suyu/src/core/hle/kernel/vm_manager.cpp
Lioncash 12dc918937 kernel: Resolve sign conversion warnings
Uncovered a bug within Thread's SetCoreAndAffinityMask() where an
unsigned variable (ideal_core) was being compared against "< 0", which
would always be a false condition.

We can also get rid of an unused function (GetNextProcessorId) which contained a sign
mismatch warning.
2019-11-12 07:55:39 -05:00

1186 lines
40 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <iterator>
#include <utility>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/memory_hook.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/memory_setup.h"
namespace Kernel {
namespace {
const char* GetMemoryStateName(MemoryState state) {
static constexpr const char* names[] = {
"Unmapped", "Io",
"Normal", "Code",
"CodeData", "Heap",
"Shared", "Unknown1",
"ModuleCode", "ModuleCodeData",
"IpcBuffer0", "Stack",
"ThreadLocal", "TransferMemoryIsolated",
"TransferMemory", "ProcessMemory",
"Inaccessible", "IpcBuffer1",
"IpcBuffer3", "KernelStack",
};
return names[ToSvcMemoryState(state)];
}
// Checks if a given address range lies within a larger address range.
constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin,
VAddr address_range_end) {
const VAddr end_address = address + size - 1;
return address_range_begin <= address && end_address <= address_range_end - 1;
}
} // Anonymous namespace
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (permissions != next.permissions || state != next.state || attribute != next.attribute ||
type != next.type) {
return false;
}
if ((attribute & MemoryAttribute::DeviceMapped) == MemoryAttribute::DeviceMapped) {
// TODO: Can device mapped memory be merged sanely?
// Not merging it may cause inaccuracies versus hardware when memory layout is queried.
return false;
}
if (type == VMAType::AllocatedMemoryBlock) {
return true;
}
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false;
}
if (type == VMAType::MMIO && paddr + size != next.paddr) {
return false;
}
return true;
}
VMManager::VMManager(Core::System& system) : system{system} {
// Default to assuming a 39-bit address space. This way we have a sane
// starting point with executables that don't provide metadata.
Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
}
VMManager::~VMManager() = default;
void VMManager::Reset(FileSys::ProgramAddressSpaceType type) {
Clear();
InitializeMemoryRegionRanges(type);
page_table.Resize(address_space_width);
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = address_space_end;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
if (target >= address_space_end) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
bool VMManager::IsValidHandle(VMAHandle handle) const {
return handle != vma_map.cend();
}
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<PhysicalMemory> block,
std::size_t offset, u64 size,
MemoryState state, VMAPermission perm) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = perm;
final_vma.state = state;
final_vma.backing_block = std::move(block);
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
MemoryState state) {
ASSERT(memory != nullptr);
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::BackingMemory;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.state = state;
final_vma.backing_memory = memory;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VAddr> VMManager::FindFreeRegion(u64 size) const {
return FindFreeRegion(GetASLRRegionBaseAddress(), GetASLRRegionEndAddress(), size);
}
ResultVal<VAddr> VMManager::FindFreeRegion(VAddr begin, VAddr end, u64 size) const {
ASSERT(begin < end);
ASSERT(size <= end - begin);
const VMAHandle vma_handle =
std::find_if(vma_map.begin(), vma_map.end(), [begin, end, size](const auto& vma) {
if (vma.second.type != VMAType::Free) {
return false;
}
const VAddr vma_base = vma.second.base;
const VAddr vma_end = vma_base + vma.second.size;
const VAddr assumed_base = (begin < vma_base) ? vma_base : begin;
const VAddr used_range = assumed_base + size;
return vma_base <= assumed_base && assumed_base < used_range && used_range < end &&
used_range <= vma_end;
});
if (vma_handle == vma_map.cend()) {
// TODO(Subv): Find the correct error code here.
