);
}
U1 IREmitter::GetPred(IR::Pred pred, bool is_negated) {
const U1 value{Inst<U1>(Opcode::GetPred, pred)};
if (is_negated) {
return Inst<U1>(Opcode::LogicalNot, value);
} else {
return value;
}
}
U1 IREmitter::GetGotoVariable(u32 id) {
return Inst<U1>(Opcode::GetGotoVariable, id);
}
void IREmitter::SetGotoVariable(u32 id, const U1& value) {
Inst(Opcode::SetGotoVariable, id, value);
}
void IREmitter::SetPred(IR::Pred pred, const U1& value) {
Inst(Opcode::SetPred, pred, value);
}
U32 IREmitter::GetCbuf(const U32& binding, const U32& byte_offset) {
return Inst<U32>(Opcode::GetCbufU32, binding, byte_offset);
}
UAny IREmitter::GetCbuf(const U32& binding, const U32& byte_offset, size_t bitsize,
bool is_signed) {
switch (bitsize) {
case 8:
return Inst<U32>(is_signed ? Opcode::GetCbufS8 : Opcode::GetCbufU8, binding, byte_offset);
case 16:
return Inst<U32>(is_signed ? Opcode::GetCbufS16 : Opcode::GetCbufU16, binding, byte_offset);
case 32:
return Inst<U32>(Opcode::GetCbufU32, binding, byte_offset);
case 64:
return Inst<U64>(Opcode::GetCbufU64, binding, byte_offset);
default:
throw InvalidArgument("Invalid bit size {}", bitsize);
}
}
F32 IREmitter::GetFloatCbuf(const U32& binding, const U32& byte_offset) {
return Inst<F32>(Opcode::GetCbufF32, binding, byte_offset);
}
U1 IREmitter::GetZFlag() {
return Inst<U1>(Opcode::GetZFlag);
}
U1 IREmitter::GetSFlag() {
return Inst<U1>(Opcode::GetSFlag);
}
U1 IREmitter::GetCFlag() {
return Inst<U1>(Opcode::GetCFlag);
}
U1 IREmitter::GetOFlag() {
return Inst<U1>(Opcode::GetOFlag);
}
void IREmitter::SetZFlag(const U1& value) {
Inst(Opcode::SetZFlag, value);
}
void IREmitter::SetSFlag(const U1& value) {
Inst(Opcode::SetSFlag, value);
}
void IREmitter::SetCFlag(const U1& value) {
Inst(Opcode::SetCFlag, value);
}
void IREmitter::SetOFlag(const U1& value) {
Inst(Opcode::SetOFlag, value);
}
static U1 GetFlowTest(IREmitter& ir, FlowTest flow_test) {
switch (flow_test) {
case FlowTest::F:
return ir.Imm1(false);
case FlowTest::LT:
return ir.LogicalXor(ir.LogicalAnd(ir.GetSFlag(), ir.LogicalNot(ir.GetZFlag())),
ir.GetOFlag());
case FlowTest::EQ:
return ir.LogicalAnd(ir.LogicalNot(ir.GetSFlag()), ir.GetZFlag());
case FlowTest::LE:
return ir.LogicalXor(ir.GetSFlag(), ir.LogicalOr(ir.GetZFlag(), ir.GetOFlag()));
case FlowTest::GT:
return ir.LogicalAnd(ir.LogicalXor(ir.LogicalNot(ir.GetSFlag()), ir.GetOFlag()),
ir.LogicalNot(ir.GetZFlag()));
case FlowTest::NE:
return ir.LogicalNot(ir.GetZFlag());
case FlowTest::GE:
return ir.LogicalNot(ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag()));
case FlowTest::NUM:
return ir.LogicalOr(ir.LogicalNot(ir.GetSFlag()), ir.LogicalNot(ir.GetZFlag()));
case FlowTest::NaN:
return ir.LogicalAnd(ir.GetSFlag(), ir.GetZFlag());
case FlowTest::LTU:
return ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag());
case FlowTest::EQU:
return ir.GetZFlag();
case FlowTest::LEU:
return ir.LogicalOr(ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag()), ir.GetZFlag());
case FlowTest::GTU:
return ir.LogicalXor(ir.LogicalNot(ir.GetSFlag()),
ir.LogicalOr(ir.GetZFlag(), ir.GetOFlag()));
case FlowTest::NEU:
return ir.LogicalOr(ir.GetSFlag(), ir.LogicalNot(ir.GetZFlag()));
case FlowTest::GEU:
return ir.LogicalXor(ir.LogicalOr(ir.LogicalNot(ir.GetSFlag()), ir.GetZFlag()),
ir.GetOFlag());
case FlowTest::T:
return ir.Imm1(true);
case FlowTest::OFF:
return ir.LogicalNot(ir.GetOFlag());
case FlowTest::LO:
return ir.LogicalNot(ir.GetCFlag());
case FlowTest::SFF:
return ir.LogicalNot(ir.GetSFlag());
case FlowTest::LS:
return ir.LogicalOr(ir.GetZFlag(), ir.LogicalNot(ir.GetCFlag()));
case FlowTest::HI:
return ir.LogicalAnd(ir.GetCFlag(), ir.LogicalNot(ir.GetZFlag()));
case FlowTest::SFT:
return ir.GetSFlag();
case FlowTest::HS:
return ir.GetCFlag();
case FlowTest::OFT:
return ir.GetOFlag();
case FlowTest::RLE:
return ir.LogicalOr(ir.GetSFlag(), ir.GetZFlag());
case FlowTest::RGT:
return ir.LogicalAnd(ir.LogicalNot(ir.GetSFlag()), ir.LogicalNot(ir.GetZFlag()));
default:
throw NotImplementedException("Flow test {}", flow_test);
}
}
U1 IREmitter::Condition(IR::Condition cond) {
const FlowTest flow_test{cond.FlowTest()};
const auto [pred, is_negated]{cond.Pred()};
return LogicalAnd(GetPred(pred, is_negated), GetFlowTest(*this, flow_test));
}
U1 IREmitter::GetFlowTestResult(FlowTest test) {
return GetFlowTest(*this, test);
}
F32 IREmitter::GetAttribute(IR::Attribute attribute) {
return Inst<F32>(Opcode::GetAttribute, attribute);
}
void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value) {
Inst(Opcode::SetAttribute, attribute, value);
}
void IREmitter::SetFragColor(u32 index, u32 component, const F32& value) {
Inst(Opcode::SetFragColor, Imm32(index), Imm32(component), value);
}
void IREmitter::SetFragDepth(const F32& value) {
Inst(Opcode::SetFragDepth, value);
}
U32 IREmitter::WorkgroupIdX() {
return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 0)};
