suyu/src/shader_recompiler/ir_opt/ssa_rewrite_pass.cpp
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

412 lines
14 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// This file implements the SSA rewriting algorithm proposed in
//
// Simple and Efficient Construction of Static Single Assignment Form.
// Braun M., Buchwald S., Hack S., Leiba R., Mallon C., Zwinkau A. (2013)
// In: Jhala R., De Bosschere K. (eds)
// Compiler Construction. CC 2013.
// Lecture Notes in Computer Science, vol 7791.
// Springer, Berlin, Heidelberg
//
// https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
//
#include <deque>
#include <span>
#include <variant>
#include <vector>
#include <boost/container/flat_map.hpp>
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/opcodes.h"
#include "shader_recompiler/frontend/ir/pred.h"
#include "shader_recompiler/frontend/ir/reg.h"
#include "shader_recompiler/frontend/ir/value.h"
#include "shader_recompiler/ir_opt/passes.h"
namespace Shader::Optimization {
namespace {
struct FlagTag {
auto operator<=>(const FlagTag&) const noexcept = default;
};
struct ZeroFlagTag : FlagTag {};
struct SignFlagTag : FlagTag {};
struct CarryFlagTag : FlagTag {};
struct OverflowFlagTag : FlagTag {};
struct GotoVariable : FlagTag {
GotoVariable() = default;
explicit GotoVariable(u32 index_) : index{index_} {}
auto operator<=>(const GotoVariable&) const noexcept = default;
u32 index;
};
struct IndirectBranchVariable {
auto operator<=>(const IndirectBranchVariable&) const noexcept = default;
};
using Variant = std::variant<IR::Reg, IR::Pred, ZeroFlagTag, SignFlagTag, CarryFlagTag,
OverflowFlagTag, GotoVariable, IndirectBranchVariable>;
using ValueMap = boost::container::flat_map<IR::Block*, IR::Value>;
struct DefTable {
const IR::Value& Def(IR::Block* block, IR::Reg variable) {
return block->SsaRegValue(variable);
}
void SetDef(IR::Block* block, IR::Reg variable, const IR::Value& value) {
block->SetSsaRegValue(variable, value);
}
const IR::Value& Def(IR::Block* block, IR::Pred variable) {
return preds[IR::PredIndex(variable)][block];
}
void SetDef(IR::Block* block, IR::Pred variable, const IR::Value& value) {
preds[IR::PredIndex(variable)].insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, GotoVariable variable) {
return goto_vars[variable.index][block];
}
void SetDef(IR::Block* block, GotoVariable variable, const IR::Value& value) {
goto_vars[variable.index].insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, IndirectBranchVariable) {
return indirect_branch_var[block];
}
void SetDef(IR::Block* block, IndirectBranchVariable, const IR::Value& value) {
indirect_branch_var.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, ZeroFlagTag) {
return zero_flag[block];
}
void SetDef(IR::Block* block, ZeroFlagTag, const IR::Value& value) {
zero_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, SignFlagTag) {
return sign_flag[block];
}
void SetDef(IR::Block* block, SignFlagTag, const IR::Value& value) {
sign_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, CarryFlagTag) {
return carry_flag[block];
}
void SetDef(IR::Block* block, CarryFlagTag, const IR::Value& value) {
carry_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, OverflowFlagTag) {
return overflow_flag[block];
}
void SetDef(IR::Block* block, OverflowFlagTag, const IR::Value& value) {
overflow_flag.insert_or_assign(block, value);
}
std::array<ValueMap, IR::NUM_USER_PREDS> preds;
boost::container::flat_map<u32, ValueMap> goto_vars;
ValueMap indirect_branch_var;
ValueMap zero_flag;
ValueMap sign_flag;
ValueMap carry_flag;
ValueMap overflow_flag;
};
IR::Opcode UndefOpcode(IR::Reg) noexcept {
return IR::Opcode::UndefU32;
}
IR::Opcode UndefOpcode(IR::Pred) noexcept {
return IR::Opcode::UndefU1;
}
IR::Opcode UndefOpcode(const FlagTag&) noexcept {
return IR::Opcode::UndefU1;
}
IR::Opcode UndefOpcode(IndirectBranchVariable) noexcept {
return IR::Opcode::UndefU32;
}
enum class Status {
Start,
SetValue,
PreparePhiArgument,