return RESULT_UNKNOWN;
}
const VAddr target = std::max(begin, vma_handle->second.base);
return MakeResult<VAddr>(target);
}
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
MemoryState state,
Common::MemoryHookPointer mmio_handler) {
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::MMIO;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.state = state;
final_vma.paddr = paddr;
final_vma.mmio_handler = std::move(mmio_handler);
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
VirtualMemoryArea& vma = vma_handle->second;
vma.type = VMAType::Free;
vma.permissions = VMAPermission::None;
vma.state = MemoryState::Unmapped;
vma.attribute = MemoryAttribute::None;
vma.backing_block = nullptr;
vma.offset = 0;
vma.backing_memory = nullptr;
vma.paddr = 0;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
const VAddr target_end = target + size;
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
return RESULT_SUCCESS;
}
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second;
vma.permissions = new_perms;
UpdatePageTableForVMA(vma);
return MergeAdjacent(iter);
}
ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
const VAddr target_end = target + size;
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
}
return RESULT_SUCCESS;
}
ResultVal<VAddr> VMManager::SetHeapSize(u64 size) {
if (size > GetHeapRegionSize()) {
return ERR_OUT_OF_MEMORY;
}
// No need to do any additional work if the heap is already the given size.
if (size == GetCurrentHeapSize()) {
return MakeResult(heap_region_base);
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<PhysicalMemory>(size);
heap_end = heap_region_base + size;
} else {
UnmapRange(heap_region_base, GetCurrentHeapSize());
}
// If necessary, expand backing vector to cover new heap extents in
// the case of allocating. Otherwise, shrink the backing memory,
// if a smaller heap has been requested.
const u64 old_heap_size = GetCurrentHeapSize();
if (size > old_heap_size) {
const u64 alloc_size = size - old_heap_size;
heap_memory->insert(heap_memory->end(), alloc_size, 0);
RefreshMemoryBlockMappings(heap_memory.get());
} else if (size < old_heap_size) {
heap_memory->resize(size);
heap_memory->shrink_to_fit();
RefreshMemoryBlockMappings(heap_memory.get());
}
heap_end = heap_region_base + size;
ASSERT(GetCurrentHeapSize() == heap_memory->size());
const auto mapping_result =
MapMemoryBlock(heap_region_base, heap_memory, 0, size, MemoryState::Heap);
if (mapping_result.Failed()) {
return mapping_result.Code();
}
return MakeResult<VAddr>(heap_region_base);
}
ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) {
// Check how much memory we've already mapped.
const auto mapped_size_result = SizeOfAllocatedVMAsInRange(target, size);
if (mapped_size_result.Failed()) {
return mapped_size_result.Code();
}
// If we've already mapped the desired amount, return early.
const std::size_t mapped_size = *mapped_size_result;
if (mapped_size == size) {
return RESULT_SUCCESS;
}
// Check that we can map the memory we want.
const auto res_limit = system.CurrentProcess()->GetResourceLimit();
const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) -
res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory);
if (physmem_remaining < (size - mapped_size)) {
return ERR_RESOURCE_LIMIT_EXCEEDED;
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> mapped_regions;
ResultCode result = RESULT_SUCCESS;
// Iterate, trying to map memory.
{
const auto end_addr = target + size;
const auto last_addr = end_addr - 1;
VAddr cur_addr = target;
auto iter = FindVMA(target);
ASSERT(iter != vma_map.end());
while (true) {
const auto& vma = iter->second;
const auto vma_start = vma.base;
const auto vma_end = vma_start + vma.size;
const auto vma_last = vma_end - 1;
// Map the memory block
const auto map_size = std::min(end_addr - cur_addr, vma_end - cur_addr);
if (vma.state == MemoryState::Unmapped) {
const auto map_res =
MapMemoryBlock(cur_addr, std::make_shared<PhysicalMemory>(map_size), 0,
map_size, MemoryState::Heap, VMAPermission::ReadWrite);
result = map_res.Code();
if (result.IsError()) {
break;
}
mapped_regions.emplace_back(cur_addr, map_size);
}
// Break once we hit the end of the range.
if (last_addr <= vma_last) {
break;
}
// Advance to the next block.
cur_addr = vma_end;
iter = FindVMA(cur_addr);
ASSERT(iter != vma_map.end());
}
}
// If we failed, unmap memory.
if (result.IsError()) {
for (const auto [unmap_address, unmap_size] : mapped_regions) {
ASSERT_MSG(UnmapRange(unmap_address, unmap_size).IsSuccess(),
"Failed to unmap memory range.");
}
return result;
}
// Update amount of mapped physical memory.
physical_memory_mapped += size - mapped_size;
return RESULT_SUCCESS;
}
ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) {
// Check how much memory is currently mapped.
const auto mapped_size_result = SizeOfUnmappablePhysicalMemoryInRange(target, size);
if (mapped_size_result.Failed()) {
return mapped_size_result.Code();
}
// If we've already unmapped all the memory, return early.
const std::size_t mapped_size = *mapped_size_result;
if (mapped_size == 0) {
return RESULT_SUCCESS;
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> unmapped_regions;
ResultCode result = RESULT_SUCCESS;
// Try to unmap regions.