}
U32 IREmitter::WorkgroupIdY() {
return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 1)};
}
U32 IREmitter::WorkgroupIdZ() {
return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 2)};
}
U32 IREmitter::LocalInvocationIdX() {
return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 0)};
}
U32 IREmitter::LocalInvocationIdY() {
return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 1)};
}
U32 IREmitter::LocalInvocationIdZ() {
return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 2)};
}
U32 IREmitter::LoadGlobalU8(const U64& address) {
return Inst<U32>(Opcode::LoadGlobalU8, address);
}
U32 IREmitter::LoadGlobalS8(const U64& address) {
return Inst<U32>(Opcode::LoadGlobalS8, address);
}
U32 IREmitter::LoadGlobalU16(const U64& address) {
return Inst<U32>(Opcode::LoadGlobalU16, address);
}
U32 IREmitter::LoadGlobalS16(const U64& address) {
return Inst<U32>(Opcode::LoadGlobalS16, address);
}
U32 IREmitter::LoadGlobal32(const U64& address) {
return Inst<U32>(Opcode::LoadGlobal32, address);
}
Value IREmitter::LoadGlobal64(const U64& address) {
return Inst<Value>(Opcode::LoadGlobal64, address);
}
Value IREmitter::LoadGlobal128(const U64& address) {
return Inst<Value>(Opcode::LoadGlobal128, address);
}
void IREmitter::WriteGlobalU8(const U64& address, const U32& value) {
Inst(Opcode::WriteGlobalU8, address, value);
}
void IREmitter::WriteGlobalS8(const U64& address, const U32& value) {
Inst(Opcode::WriteGlobalS8, address, value);
}
void IREmitter::WriteGlobalU16(const U64& address, const U32& value) {
Inst(Opcode::WriteGlobalU16, address, value);
}
void IREmitter::WriteGlobalS16(const U64& address, const U32& value) {
Inst(Opcode::WriteGlobalS16, address, value);
}
void IREmitter::WriteGlobal32(const U64& address, const U32& value) {
Inst(Opcode::WriteGlobal32, address, value);
}
void IREmitter::WriteGlobal64(const U64& address, const IR::Value& vector) {
Inst(Opcode::WriteGlobal64, address, vector);
}
void IREmitter::WriteGlobal128(const U64& address, const IR::Value& vector) {
Inst(Opcode::WriteGlobal128, address, vector);
}
U32 IREmitter::LoadLocal(const IR::U32& word_offset) {
return Inst<U32>(Opcode::LoadLocal, word_offset);
}
void IREmitter::WriteLocal(const IR::U32& word_offset, const IR::U32& value) {
Inst(Opcode::WriteLocal, word_offset, value);
}
Value IREmitter::LoadShared(int bit_size, bool is_signed, const IR::U32& offset) {
switch (bit_size) {
case 8:
return Inst(is_signed ? Opcode::LoadSharedS8 : Opcode::LoadSharedU8, offset);
case 16:
return Inst(is_signed ? Opcode::LoadSharedS16 : Opcode::LoadSharedU16, offset);
case 32:
return Inst(Opcode::LoadSharedU32, offset);
case 64:
return Inst(Opcode::LoadSharedU64, offset);
case 128:
return Inst(Opcode::LoadSharedU128, offset);
}
throw InvalidArgument("Invalid bit size {}", bit_size);
}
void IREmitter::WriteShared(int bit_size, const IR::U32& offset, const IR::Value& value) {
switch (bit_size) {
case 8:
Inst(Opcode::WriteSharedU8, offset, value);
break;
case 16:
Inst(Opcode::WriteSharedU16, offset, value);
break;
case 32:
Inst(Opcode::WriteSharedU32, offset, value);
break;
case 64:
Inst(Opcode::WriteSharedU64, offset, value);
break;
case 128:
Inst(Opcode::WriteSharedU128, offset, value);
break;
default:
throw InvalidArgument("Invalid bit size {}", bit_size);
}
}
U1 IREmitter::GetZeroFromOp(const Value& op) {
return Inst<U1>(Opcode::GetZeroFromOp, op);
}
U1 IREmitter::GetSignFromOp(const Value& op) {
return Inst<U1>(Opcode::GetSignFromOp, op);
}
U1 IREmitter::GetCarryFromOp(const Value& op) {
return Inst<U1>(Opcode::GetCarryFromOp, op);
}
U1 IREmitter::GetOverflowFromOp(const Value& op) {
return Inst<U1>(Opcode::GetOverflowFromOp, op);
}
U1 IREmitter::GetSparseFromOp(const Value& op) {
return Inst<U1>(Opcode::GetSparseFromOp, op);
}
U1 IREmitter::GetInBoundsFromOp(const Value& op) {
return Inst<U1>(Opcode::GetInBoundsFromOp, op);
}
F16F32F64 IREmitter::FPAdd(const F16F32F64& a, const F16F32F64& b, FpControl control) {
if (a.Type() != b.Type()) {
throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPAdd16, Flags{control}, a, b);
case Type::F32:
return Inst<F32>(Opcode::FPAdd32, Flags{control}, a, b);
case Type::F64:
return Inst<F64>(Opcode::FPAdd64, Flags{control}, a, b);
default:
ThrowInvalidType(a.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2) {
if (e1.Type() != e2.Type()) {
throw InvalidArgument("Mismatching types {} and {}", e1.Type(), e2.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x2, e1, e2);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x2, e1, e2);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x2, e1, e2);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x2, e1, e2);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3) {
if (e1.Type() != e2.Type() || e1.Type() != e3.Type()) {