PushPhiArgument,
};
template <typename Type>
struct ReadState {
ReadState(IR::Block* block_) : block{block_} {}
ReadState() = default;
IR::Block* block{};
IR::Value result{};
IR::Inst* phi{};
IR::Block* const* pred_it{};
IR::Block* const* pred_end{};
Status pc{Status::Start};
};
class Pass {
public:
template <typename Type>
void WriteVariable(Type variable, IR::Block* block, const IR::Value& value) {
current_def.SetDef(block, variable, value);
}
template <typename Type>
IR::Value ReadVariable(Type variable, IR::Block* root_block) {
boost::container::small_vector<ReadState<Type>, 64> stack{
ReadState<Type>(nullptr),
ReadState<Type>(root_block),
};
const auto prepare_phi_operand{[&] {
if (stack.back().pred_it == stack.back().pred_end) {
IR::Inst* const phi{stack.back().phi};
IR::Block* const block{stack.back().block};
const IR::Value result{TryRemoveTrivialPhi(*phi, block, UndefOpcode(variable))};
stack.pop_back();
stack.back().result = result;
WriteVariable(variable, block, result);
} else {
IR::Block* const imm_pred{*stack.back().pred_it};
stack.back().pc = Status::PushPhiArgument;
stack.emplace_back(imm_pred);
}
}};
do {
IR::Block* const block{stack.back().block};
switch (stack.back().pc) {
case Status::Start: {
if (const IR::Value& def = current_def.Def(block, variable); !def.IsEmpty()) {
stack.back().result = def;
} else if (!block->IsSsaSealed()) {
// Incomplete CFG
IR::Inst* phi{&*block->PrependNewInst(block->begin(), IR::Opcode::Phi)};
phi->SetFlags(IR::TypeOf(UndefOpcode(variable)));
incomplete_phis[block].insert_or_assign(variable, phi);
stack.back().result = IR::Value{&*phi};
} else if (const std::span imm_preds = block->ImmPredecessors();
imm_preds.size() == 1) {
// Optimize the common case of one predecessor: no phi needed
stack.back().pc = Status::SetValue;
stack.emplace_back(imm_preds.front());
break;
} else {
// Break potential cycles with operandless phi
IR::Inst* const phi{&*block->PrependNewInst(block->begin(), IR::Opcode::Phi)};
phi->SetFlags(IR::TypeOf(UndefOpcode(variable)));
WriteVariable(variable, block, IR::Value{phi});
stack.back().phi = phi;
stack.back().pred_it = imm_preds.data();
stack.back().pred_end = imm_preds.data() + imm_preds.size();
prepare_phi_operand();
break;
}
}
[[fallthrough]];
case Status::SetValue: {
const IR::Value result{stack.back().result};
WriteVariable(variable, block, result);
stack.pop_back();
stack.back().result = result;
break;
}
case Status::PushPhiArgument: {
IR::Inst* const phi{stack.back().phi};
phi->AddPhiOperand(*stack.back().pred_it, stack.back().result);
++stack.back().pred_it;
}
[[fallthrough]];
case Status::PreparePhiArgument:
prepare_phi_operand();
break;
}
} while (stack.size() > 1);
return stack.back().result;
}
void SealBlock(IR::Block* block) {
const auto it{incomplete_phis.find(block)};
if (it != incomplete_phis.end()) {
for (auto& pair : it->second) {
auto& variant{pair.first};
auto& phi{pair.second};
std::visit([&](auto& variable) { AddPhiOperands(variable, *phi, block); }, variant);
}
}
block->SsaSeal();
}
private:
template <typename Type>
IR::Value AddPhiOperands(Type variable, IR::Inst& phi, IR::Block* block) {
for (IR::Block* const imm_pred : block->ImmPredecessors()) {
phi.AddPhiOperand(imm_pred, ReadVariable(variable, imm_pred));
}
return TryRemoveTrivialPhi(phi, block, UndefOpcode(variable));
}
IR::Value TryRemoveTrivialPhi(IR::Inst& phi, IR::Block* block, IR::Opcode undef_opcode) {
IR::Value same;
const size_t num_args{phi.NumArgs()};
for (size_t arg_index = 0; arg_index < num_args; ++arg_index) {
const IR::Value& op{phi.Arg(arg_index)};
if (op.Resolve() == same.Resolve() || op == IR::Value{&phi}) {
// Unique value or self-reference
continue;
}
if (!same.IsEmpty()) {
// The phi merges at least two values: not trivial
return IR::Value{&phi};
}
same = op;
}
// Remove the phi node from the block, it will be reinserted
IR::Block::InstructionList& list{block->Instructions()};
list.erase(IR::Block::InstructionList::s_iterator_to(phi));