{
const auto end_addr = target + size;
const auto last_addr = end_addr - 1;
VAddr cur_addr = target;
auto iter = FindVMA(target);
ASSERT(iter != vma_map.end());
while (true) {
const auto& vma = iter->second;
const auto vma_start = vma.base;
const auto vma_end = vma_start + vma.size;
const auto vma_last = vma_end - 1;
// Unmap the memory block
const auto unmap_size = std::min(end_addr - cur_addr, vma_end - cur_addr);
if (vma.state == MemoryState::Heap) {
result = UnmapRange(cur_addr, unmap_size);
if (result.IsError()) {
break;
}
unmapped_regions.emplace_back(cur_addr, unmap_size);
}
// Break once we hit the end of the range.
if (last_addr <= vma_last) {
break;
}
// Advance to the next block.
cur_addr = vma_end;
iter = FindVMA(cur_addr);
ASSERT(iter != vma_map.end());
}
}
// If we failed, re-map regions.
// TODO: Preserve memory contents?
if (result.IsError()) {
for (const auto [map_address, map_size] : unmapped_regions) {
const auto remap_res =
MapMemoryBlock(map_address, std::make_shared<PhysicalMemory>(map_size), 0, map_size,
MemoryState::Heap, VMAPermission::None);
ASSERT_MSG(remap_res.Succeeded(), "Failed to remap a memory block.");
}
return result;
}
// Update mapped amount
physical_memory_mapped -= mapped_size;
return RESULT_SUCCESS;
}
ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
const auto src_check_result = CheckRangeState(
src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::All,
VMAPermission::ReadWrite, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
if (src_check_result.Failed()) {
return src_check_result.Code();
}
const auto mirror_result =
MirrorMemory(dst_address, src_address, size, MemoryState::ModuleCode);
if (mirror_result.IsError()) {
return mirror_result;
}
// Ensure we lock the source memory region.
const auto src_vma_result = CarveVMARange(src_address, size);
if (src_vma_result.Failed()) {
return src_vma_result.Code();
}
auto src_vma_iter = *src_vma_result;
src_vma_iter->second.attribute = MemoryAttribute::Locked;
Reprotect(src_vma_iter, VMAPermission::Read);
// The destination memory region is fine as is, however we need to make it read-only.
return ReprotectRange(dst_address, size, VMAPermission::Read);
}
ResultCode VMManager::UnmapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
const auto src_check_result = CheckRangeState(
src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::None,
VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::Locked, ignore_attribute);
if (src_check_result.Failed()) {
return src_check_result.Code();
}
// Yes, the kernel only checks the first page of the region.
const auto dst_check_result =
CheckRangeState(dst_address, Memory::PAGE_SIZE, MemoryState::FlagModule,
MemoryState::FlagModule, VMAPermission::None, VMAPermission::None,
MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
if (dst_check_result.Failed()) {
return dst_check_result.Code();
}
const auto dst_memory_state = std::get<MemoryState>(*dst_check_result);
const auto dst_contiguous_check_result = CheckRangeState(
dst_address, size, MemoryState::All, dst_memory_state, VMAPermission::None,
VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
if (dst_contiguous_check_result.Failed()) {
return dst_contiguous_check_result.Code();
}
const auto unmap_result = UnmapRange(dst_address, size);
if (unmap_result.IsError()) {
return unmap_result;
}
// With the mirrored portion unmapped, restore the original region's traits.