throw InvalidArgument("Mismatching types {}, {}, and {}", e1.Type(), e2.Type(), e3.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x3, e1, e2, e3);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x3, e1, e2, e3);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x3, e1, e2, e3);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x3, e1, e2, e3);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3,
const Value& e4) {
if (e1.Type() != e2.Type() || e1.Type() != e3.Type() || e1.Type() != e4.Type()) {
throw InvalidArgument("Mismatching types {}, {}, {}, and {}", e1.Type(), e2.Type(),
e3.Type(), e4.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x4, e1, e2, e3, e4);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x4, e1, e2, e3, e4);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x4, e1, e2, e3, e4);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x4, e1, e2, e3, e4);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeExtract(const Value& vector, size_t element) {
const auto read{[&](Opcode opcode, size_t limit) -> Value {
if (element >= limit) {
throw InvalidArgument("Out of bounds element {}", element);
}
return Inst(opcode, vector, Value{static_cast<u32>(element)});
}};
switch (vector.Type()) {
case Type::U32x2:
return read(Opcode::CompositeExtractU32x2, 2);
case Type::U32x3:
return read(Opcode::CompositeExtractU32x3, 3);
case Type::U32x4:
return read(Opcode::CompositeExtractU32x4, 4);
case Type::F16x2:
return read(Opcode::CompositeExtractF16x2, 2);
case Type::F16x3:
return read(Opcode::CompositeExtractF16x3, 3);
case Type::F16x4:
return read(Opcode::CompositeExtractF16x4, 4);
case Type::F32x2:
return read(Opcode::CompositeExtractF32x2, 2);
case Type::F32x3:
return read(Opcode::CompositeExtractF32x3, 3);
case Type::F32x4:
return read(Opcode::CompositeExtractF32x4, 4);
case Type::F64x2:
return read(Opcode::CompositeExtractF64x2, 2);
case Type::F64x3:
return read(Opcode::CompositeExtractF64x3, 3);
case Type::F64x4:
return read(Opcode::CompositeExtractF64x4, 4);
default:
ThrowInvalidType(vector.Type());
}
}
Value IREmitter::CompositeInsert(const Value& vector, const Value& object, size_t element) {
const auto insert{[&](Opcode opcode, size_t limit) {
if (element >= limit) {
throw InvalidArgument("Out of bounds element {}", element);
}
return Inst(opcode, vector, object, Value{static_cast<u32>(element)});
}};
switch (vector.Type()) {
case Type::U32x2:
return insert(Opcode::CompositeInsertU32x2, 2);
case Type::U32x3:
return insert(Opcode::CompositeInsertU32x3, 3);
case Type::U32x4:
return insert(Opcode::CompositeInsertU32x4, 4);
case Type::F16x2:
return insert(Opcode::CompositeInsertF16x2, 2);
case Type::F16x3:
return insert(Opcode::CompositeInsertF16x3, 3);
case Type::F16x4:
return insert(Opcode::CompositeInsertF16x4, 4);
case Type::F32x2:
return insert(Opcode::CompositeInsertF32x2, 2);
case Type::F32x3:
return insert(Opcode::CompositeInsertF32x3, 3);
case Type::F32x4:
return insert(Opcode::CompositeInsertF32x4, 4);
case Type::F64x2:
return insert(Opcode::CompositeInsertF64x2, 2);
case Type::F64x3:
return insert(Opcode::CompositeInsertF64x3, 3);
case Type::F64x4:
return insert(Opcode::CompositeInsertF64x4, 4);
default:
ThrowInvalidType(vector.Type());
}
}
Value IREmitter::Select(const U1& condition, const Value& true_value, const Value& false_value) {
if (true_value.Type() != false_value.Type()) {
throw InvalidArgument("Mismatching types {} and {}", true_value.Type(), false_value.Type());
}
switch (true_value.Type()) {
case Type::U1:
return Inst(Opcode::SelectU1, condition, true_value, false_value);
case Type::U8:
return Inst(Opcode::SelectU8, condition, true_value, false_value);
case Type::U16:
return Inst(Opcode::SelectU16, condition, true_value, false_value);
case Type::U32:
return Inst(Opcode::SelectU32, condition, true_value, false_value);
case Type::U64:
return Inst(Opcode::SelectU64, condition, true_value, false_value);
case Type::F32:
return Inst(Opcode::SelectF32, condition, true_value, false_value);
case Type::F64:
return Inst(Opcode::SelectF64, condition, true_value, false_value);
default:
throw InvalidArgument("Invalid type {}", true_value.Type());
}
}
template <>
IR::U32 IREmitter::BitCast<IR::U32, IR::F32>(const IR::F32& value) {
return Inst<IR::U32>(Opcode::BitCastU32F32, value);
}
template <>
IR::F32 IREmitter::BitCast<IR::F32, IR::U32>(const IR::U32& value) {
return Inst<IR::F32>(Opcode::BitCastF32U32, value);
}
template <>
IR::U16 IREmitter::BitCast<IR::U16, IR::F16>(const IR::F16& value) {
return Inst<IR::U16>(Opcode::BitCastU16F16, value);
}
template <>
IR::F16 IREmitter::BitCast<IR::F16, IR::U16>(const IR::U16& value) {
return Inst<IR::F16>(Opcode::BitCastF16U16, value);
}
template <>
IR::U64 IREmitter::BitCast<IR::U64, IR::F64>(const IR::F64& value) {
return Inst<IR::U64>(Opcode::BitCastU64F64, value);
}
template <>
IR::F64 IREmitter::BitCast<IR::F64, IR::U64>(const IR::U64& value) {
