yuzu/src/input_common/gcadapter/gc_poller.cpp

302 lines
10 KiB
C++
Raw Normal View History

2020-06-21 21:31:57 +02:00
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2020-06-21 18:36:28 +02:00
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "common/threadsafe_queue.h"
2020-06-21 21:31:57 +02:00
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
2020-06-21 18:36:28 +02:00
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(int port_, int button_, int axis_, GCAdapter::Adapter* adapter)
: port(port_), button(button_), gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
~GCButton() override;
bool GetStatus() const override {
return gcadapter->GetPadState()[port].buttons.at(button);
2020-06-21 18:36:28 +02:00
}
private:
const int port;
const int button;
GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_,
GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
bool GetStatus() const override {
const float axis_value = (gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 128.0f;
2020-06-21 18:36:28 +02:00
if (trigger_if_greater) {
2020-06-21 21:31:57 +02:00
return axis_value > 0.10f; // TODO(ameerj) : Fix threshold.
2020-06-21 18:36:28 +02:00
}
return axis_value < -0.10f;
}
private:
const int port;
const int axis;
float threshold;
bool trigger_if_greater;
GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
};
GCButtonFactory::GCButtonFactory() {
adapter = GCAdapter::Adapter::GetInstance();
2020-06-21 18:36:28 +02:00
}
GCButton::~GCButton() = default;
2020-06-21 18:36:28 +02:00
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
int button_id = params.Get("button", 0);
int port = params.Get("port", 0);
// For Axis buttons, used by the binary sticks.
if (params.Has("axis")) {
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.5f);
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater, adapter);
2020-06-21 18:36:28 +02:00
}
std::unique_ptr<GCButton> button =
std::make_unique<GCButton>(port, button_id, params.Get("axis", 0), adapter);
2020-06-21 18:36:28 +02:00
return std::move(button);
}
Common::ParamPackage GCButtonFactory::GetNextInput() {
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
2020-06-21 18:36:28 +02:00
for (int i = 0; i < 4; i++) {
while (adapter->GetPadQueue()[i].Pop(pad)) {
2020-06-21 18:36:28 +02:00
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", i);
// I was debating whether to keep these verbose for ease of reading
// or to use a while loop shifting the bits to test and set the value.
if (pad.button & GCAdapter::PAD_BUTTON_A) {
params.Set("button", GCAdapter::PAD_BUTTON_A);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_B) {
params.Set("button", GCAdapter::PAD_BUTTON_B);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_X) {
params.Set("button", GCAdapter::PAD_BUTTON_X);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_Y) {
params.Set("button", GCAdapter::PAD_BUTTON_Y);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_DOWN) {
params.Set("button", GCAdapter::PAD_BUTTON_DOWN);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_LEFT) {
params.Set("button", GCAdapter::PAD_BUTTON_LEFT);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_RIGHT) {
params.Set("button", GCAdapter::PAD_BUTTON_RIGHT);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_UP) {
params.Set("button", GCAdapter::PAD_BUTTON_UP);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_TRIGGER_L) {
params.Set("button", GCAdapter::PAD_TRIGGER_L);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_TRIGGER_R) {
params.Set("button", GCAdapter::PAD_TRIGGER_R);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_TRIGGER_Z) {
params.Set("button", GCAdapter::PAD_TRIGGER_Z);
2020-06-21 18:36:28 +02:00
break;
}
if (pad.button & GCAdapter::PAD_BUTTON_START) {
params.Set("button", GCAdapter::PAD_BUTTON_START);
2020-06-21 18:36:28 +02:00
break;
}
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", GCAdapter::PAD_STICK);
2020-06-21 18:36:28 +02:00
if (pad.axis_value > 128) {
params.Set("direction", "+");
params.Set("threshold", "0.5");
} else {
params.Set("direction", "-");
params.Set("threshold", "-0.5");
}
break;
}
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 18:36:28 +02:00
}
void GCButtonFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 18:36:28 +02:00
}
class GCAnalog final : public Input::AnalogDevice {
public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
float GetAxis(int axis) const {
std::lock_guard lock{mutex};
// division is not by a perfect 128 to account for some variance in center location
2020-06-21 21:31:57 +02:00
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range
// [20-230]
return (gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 95.0f;
2020-06-21 18:36:28 +02:00
}
std::tuple<float, float> GetAnalog(int axis_x, int axis_y) const {
float x = GetAxis(axis_x);
float y = GetAxis(axis_y);
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return std::make_tuple(x, y);
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return std::make_tuple(x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone));
}
return std::make_tuple<float, float>(0.0f, 0.0f);
}
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.4f;
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const int port;
const int axis_x;
const int axis_y;
const float deadzone;
mutable std::mutex mutex;
GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory() {
adapter = GCAdapter::Adapter::GetInstance();
};
2020-06-21 18:36:28 +02:00
/**
2020-06-21 21:31:57 +02:00
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
2020-06-21 18:36:28 +02:00
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const std::string guid = params.Get("guid", "0");
const int port = params.Get("port", 0);
const int axis_x = params.Get("axis_x", 0);
const int axis_y = params.Get("axis_y", 1);
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone, adapter);
2020-06-21 18:36:28 +02:00
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 18:36:28 +02:00
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 18:36:28 +02:00
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
2020-06-21 18:36:28 +02:00
for (int i = 0; i < 4; i++) {
while (adapter->GetPadQueue()[i].Pop(pad)) {
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.1) {
2020-06-21 18:36:28 +02:00
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second SDL event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
2020-06-21 18:36:28 +02:00
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = i;
} else if (analog_y_axis == -1 && analog_x_axis != axis && controller_number == i) {
analog_y_axis = axis;
}
}
}
Common::ParamPackage params;
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
2020-06-21 18:36:28 +02:00
} // namespace InputCommon