const auto src_vma_result = CarveVMARange(src_address, size);
if (src_vma_result.Failed()) {
return src_vma_result.Code();
}
auto src_vma_iter = *src_vma_result;
src_vma_iter->second.state = MemoryState::Heap;
src_vma_iter->second.attribute = MemoryAttribute::None;
Reprotect(src_vma_iter, VMAPermission::ReadWrite);
if (dst_memory_state == MemoryState::ModuleCode) {
system.InvalidateCpuInstructionCaches();
}
return unmap_result;
}
MemoryInfo VMManager::QueryMemory(VAddr address) const {
const auto vma = FindVMA(address);
MemoryInfo memory_info{};
if (IsValidHandle(vma)) {
memory_info.base_address = vma->second.base;
memory_info.attributes = ToSvcMemoryAttribute(vma->second.attribute);
memory_info.permission = static_cast<u32>(vma->second.permissions);
memory_info.size = vma->second.size;
memory_info.state = ToSvcMemoryState(vma->second.state);
} else {
memory_info.base_address = address_space_end;
memory_info.permission = static_cast<u32>(VMAPermission::None);
memory_info.size = 0 - address_space_end;
memory_info.state = static_cast<u32>(MemoryState::Inaccessible);
}
return memory_info;
}
ResultCode VMManager::SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask,
MemoryAttribute attribute) {
constexpr auto ignore_mask = MemoryAttribute::Uncached | MemoryAttribute::DeviceMapped;
constexpr auto attribute_mask = ~ignore_mask;
const auto result = CheckRangeState(
address, size, MemoryState::FlagUncached, MemoryState::FlagUncached, VMAPermission::None,
VMAPermission::None, attribute_mask, MemoryAttribute::None, ignore_mask);
if (result.Failed()) {
return result.Code();
}
const auto [prev_state, prev_permissions, prev_attributes] = *result;
const auto new_attribute = (prev_attributes & ~mask) | (mask & attribute);
const auto carve_result = CarveVMARange(address, size);
if (carve_result.Failed()) {
return carve_result.Code();
}
auto vma_iter = *carve_result;
vma_iter->second.attribute = new_attribute;
MergeAdjacent(vma_iter);
return RESULT_SUCCESS;
}
ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) {
const auto vma = FindVMA(src_addr);
ASSERT_MSG(vma != vma_map.end(), "Invalid memory address");
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
// The returned VMA might be a bigger one encompassing the desired address.
const auto vma_offset = src_addr - vma->first;
ASSERT_MSG(vma_offset + size <= vma->second.size,
"Shared memory exceeds bounds of mapped block");
const std::shared_ptr<PhysicalMemory>& backing_block = vma->second.backing_block;
const std::size_t backing_block_offset = vma->second.offset + vma_offset;
CASCADE_RESULT(auto new_vma,
MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, state));
// Protect mirror with permissions from old region
Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region
ReprotectRange(src_addr, size, VMAPermission::None);
return RESULT_SUCCESS;
}
void VMManager::RefreshMemoryBlockMappings(const PhysicalMemory* block) {
// If this ever proves to have a noticeable performance impact, allow users of the function to
// specify a specific range of addresses to limit the scan to.
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
if (block == vma.backing_block.get()) {
UpdatePageTableForVMA(vma);
}
}
}
void VMManager::LogLayout() const {
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base,
vma.base + vma.size, vma.size,
(u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
(u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
(u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
GetMemoryStateName(vma.state));
}
}
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base);
VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel
return ERR_INVALID_ADDRESS;
}
const VirtualMemoryArea& vma = vma_handle->second;
if (vma.type != VMAType::Free) {
// Region is already allocated
return ERR_INVALID_ADDRESS_STATE;
}
const VAddr start_in_vma = base - vma.base;
const VAddr end_in_vma = start_in_vma + size;
if (end_in_vma > vma.size) {
// Requested allocation doesn't fit inside VMA
return ERR_INVALID_ADDRESS_STATE;
}
if (end_in_vma != vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return MakeResult<VMAIter>(vma_handle);
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target);
const VAddr target_end = target + size;
ASSERT(target_end >= target);
ASSERT(target_end <= address_space_end);
ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target));
const VMAIter i_end = vma_map.lower_bound(target_end);
if (std::any_of(begin_vma, i_end,
[](const auto& entry) { return entry.second.type == VMAType::Free; })) {
return ERR_INVALID_ADDRESS_STATE;
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return MakeResult<VMAIter>(begin_vma);
}
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VMAType::Free:
break;
case VMAType::AllocatedMemoryBlock:
new_vma.offset += offset_in_vma;
break;
case VMAType::BackingMemory:
new_vma.backing_memory += offset_in_vma;
break;
case VMAType::MMIO:
new_vma.paddr += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
MergeAdjacentVMA(iter->second, next_vma->second);
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
MergeAdjacentVMA(prev_vma->second, iter->second);
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) {
ASSERT(left.CanBeMergedWith(right));
// Always merge allocated memory blocks, even when they don't share the same backing block.