return Inst<IR::F64>(Opcode::BitCastF64U64, value);
}
U64 IREmitter::PackUint2x32(const Value& vector) {
return Inst<U64>(Opcode::PackUint2x32, vector);
}
Value IREmitter::UnpackUint2x32(const U64& value) {
return Inst<Value>(Opcode::UnpackUint2x32, value);
}
U32 IREmitter::PackFloat2x16(const Value& vector) {
return Inst<U32>(Opcode::PackFloat2x16, vector);
}
Value IREmitter::UnpackFloat2x16(const U32& value) {
return Inst(Opcode::UnpackFloat2x16, value);
}
U32 IREmitter::PackHalf2x16(const Value& vector) {
return Inst<U32>(Opcode::PackHalf2x16, vector);
}
Value IREmitter::UnpackHalf2x16(const U32& value) {
return Inst(Opcode::UnpackHalf2x16, value);
}
F64 IREmitter::PackDouble2x32(const Value& vector) {
return Inst<F64>(Opcode::PackDouble2x32, vector);
}
Value IREmitter::UnpackDouble2x32(const F64& value) {
return Inst<Value>(Opcode::UnpackDouble2x32, value);
}
F16F32F64 IREmitter::FPMul(const F16F32F64& a, const F16F32F64& b, FpControl control) {
if (a.Type() != b.Type()) {
throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPMul16, Flags{control}, a, b);
case Type::F32:
return Inst<F32>(Opcode::FPMul32, Flags{control}, a, b);
case Type::F64:
return Inst<F64>(Opcode::FPMul64, Flags{control}, a, b);
default:
ThrowInvalidType(a.Type());
}
}
F16F32F64 IREmitter::FPFma(const F16F32F64& a, const F16F32F64& b, const F16F32F64& c,
FpControl control) {
if (a.Type() != b.Type() || a.Type() != c.Type()) {
throw InvalidArgument("Mismatching types {}, {}, and {}", a.Type(), b.Type(), c.Type());
}
switch (a.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPFma16, Flags{control}, a, b, c);
case Type::F32:
return Inst<F32>(Opcode::FPFma32, Flags{control}, a, b, c);
case Type::F64:
return Inst<F64>(Opcode::FPFma64, Flags{control}, a, b, c);
default:
ThrowInvalidType(a.Type());
}
}
F16F32F64 IREmitter::FPAbs(const F16F32F64& value) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPAbs16, value);
case Type::F32:
return Inst<F32>(Opcode::FPAbs32, value);
case Type::F64:
return Inst<F64>(Opcode::FPAbs64, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPNeg(const F16F32F64& value) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPNeg16, value);
case Type::F32:
return Inst<F32>(Opcode::FPNeg32, value);
case Type::F64:
return Inst<F64>(Opcode::FPNeg64, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPAbsNeg(const F16F32F64& value, bool abs, bool neg) {
F16F32F64 result{value};
if (abs) {
result = FPAbs(result);
}
if (neg) {
result = FPNeg(result);
}
return result;
}
F32 IREmitter::FPCos(const F32& value) {
return Inst<F32>(Opcode::FPCos, value);
}
F32 IREmitter::FPSin(const F32& value) {
return Inst<F32>(Opcode::FPSin, value);
}
F32 IREmitter::FPExp2(const F32& value) {
return Inst<F32>(Opcode::FPExp2, value);
}
F32 IREmitter::FPLog2(const F32& value) {
return Inst<F32>(Opcode::FPLog2, value);
}
F32F64 IREmitter::FPRecip(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPRecip32, value);
case Type::F64:
return Inst<F64>(Opcode::FPRecip64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPRecipSqrt(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPRecipSqrt32, value);
case Type::F64:
return Inst<F64>(Opcode::FPRecipSqrt64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32 IREmitter::FPSqrt(const F32& value) {
return Inst<F32>(Opcode::FPSqrt, value);
}
F16F32F64 IREmitter::FPSaturate(const F16F32F64& value) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPSaturate16, value);
case Type::F32:
return Inst<F32>(Opcode::FPSaturate32, value);
case Type::F64:
return Inst<F64>(Opcode::FPSaturate64, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPClamp(const F16F32F64& value, const F16F32F64& min_value,
const F16F32F64& max_value) {
if (value.Type() != min_value.Type() || value.Type() != max_value.Type()) {
throw InvalidArgument("Mismatching types {}, {}, and {}", value.Type(), min_value.Type(),
max_value.Type());
}
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPClamp16, value, min_value, max_value);
case Type::F32:
return Inst<F32>(Opcode::FPClamp32, value, min_value, max_value);
case Type::F64:
return Inst<F64>(Opcode::FPClamp64, value, min_value, max_value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPRoundEven(const F16F32F64& value, FpControl control) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPRoundEven16, Flags{control}, value);
case Type::F32:
return Inst<F32>(Opcode::FPRoundEven32, Flags{control}, value);
case Type::F64:
return Inst<F64>(Opcode::FPRoundEven64, Flags{control}, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPFloor(const F16F32F64& value, FpControl control) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPFloor16, Flags{control}, value);
case Type::F32:
return Inst<F32>(Opcode::FPFloor32, Flags{control}, value);
case Type::F64:
return Inst<F64>(Opcode::FPFloor64, Flags{control}, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPCeil(const F16F32F64& value, FpControl control) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPCeil16, Flags{control}, value);
case Type::F32:
return Inst<F32>(Opcode::FPCeil32, Flags{control}, value);
case Type::F64:
return Inst<F64>(Opcode::FPCeil64, Flags{control}, value);
default:
ThrowInvalidType(value.Type());
}
}
F16F32F64 IREmitter::FPTrunc(const F16F32F64& value, FpControl control) {
switch (value.Type()) {
case Type::F16:
return Inst<F16>(Opcode::FPTrunc16, Flags{control}, value);
case Type::F32:
return Inst<F32>(Opcode::FPTrunc32, Flags{control}, value);
case Type::F64:
return Inst<F64>(Opcode::FPTrunc64, Flags{control}, value);
default:
ThrowInvalidType(value.Type());
}
}
U1 IREmitter::FPEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdEqual16 : Opcode::FPUnordEqual16, Flags{control},
lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdEqual32 : Opcode::FPUnordEqual32, Flags{control},
lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdEqual64 : Opcode::FPUnordEqual64, Flags{control},
lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPNotEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control,
bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdNotEqual16 : Opcode::FPUnordNotEqual16,
Flags{control}, lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdNotEqual32 : Opcode::FPUnordNotEqual32,
Flags{control}, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdNotEqual64 : Opcode::FPUnordNotEqual64,
Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPLessThan(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control,
bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdLessThan16 : Opcode::FPUnordLessThan16,
Flags{control}, lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdLessThan32 : Opcode::FPUnordLessThan32,
Flags{control}, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdLessThan64 : Opcode::FPUnordLessThan64,
Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPGreaterThan(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control,
bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThan16 : Opcode::FPUnordGreaterThan16,
Flags{control}, lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThan32 : Opcode::FPUnordGreaterThan32,
Flags{control}, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThan64 : Opcode::FPUnordGreaterThan64,
Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPLessThanEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control,
bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdLessThanEqual16 : Opcode::FPUnordLessThanEqual16,
Flags{control}, lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdLessThanEqual32 : Opcode::FPUnordLessThanEqual32,
Flags{control}, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdLessThanEqual64 : Opcode::FPUnordLessThanEqual64,
Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPGreaterThanEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control,
bool ordered) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F16:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThanEqual16
: Opcode::FPUnordGreaterThanEqual16,
Flags{control}, lhs, rhs);
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThanEqual32
: Opcode::FPUnordGreaterThanEqual32,
Flags{control}, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThanEqual64
: Opcode::FPUnordGreaterThanEqual64,
Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPIsNan(const F16F32F64& value) {
switch (value.Type()) {
case Type::F16:
return Inst<U1>(Opcode::FPIsNan16, value);
case Type::F32:
return Inst<U1>(Opcode::FPIsNan32, value);
case Type::F64:
return Inst<U1>(Opcode::FPIsNan64, value);
default:
ThrowInvalidType(value.Type());
}
}
U1 IREmitter::FPOrdered(const F16F32F64& lhs, const F16F32F64& rhs) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
return LogicalAnd(LogicalNot(FPIsNan(lhs)), LogicalNot(FPIsNan(rhs)));
}
U1 IREmitter::FPUnordered(const F16F32F64& lhs, const F16F32F64& rhs) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
return LogicalOr(FPIsNan(lhs), FPIsNan(rhs));
}
F32F64 IREmitter::FPMax(const F32F64& lhs, const F32F64& rhs, FpControl control) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPMax32, Flags{control}, lhs, rhs);
case Type::F64:
return Inst<F64>(Opcode::FPMax64, Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
F32F64 IREmitter::FPMin(const F32F64& lhs, const F32F64& rhs, FpControl control) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPMin32, Flags{control}, lhs, rhs);
case Type::F64:
return Inst<F64>(Opcode::FPMin64, Flags{control}, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U32U64 IREmitter::IAdd(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::IAdd32, a, b);
case Type::U64:
return Inst<U64>(Opcode::IAdd64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32U64 IREmitter::ISub(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ISub32, a, b);
case Type::U64:
return Inst<U64>(Opcode::ISub64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32 IREmitter::IMul(const U32& a, const U32& b) {
return Inst<U32>(Opcode::IMul32, a, b);
}
U32U64 IREmitter::INeg(const U32U64& value) {
switch (value.Type()) {
case Type::U32:
return Inst<U32>(Opcode::INeg32, value);
case Type::U64:
return Inst<U64>(Opcode::INeg64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32U64 IREmitter::IAbs(const U32U64& value) {
switch (value.Type()) {
case Type::U32:
return Inst<U32>(Opcode::IAbs32, value);
case Type::U64:
return Inst<U64>(Opcode::IAbs64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32U64 IREmitter::ShiftLeftLogical(const U32U64& base, const U32& shift) {
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftLeftLogical32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftLeftLogical64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32U64 IREmitter::ShiftRightLogical(const U32U64& base, const U32& shift) {
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftRightLogical32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftRightLogical64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32U64 IREmitter::ShiftRightArithmetic(const U32U64& base, const U32& shift) {
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftRightArithmetic32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftRightArithmetic64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32 IREmitter::BitwiseAnd(const U32& a, const U32& b) {
return Inst<U32>(Opcode::BitwiseAnd32, a, b);
}
U32 IREmitter::BitwiseOr(const U32& a, const U32& b) {
return Inst<U32>(Opcode::BitwiseOr32, a, b);
}
U32 IREmitter::BitwiseXor(const U32& a, const U32& b) {
return Inst<U32>(Opcode::BitwiseXor32, a, b);
}
U32 IREmitter::BitFieldInsert(const U32& base, const U32& insert, const U32& offset,
const U32& count) {
return Inst<U32>(Opcode::BitFieldInsert, base, insert, offset, count);
}
U32 IREmitter::BitFieldExtract(const U32& base, const U32& offset, const U32& count,
bool is_signed) {
return Inst<U32>(is_signed ? Opcode::BitFieldSExtract : Opcode::BitFieldUExtract, base, offset,
count);
}
U32 IREmitter::BitReverse(const U32& value) {
return Inst<U32>(Opcode::BitReverse32, value);
}
U32 IREmitter::BitCount(const U32& value) {
return Inst<U32>(Opcode::BitCount32, value);
}
U32 IREmitter::BitwiseNot(const U32& value) {
return Inst<U32>(Opcode::BitwiseNot32, value);
}
U32 IREmitter::FindSMsb(const U32& value) {
return Inst<U32>(Opcode::FindSMsb32, value);
}
U32 IREmitter::FindUMsb(const U32& value) {
return Inst<U32>(Opcode::FindUMsb32, value);
}
U32 IREmitter::SMin(const U32& a, const U32& b) {
return Inst<U32>(Opcode::SMin32, a, b);
}
U32 IREmitter::UMin(const U32& a, const U32& b) {
return Inst<U32>(Opcode::UMin32, a, b);
}
U32 IREmitter::IMin(const U32& a, const U32& b, bool is_signed) {
return is_signed ? SMin(a, b) : UMin(a, b);
}
U32 IREmitter::SMax(const U32& a, const U32& b) {
return Inst<U32>(Opcode::SMax32, a, b);
}
U32 IREmitter::UMax(const U32& a, const U32& b) {
return Inst<U32>(Opcode::UMax32, a, b);
}
U32 IREmitter::IMax(const U32& a, const U32& b, bool is_signed) {
return is_signed ? SMax(a, b) : UMax(a, b);
}
U1 IREmitter::ILessThan(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SLessThan : Opcode::ULessThan, lhs, rhs);
}
U1 IREmitter::IEqual(const U32U64& lhs, const U32U64& rhs) {
if (lhs.Type() != rhs.Type()) {
throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::U32:
return Inst<U1>(Opcode::IEqual, lhs, rhs);
case Type::U64: {
// Manually compare the unpacked values
const Value lhs_vector{UnpackUint2x32(lhs)};
const Value rhs_vector{UnpackUint2x32(rhs)};
return LogicalAnd(IEqual(IR::U32{CompositeExtract(lhs_vector, 0)},
IR::U32{CompositeExtract(rhs_vector, 0)}),
IEqual(IR::U32{CompositeExtract(lhs_vector, 1)},
IR::U32{CompositeExtract(rhs_vector, 1)}));
}
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::ILessThanEqual(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SLessThanEqual : Opcode::ULessThanEqual, lhs, rhs);
}
U1 IREmitter::IGreaterThan(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SGreaterThan : Opcode::UGreaterThan, lhs, rhs);
}
U1 IREmitter::INotEqual(const U32& lhs, const U32& rhs) {
return Inst<U1>(Opcode::INotEqual, lhs, rhs);
}
U1 IREmitter::IGreaterThanEqual(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SGreaterThanEqual : Opcode::UGreaterThanEqual, lhs, rhs);
}
U1 IREmitter::LogicalOr(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalOr, a, b);
}
U1 IREmitter::LogicalAnd(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalAnd, a, b);
}
U1 IREmitter::LogicalXor(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalXor, a, b);
}
U1 IREmitter::LogicalNot(const U1& value) {
