yuzu/src/core/core_timing_util.cpp

85 lines
3.2 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "core/core_timing_util.h"
#include <cinttypes>
#include <limits>
#include "common/logging/log.h"
2019-02-16 01:04:11 +01:00
#include "common/uint128.h"
2020-08-23 02:27:31 +02:00
#include "core/hardware_properties.h"
namespace Core::Timing {
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
s64 msToCycles(std::chrono::milliseconds ms) {
if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
2020-10-21 04:07:39 +02:00
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
}
2020-10-21 04:07:39 +02:00
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
}
s64 usToCycles(std::chrono::microseconds us) {
if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
2020-10-21 04:07:39 +02:00
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
}
2020-10-21 04:07:39 +02:00
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
}
s64 nsToCycles(std::chrono::nanoseconds ns) {
2020-10-21 04:07:39 +02:00
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
}
2020-10-21 04:07:39 +02:00
u64 msToClockCycles(std::chrono::milliseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
2020-02-10 19:45:08 +01:00
return Common::Divide128On32(temp, 1000).first;
}
2020-10-21 04:07:39 +02:00
u64 usToClockCycles(std::chrono::microseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
2020-02-10 19:45:08 +01:00
return Common::Divide128On32(temp, 1000000).first;
}
2020-02-06 00:12:27 +01:00
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
2020-10-21 04:07:39 +02:00
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
2020-02-10 19:45:08 +01:00
return Common::Divide128On32(temp, 1000000000).first;
2020-02-06 00:12:27 +01:00
}
u64 CpuCyclesToClockCycles(u64 ticks) {
2020-10-21 04:07:39 +02:00
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
}
std::chrono::milliseconds CyclesToMs(s64 cycles) {
2020-10-21 04:07:39 +02:00
const u128 temporal = Common::Multiply64Into128(cycles, 1000);
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::milliseconds(ms);
}
std::chrono::nanoseconds CyclesToNs(s64 cycles) {
2020-10-21 04:07:39 +02:00
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::nanoseconds(ns);
}
std::chrono::microseconds CyclesToUs(s64 cycles) {
2020-10-21 04:07:39 +02:00
const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::microseconds(us);
}
} // namespace Core::Timing