if (left.type == VMAType::AllocatedMemoryBlock &&
(left.backing_block != right.backing_block || left.offset + left.size != right.offset)) {
const auto right_begin = right.backing_block->begin() + right.offset;
const auto right_end = right_begin + right.size;
// Check if we can save work.
if (left.offset == 0 && left.size == left.backing_block->size()) {
// Fast case: left is an entire backing block.
left.backing_block->insert(left.backing_block->end(), right_begin, right_end);
} else {
// Slow case: make a new memory block for left and right.
const auto left_begin = left.backing_block->begin() + left.offset;
const auto left_end = left_begin + left.size;
const auto left_size = static_cast<std::size_t>(std::distance(left_begin, left_end));
const auto right_size = static_cast<std::size_t>(std::distance(right_begin, right_end));
auto new_memory = std::make_shared<PhysicalMemory>();
new_memory->reserve(left_size + right_size);
new_memory->insert(new_memory->end(), left_begin, left_end);
new_memory->insert(new_memory->end(), right_begin, right_end);
left.backing_block = std::move(new_memory);
left.offset = 0;
}
// Page table update is needed, because backing memory changed.
left.size += right.size;
UpdatePageTableForVMA(left);
} else {
// Just update the size.
left.size += right.size;
}
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VMAType::Free:
Memory::UnmapRegion(page_table, vma.base, vma.size);
break;
case VMAType::AllocatedMemoryBlock:
Memory::MapMemoryRegion(page_table, vma.base, vma.size,
vma.backing_block->data() + vma.offset);
break;
case VMAType::BackingMemory:
Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
break;
case VMAType::MMIO:
Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
break;
}
}
void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) {
u64 map_region_size = 0;
u64 heap_region_size = 0;
u64 stack_region_size = 0;
u64 tls_io_region_size = 0;
u64 stack_and_tls_io_end = 0;
switch (type) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
address_space_width = 32;
code_region_base = 0x200000;
code_region_end = code_region_base + 0x3FE00000;
aslr_region_base = 0x200000;
aslr_region_end = aslr_region_base + 0xFFE00000;
if (type == FileSys::ProgramAddressSpaceType::Is32Bit) {
map_region_size = 0x40000000;
heap_region_size = 0x40000000;
} else {
map_region_size = 0;
heap_region_size = 0x80000000;
}
stack_and_tls_io_end = 0x40000000;
break;
case FileSys::ProgramAddressSpaceType::Is36Bit:
address_space_width = 36;
code_region_base = 0x8000000;
code_region_end = code_region_base + 0x78000000;
aslr_region_base = 0x8000000;
aslr_region_end = aslr_region_base + 0xFF8000000;
map_region_size = 0x180000000;
heap_region_size = 0x180000000;
stack_and_tls_io_end = 0x80000000;
break;
case FileSys::ProgramAddressSpaceType::Is39Bit:
address_space_width = 39;
code_region_base = 0x8000000;
code_region_end = code_region_base + 0x80000000;
aslr_region_base = 0x8000000;
aslr_region_end = aslr_region_base + 0x7FF8000000;
map_region_size = 0x1000000000;
heap_region_size = 0x180000000;
stack_region_size = 0x80000000;
tls_io_region_size = 0x1000000000;
break;
default:
UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast<u32>(type));
return;
}
const u64 stack_and_tls_io_begin = aslr_region_base;
address_space_base = 0;
address_space_end = 1ULL << address_space_width;
map_region_base = code_region_end;
map_region_end = map_region_base + map_region_size;
heap_region_base = map_region_end;
heap_region_end = heap_region_base + heap_region_size;
heap_end = heap_region_base;
stack_region_base = heap_region_end;
stack_region_end = stack_region_base + stack_region_size;
tls_io_region_base = stack_region_end;
tls_io_region_end = tls_io_region_base + tls_io_region_size;
if (stack_region_size == 0) {
stack_region_base = stack_and_tls_io_begin;
stack_region_end = stack_and_tls_io_end;
}
if (tls_io_region_size == 0) {
tls_io_region_base = stack_and_tls_io_begin;
tls_io_region_end = stack_and_tls_io_end;
}
}
void VMManager::Clear() {
ClearVMAMap();
ClearPageTable();
}
void VMManager::ClearVMAMap() {
vma_map.clear();
}
void VMManager::ClearPageTable() {
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
page_table.special_regions.clear();
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
Common::PageType::Unmapped);
}
VMManager::CheckResults VMManager::CheckRangeState(VAddr address, u64 size, MemoryState state_mask,
MemoryState state, VMAPermission permission_mask,
VMAPermission permissions,
MemoryAttribute attribute_mask,
MemoryAttribute attribute,
MemoryAttribute ignore_mask) const {
auto iter = FindVMA(address);
// If we don't have a valid VMA handle at this point, then it means this is
// being called with an address outside of the address space, which is definitely
// indicative of a bug, as this function only operates on mapped memory regions.