return Inst<U1>(Opcode::LogicalNot, value);
}
U32U64 IREmitter::ConvertFToS(size_t bitsize, const F16F32F64& value) {
switch (bitsize) {
case 16:
switch (value.Type()) {
case Type::F16:
return Inst<U32>(Opcode::ConvertS16F16, value);
case Type::F32:
return Inst<U32>(Opcode::ConvertS16F32, value);
case Type::F64:
return Inst<U32>(Opcode::ConvertS16F64, value);
default:
ThrowInvalidType(value.Type());
}
case 32:
switch (value.Type()) {
case Type::F16:
return Inst<U32>(Opcode::ConvertS32F16, value);
case Type::F32:
return Inst<U32>(Opcode::ConvertS32F32, value);
case Type::F64:
return Inst<U32>(Opcode::ConvertS32F64, value);
default:
ThrowInvalidType(value.Type());
}
case 64:
switch (value.Type()) {
case Type::F16:
return Inst<U64>(Opcode::ConvertS64F16, value);
case Type::F32:
return Inst<U64>(Opcode::ConvertS64F32, value);
case Type::F64:
return Inst<U64>(Opcode::ConvertS64F64, value);
default:
ThrowInvalidType(value.Type());
}
default:
throw InvalidArgument("Invalid destination bitsize {}", bitsize);
}
}
U32U64 IREmitter::ConvertFToU(size_t bitsize, const F16F32F64& value) {
switch (bitsize) {
case 16:
switch (value.Type()) {
case Type::F16:
return Inst<U32>(Opcode::ConvertU16F16, value);
case Type::F32:
return Inst<U32>(Opcode::ConvertU16F32, value);
case Type::F64:
return Inst<U32>(Opcode::ConvertU16F64, value);
default:
ThrowInvalidType(value.Type());
}
case 32:
switch (value.Type()) {
case Type::F16:
return Inst<U32>(Opcode::ConvertU32F16, value);
case Type::F32:
return Inst<U32>(Opcode::ConvertU32F32, value);
case Type::F64:
return Inst<U32>(Opcode::ConvertU32F64, value);
default:
ThrowInvalidType(value.Type());
}
case 64:
switch (value.Type()) {
case Type::F16:
return Inst<U64>(Opcode::ConvertU64F16, value);
case Type::F32:
return Inst<U64>(Opcode::ConvertU64F32, value);
case Type::F64:
return Inst<U64>(Opcode::ConvertU64F64, value);
default:
ThrowInvalidType(value.Type());
}
default:
throw InvalidArgument("Invalid destination bitsize {}", bitsize);
}
}
U32U64 IREmitter::ConvertFToI(size_t bitsize, bool is_signed, const F16F32F64& value) {
return is_signed ? ConvertFToS(bitsize, value) : ConvertFToU(bitsize, value);
}
F16F32F64 IREmitter::ConvertSToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) {
switch (dest_bitsize) {
case 16:
switch (src_bitsize) {
case 8:
return Inst<F16>(Opcode::ConvertF16S8, value);
case 16:
return Inst<F16>(Opcode::ConvertF16S16, value);
case 32:
return Inst<F16>(Opcode::ConvertF16S32, value);
case 64:
return Inst<F16>(Opcode::ConvertF16S64, value);
}
break;
case 32:
switch (src_bitsize) {
case 8:
return Inst<F32>(Opcode::ConvertF32S8, value);
case 16:
return Inst<F32>(Opcode::ConvertF32S16, value);
case 32:
return Inst<F32>(Opcode::ConvertF32S32, value);
case 64:
return Inst<F32>(Opcode::ConvertF32S64, value);
}
break;
case 64:
switch (src_bitsize) {
case 8:
return Inst<F64>(Opcode::ConvertF64S8, value);
case 16:
return Inst<F64>(Opcode::ConvertF64S16, value);
case 32:
return Inst<F64>(Opcode::ConvertF64S32, value);
case 64:
return Inst<F64>(Opcode::ConvertF64S64, value);
}
break;
}
throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize);
}
F16F32F64 IREmitter::ConvertUToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) {
switch (dest_bitsize) {
case 16:
switch (src_bitsize) {
case 8:
return Inst<F16>(Opcode::ConvertF16U8, value);
case 16:
return Inst<F16>(Opcode::ConvertF16U16, value);
case 32:
return Inst<F16>(Opcode::ConvertF16U32, value);
case 64:
return Inst<F16>(Opcode::ConvertF16U64, value);
}
break;
case 32:
switch (src_bitsize) {
case 8:
return Inst<F32>(Opcode::ConvertF32U8, value);
case 16:
return Inst<F32>(Opcode::ConvertF32U16, value);
case 32:
return Inst<F32>(Opcode::ConvertF32U32, value);
case 64:
return Inst<F32>(Opcode::ConvertF32U64, value);
}
break;
case 64:
switch (src_bitsize) {
case 8:
return Inst<F64>(Opcode::ConvertF64U8, value);
case 16:
return Inst<F64>(Opcode::ConvertF64U16, value);
case 32:
return Inst<F64>(Opcode::ConvertF64U32, value);
case 64:
return Inst<F64>(Opcode::ConvertF64U64, value);
}
break;
}
throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize);
}
F16F32F64 IREmitter::ConvertIToF(size_t dest_bitsize, size_t src_bitsize, bool is_signed,
const Value& value) {
return is_signed ? ConvertSToF(dest_bitsize, src_bitsize, value)
: ConvertUToF(dest_bitsize, src_bitsize, value);
}
U32U64 IREmitter::UConvert(size_t result_bitsize, const U32U64& value) {
switch (result_bitsize) {
case 32:
switch (value.Type()) {
case Type::U32:
// Nothing to do
return value;
case Type::U64:
return Inst<U32>(Opcode::ConvertU32U64, value);
default:
break;
}
break;
case 64:
switch (value.Type()) {
case Type::U32:
return Inst<U64>(Opcode::ConvertU64U32, value);
case Type::U64:
// Nothing to do
return value;
default:
break;
}
}
throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize);
}