// Find the first non-phi instruction and use it as an insertion point
IR::Block::iterator reinsert_point{std::ranges::find_if_not(list, IR::IsPhi)};
if (same.IsEmpty()) {
// The phi is unreachable or in the start block
// Insert an undefined instruction and make it the phi node replacement
// The "phi" node reinsertion point is specified after this instruction
reinsert_point = block->PrependNewInst(reinsert_point, undef_opcode);
same = IR::Value{&*reinsert_point};
++reinsert_point;
}
// Reinsert the phi node and reroute all its uses to the "same" value
list.insert(reinsert_point, phi);
phi.ReplaceUsesWith(same);
// TODO: Try to recursively remove all phi users, which might have become trivial
return same;
}
boost::container::flat_map<IR::Block*, boost::container::flat_map<Variant, IR::Inst*>>
incomplete_phis;
DefTable current_def;
};
void VisitInst(Pass& pass, IR::Block* block, IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::SetRegister:
if (const IR::Reg reg{inst.Arg(0).Reg()}; reg != IR::Reg::RZ) {
pass.WriteVariable(reg, block, inst.Arg(1));
}
break;
case IR::Opcode::SetPred:
if (const IR::Pred pred{inst.Arg(0).Pred()}; pred != IR::Pred::PT) {
pass.WriteVariable(pred, block, inst.Arg(1));
}
break;
case IR::Opcode::SetGotoVariable:
pass.WriteVariable(GotoVariable{inst.Arg(0).U32()}, block, inst.Arg(1));
break;
case IR::Opcode::SetIndirectBranchVariable:
pass.WriteVariable(IndirectBranchVariable{}, block, inst.Arg(0));
break;
case IR::Opcode::SetZFlag:
pass.WriteVariable(ZeroFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetSFlag:
pass.WriteVariable(SignFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetCFlag:
pass.WriteVariable(CarryFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetOFlag:
pass.WriteVariable(OverflowFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::GetRegister:
if (const IR::Reg reg{inst.Arg(0).Reg()}; reg != IR::Reg::RZ) {
inst.ReplaceUsesWith(pass.ReadVariable(reg, block));
}
break;
case IR::Opcode::GetPred:
if (const IR::Pred pred{inst.Arg(0).Pred()}; pred != IR::Pred::PT) {
inst.ReplaceUsesWith(pass.ReadVariable(pred, block));
}
break;
case IR::Opcode::GetGotoVariable:
inst.ReplaceUsesWith(pass.ReadVariable(GotoVariable{inst.Arg(0).U32()}, block));
break;
case IR::Opcode::GetIndirectBranchVariable:
inst.ReplaceUsesWith(pass.ReadVariable(IndirectBranchVariable{}, block));
break;
case IR::Opcode::GetZFlag:
inst.ReplaceUsesWith(pass.ReadVariable(ZeroFlagTag{}, block));
break;
case IR::Opcode::GetSFlag:
inst.ReplaceUsesWith(pass.ReadVariable(SignFlagTag{}, block));
break;
case IR::Opcode::GetCFlag:
inst.ReplaceUsesWith(pass.ReadVariable(CarryFlagTag{}, block));
break;
case IR::Opcode::GetOFlag:
inst.ReplaceUsesWith(pass.ReadVariable(OverflowFlagTag{}, block));
break;
default:
break;
}
}
void VisitBlock(Pass& pass, IR::Block* block) {
for (IR::Inst& inst : block->Instructions()) {
VisitInst(pass, block, inst);
}
pass.SealBlock(block);
}
IR::Type GetConcreteType(IR::Inst* inst) {
std::deque<IR::Inst*> queue;
queue.push_back(inst);
while (!queue.empty()) {
IR::Inst* current = queue.front();
queue.pop_front();
const size_t num_args{current->NumArgs()};
for (size_t i = 0; i < num_args; ++i) {
const auto set_type = current->Arg(i).Type();
if (set_type != IR::Type::Opaque) {
return set_type;
}
if (!current->Arg(i).IsImmediate()) {
queue.push_back(current->Arg(i).Inst());
}
}
}
return IR::Type::Opaque;
}
} // Anonymous namespace
void SsaRewritePass(IR::Program& program) {
Pass pass;
const auto end{program.post_order_blocks.rend()};
for (auto block = program.post_order_blocks.rbegin(); block != end; ++block) {
VisitBlock(pass, *block);
}
for (auto block = program.post_order_blocks.rbegin(); block != end; ++block) {
for (IR::Inst& inst : (*block)->Instructions()) {
if (inst.GetOpcode() == IR::Opcode::Phi) {
if (inst.Type() == IR::Type::Opaque) {
inst.SetFlags(GetConcreteType(&inst));
}
inst.OrderPhiArgs();
}
}
}
}
} // namespace Shader::Optimization