DEBUG_ASSERT(IsValidHandle(iter));
const VAddr end_address = address + size - 1;
const MemoryAttribute initial_attributes = iter->second.attribute;
const VMAPermission initial_permissions = iter->second.permissions;
const MemoryState initial_state = iter->second.state;
while (true) {
// The iterator should be valid throughout the traversal. Hitting the end of
// the mapped VMA regions is unquestionably indicative of a bug.
DEBUG_ASSERT(IsValidHandle(iter));
const auto& vma = iter->second;
if (vma.state != initial_state) {
return ERR_INVALID_ADDRESS_STATE;
}
if ((vma.state & state_mask) != state) {
return ERR_INVALID_ADDRESS_STATE;
}
if (vma.permissions != initial_permissions) {
return ERR_INVALID_ADDRESS_STATE;
}
if ((vma.permissions & permission_mask) != permissions) {
return ERR_INVALID_ADDRESS_STATE;
}
if ((vma.attribute | ignore_mask) != (initial_attributes | ignore_mask)) {
return ERR_INVALID_ADDRESS_STATE;
}
if ((vma.attribute & attribute_mask) != attribute) {
return ERR_INVALID_ADDRESS_STATE;
}
if (end_address <= vma.EndAddress()) {
break;
}
++iter;
}
return MakeResult(
std::make_tuple(initial_state, initial_permissions, initial_attributes & ~ignore_mask));
}
ResultVal<std::size_t> VMManager::SizeOfAllocatedVMAsInRange(VAddr address,
std::size_t size) const {
const VAddr end_addr = address + size;
const VAddr last_addr = end_addr - 1;
std::size_t mapped_size = 0;
VAddr cur_addr = address;
auto iter = FindVMA(cur_addr);
ASSERT(iter != vma_map.end());
while (true) {
const auto& vma = iter->second;
const VAddr vma_start = vma.base;
const VAddr vma_end = vma_start + vma.size;
const VAddr vma_last = vma_end - 1;
// Add size if relevant.
if (vma.state != MemoryState::Unmapped) {
mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr);
}
// Break once we hit the end of the range.
if (last_addr <= vma_last) {
break;
}
// Advance to the next block.
cur_addr = vma_end;
iter = std::next(iter);
ASSERT(iter != vma_map.end());
}
return MakeResult(mapped_size);
}
ResultVal<std::size_t> VMManager::SizeOfUnmappablePhysicalMemoryInRange(VAddr address,
std::size_t size) const {
const VAddr end_addr = address + size;
const VAddr last_addr = end_addr - 1;
std::size_t mapped_size = 0;
VAddr cur_addr = address;
auto iter = FindVMA(cur_addr);
ASSERT(iter != vma_map.end());
while (true) {
const auto& vma = iter->second;
const auto vma_start = vma.base;
const auto vma_end = vma_start + vma.size;
const auto vma_last = vma_end - 1;
const auto state = vma.state;
const auto attr = vma.attribute;
// Memory within region must be free or mapped heap.