F16F32F64 IREmitter::FPConvert(size_t result_bitsize, const F16F32F64& value, FpControl control) {
switch (result_bitsize) {
case 16:
switch (value.Type()) {
case Type::F16:
// Nothing to do
return value;
case Type::F32:
return Inst<F16>(Opcode::ConvertF16F32, Flags{control}, value);
case Type::F64:
throw LogicError("Illegal conversion from F64 to F16");
default:
break;
}
break;
case 32:
switch (value.Type()) {
case Type::F16:
return Inst<F32>(Opcode::ConvertF32F16, Flags{control}, value);
case Type::F32:
// Nothing to do
return value;
case Type::F64:
return Inst<F32>(Opcode::ConvertF32F64, Flags{control}, value);
default:
break;
}
break;
case 64:
switch (value.Type()) {
case Type::F16:
throw LogicError("Illegal conversion from F16 to F64");
case Type::F32:
return Inst<F64>(Opcode::ConvertF64F32, Flags{control}, value);
case Type::F64:
// Nothing to do
return value;
default:
break;
}
break;
}
throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize);
}
Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& coords, const F32& bias,
const Value& offset, const F32& lod_clamp,
TextureInstInfo info) {
const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)};
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleImplicitLod
: Opcode::BindlessImageSampleImplicitLod};
return Inst(op, Flags{info}, handle, coords, bias_lc, offset);
}
Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& coords, const F32& lod,
const Value& offset, const F32& lod_clamp,
TextureInstInfo info) {
const Value lod_lc{MakeLodClampPair(*this, lod, lod_clamp)};
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleExplicitLod
: Opcode::BindlessImageSampleExplicitLod};
return Inst(op, Flags{info}, handle, coords, lod_lc, offset);
}
F32 IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& coords, const F32& dref,
const F32& bias, const Value& offset,
const F32& lod_clamp, TextureInstInfo info) {
const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)};
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleDrefImplicitLod
: Opcode::BindlessImageSampleDrefImplicitLod};
return Inst<F32>(op, Flags{info}, handle, coords, dref, bias_lc, offset);
}
F32 IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& coords, const F32& dref,
const F32& lod, const Value& offset, const F32& lod_clamp,
TextureInstInfo info) {
const Value lod_lc{MakeLodClampPair(*this, lod, lod_clamp)};
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleDrefExplicitLod
: Opcode::BindlessImageSampleDrefExplicitLod};
return Inst<F32>(op, Flags{info}, handle, coords, dref, lod_lc, offset);
}
Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset,
const Value& offset2, TextureInstInfo info) {
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageGather : Opcode::BindlessImageGather};
return Inst(op, Flags{info}, handle, coords, offset, offset2);
}
Value IREmitter::ImageGatherDref(const Value& handle, const Value& coords, const Value& offset,
const Value& offset2, const F32& dref, TextureInstInfo info) {
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageGatherDref
: Opcode::BindlessImageGatherDref};
return Inst(op, Flags{info}, handle, coords, offset, offset2, dref);
}
Value IREmitter::ImageFetch(const Value& handle, const Value& coords, const Value& offset,
const U32& lod, const U32& multisampling, TextureInstInfo info) {
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageFetch : Opcode::BindlessImageFetch};
return Inst(op, Flags{info}, handle, coords, offset, lod, multisampling);
}
Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod) {
const Opcode op{handle.IsImmediate() ? Opcode::BoundImageQueryDimensions
: Opcode::BindlessImageQueryDimensions};
return Inst(op, handle, lod);
}
U1 IREmitter::VoteAll(const U1& value) {
return Inst<U1>(Opcode::VoteAll, value);
}
U1 IREmitter::VoteAny(const U1& value) {
return Inst<U1>(Opcode::VoteAny, value);
}
U1 IREmitter::VoteEqual(const U1& value) {
return Inst<U1>(Opcode::VoteEqual, value);
}
U32 IREmitter::SubgroupBallot(const U1& value) {
return Inst<U32>(Opcode::SubgroupBallot, value);
}
U32 IREmitter::ShuffleIndex(const IR::U32& value, const IR::U32& index, const IR::U32& clamp,
const IR::U32& seg_mask) {
return Inst<U32>(Opcode::ShuffleIndex, value, index, clamp, seg_mask);
}
U32 IREmitter::ShuffleUp(const IR::U32& value, const IR::U32& index, const IR::U32& clamp,
const IR::U32& seg_mask) {
return Inst<U32>(Opcode::ShuffleUp, value, index, clamp, seg_mask);
}
U32 IREmitter::ShuffleDown(const IR::U32& value, const IR::U32& index, const IR::U32& clamp,
const IR::U32& seg_mask) {
return Inst<U32>(Opcode::ShuffleDown, value, index, clamp, seg_mask);
}
U32 IREmitter::ShuffleButterfly(const IR::U32& value, const IR::U32& index, const IR::U32& clamp,
const IR::U32& seg_mask) {
return Inst<U32>(Opcode::ShuffleButterfly, value, index, clamp, seg_mask);
}
} // namespace Shader::IR