if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) ||
(state == MemoryState::Unmapped))) {
return ERR_INVALID_ADDRESS_STATE;
}
// Add size if relevant.
if (state != MemoryState::Unmapped) {
mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr);
}
// Break once we hit the end of the range.
if (last_addr <= vma_last) {
break;
}
// Advance to the next block.
cur_addr = vma_end;
iter = std::next(iter);
ASSERT(iter != vma_map.end());
}
return MakeResult(mapped_size);
}
u64 VMManager::GetTotalPhysicalMemoryAvailable() const {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0xF8000000;
}
VAddr VMManager::GetAddressSpaceBaseAddress() const {
return address_space_base;
}
VAddr VMManager::GetAddressSpaceEndAddress() const {
return address_space_end;
}
u64 VMManager::GetAddressSpaceSize() const {
return address_space_end - address_space_base;
}
u64 VMManager::GetAddressSpaceWidth() const {
return address_space_width;
}
bool VMManager::IsWithinAddressSpace(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetAddressSpaceBaseAddress(),
GetAddressSpaceEndAddress());
}
VAddr VMManager::GetASLRRegionBaseAddress() const {
return aslr_region_base;
}
VAddr VMManager::GetASLRRegionEndAddress() const {
return aslr_region_end;
}
u64 VMManager::GetASLRRegionSize() const {
return aslr_region_end - aslr_region_base;
}
bool VMManager::IsWithinASLRRegion(VAddr begin, u64 size) const {
const VAddr range_end = begin + size;
const VAddr aslr_start = GetASLRRegionBaseAddress();
const VAddr aslr_end = GetASLRRegionEndAddress();
if (aslr_start > begin || begin > range_end || range_end - 1 > aslr_end - 1) {
return false;
}
if (range_end > heap_region_base && heap_region_end > begin) {
return false;
}
if (range_end > map_region_base && map_region_end > begin) {
return false;
}
return true;
}
VAddr VMManager::GetCodeRegionBaseAddress() const {
return code_region_base;
}
VAddr VMManager::GetCodeRegionEndAddress() const {
return code_region_end;
}
u64 VMManager::GetCodeRegionSize() const {
return code_region_end - code_region_base;
}
bool VMManager::IsWithinCodeRegion(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetCodeRegionBaseAddress(),
GetCodeRegionEndAddress());
}
VAddr VMManager::GetHeapRegionBaseAddress() const {
return heap_region_base;
}
VAddr VMManager::GetHeapRegionEndAddress() const {
return heap_region_end;
}
u64 VMManager::GetHeapRegionSize() const {
return heap_region_end - heap_region_base;
}
u64 VMManager::GetCurrentHeapSize() const {
return heap_end - heap_region_base;
}
bool VMManager::IsWithinHeapRegion(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetHeapRegionBaseAddress(),
GetHeapRegionEndAddress());
}
VAddr VMManager::GetMapRegionBaseAddress() const {
return map_region_base;
}
VAddr VMManager::GetMapRegionEndAddress() const {
return map_region_end;
}
u64 VMManager::GetMapRegionSize() const {
return map_region_end - map_region_base;
}
bool VMManager::IsWithinMapRegion(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetMapRegionBaseAddress(), GetMapRegionEndAddress());
}
VAddr VMManager::GetStackRegionBaseAddress() const {
return stack_region_base;
}
VAddr VMManager::GetStackRegionEndAddress() const {
return stack_region_end;
}
u64 VMManager::GetStackRegionSize() const {
return stack_region_end - stack_region_base;
}
bool VMManager::IsWithinStackRegion(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetStackRegionBaseAddress(),
GetStackRegionEndAddress());
}
VAddr VMManager::GetTLSIORegionBaseAddress() const {
return tls_io_region_base;
}
VAddr VMManager::GetTLSIORegionEndAddress() const {
return tls_io_region_end;
}
u64 VMManager::GetTLSIORegionSize() const {
return tls_io_region_end - tls_io_region_base;
}
bool VMManager::IsWithinTLSIORegion(VAddr address, u64 size) const {
return IsInsideAddressRange(address, size, GetTLSIORegionBaseAddress(),
GetTLSIORegionEndAddress());
}
} // namespace Kernel