yuzu/src/video_core/vertex_shader.cpp

480 lines
18 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <boost/range/algorithm.hpp>
#include <common/file_util.h>
#include <core/mem_map.h>
#include <nihstro/shader_bytecode.h>
#include "pica.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
using nihstro::Instruction;
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::SwizzlePattern;
namespace Pica {
namespace VertexShader {
static struct {
Math::Vec4<float24> f[96];
std::array<bool,16> b;
} shader_uniforms;
// TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to!
// For now, we just keep these local arrays around.
static std::array<u32, 1024> shader_memory;
static std::array<u32, 1024> swizzle_data;
void SubmitShaderMemoryChange(u32 addr, u32 value)
{
shader_memory[addr] = value;
}
void SubmitSwizzleDataChange(u32 addr, u32 value)
{
swizzle_data[addr] = value;
}
Math::Vec4<float24>& GetFloatUniform(u32 index)
{
return shader_uniforms.f[index];
}
bool& GetBoolUniform(u32 index)
{
return shader_uniforms.b[index];
}
const std::array<u32, 1024>& GetShaderBinary()
{
return shader_memory;
}
const std::array<u32, 1024>& GetSwizzlePatterns()
{
return swizzle_data;
}
// TODO: Is there actually a limit on hardware?
const int if_stack_size = 8;
struct VertexShaderState {
u32* program_counter;
const float24* input_register_table[16];
float24* output_register_table[7*4];
Math::Vec4<float24> temporary_registers[16];
bool conditional_code[2];
// Two Address registers and one loop counter
// TODO: How many bits do these actually have?
s32 address_registers[3];
enum {
INVALID_ADDRESS = 0xFFFFFFFF
};
u32 call_stack[8]; // TODO: What is the maximal call stack depth?
u32* call_stack_pointer;
struct IfStackElement {
u32 else_addr;
u32 else_instructions;
} if_stack[if_stack_size];
IfStackElement* if_stack_pointer;
struct {
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
} debug;
};
static void ProcessShaderCode(VertexShaderState& state) {
while (true) {
bool increment_pc = true;
bool exit_loop = false;
const Instruction& instr = *(const Instruction*)state.program_counter;
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + (state.program_counter - shader_memory.data()));
auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* {
switch (source_reg.GetRegisterType()) {
case RegisterType::Input:
return state.input_register_table[source_reg.GetIndex()];
case RegisterType::Temporary:
return &state.temporary_registers[source_reg.GetIndex()].x;
case RegisterType::FloatUniform:
return &shader_uniforms.f[source_reg.GetIndex()].x;
}
};
switch (instr.opcode.GetInfo().type) {
case Instruction::OpCodeType::Arithmetic:
{
bool is_inverted = 0 != (instr.opcode.GetInfo().subtype & Instruction::OpCodeInfo::SrcInversed);
if (is_inverted) {
// We don't really support this properly and/or reliably
LOG_ERROR(HW_GPU, "Bad condition...");
exit(0);
}
const int address_offset = (instr.common.address_register_index == 0)
? 0 : state.address_registers[instr.common.address_register_index - 1];
const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + address_offset);
const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted));
const bool negate_src1 = (swizzle.negate_src1 != false);
const bool negate_src2 = (swizzle.negate_src2 != false);
float24 src1[4] = {
src1_[(int)swizzle.GetSelectorSrc1(0)],
src1_[(int)swizzle.GetSelectorSrc1(1)],
src1_[(int)swizzle.GetSelectorSrc1(2)],
src1_[(int)swizzle.GetSelectorSrc1(3)],
};
if (negate_src1) {
src1[0] = src1[0] * float24::FromFloat32(-1);
src1[1] = src1[1] * float24::FromFloat32(-1);
src1[2] = src1[2] * float24::FromFloat32(-1);
src1[3] = src1[3] * float24::FromFloat32(-1);
}
float24 src2[4] = {
src2_[(int)swizzle.GetSelectorSrc2(0)],
src2_[(int)swizzle.GetSelectorSrc2(1)],
src2_[(int)swizzle.GetSelectorSrc2(2)],
src2_[(int)swizzle.GetSelectorSrc2(3)],
};
if (negate_src2) {
src2[0] = src2[0] * float24::FromFloat32(-1);
src2[1] = src2[1] * float24::FromFloat32(-1);
src2[2] = src2[2] * float24::FromFloat32(-1);
src2[3] = src2[3] * float24::FromFloat32(-1);
}
float24* dest = (instr.common.dest < 0x08) ? state.output_register_table[4*instr.common.dest.GetIndex()]
: (instr.common.dest < 0x10) ? nullptr
: (instr.common.dest < 0x20) ? &state.temporary_registers[instr.common.dest.GetIndex()][0]
: nullptr;
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
switch (instr.opcode) {
case Instruction::OpCode::ADD:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i] + src2[i];
}
break;
}
case Instruction::OpCode::MUL:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i] * src2[i];
}
break;
}
case Instruction::OpCode::DP3:
case Instruction::OpCode::DP4:
{
float24 dot = float24::FromFloat32(0.f);
int num_components = (instr.opcode == Instruction::OpCode::DP3) ? 3 : 4;
for (int i = 0; i < num_components; ++i)
dot = dot + src1[i] * src2[i];
for (int i = 0; i < num_components; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = dot;
}
break;
}
// Reciprocal
case Instruction::OpCode::RCP:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Be stable against division by zero!
// TODO: I think this might be wrong... we should only use one component here
dest[i] = float24::FromFloat32(1.0 / src1[i].ToFloat32());
}
break;
}
// Reciprocal Square Root
case Instruction::OpCode::RSQ:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Be stable against division by zero!
// TODO: I think this might be wrong... we should only use one component here
dest[i] = float24::FromFloat32(1.0 / sqrt(src1[i].ToFloat32()));
}
break;
}
case Instruction::OpCode::MOVA:
{
for (int i = 0; i < 2; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Figure out how the rounding is done on hardware
state.address_registers[i] = static_cast<s32>(src1[i].ToFloat32());
}
break;
}
case Instruction::OpCode::MOV:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i];
}
break;
}
case Instruction::OpCode::CMP:
for (int i = 0; i < 2; ++i) {
// TODO: Can you restrict to one compare via dest masking?
auto compare_op = instr.common.compare_op;
auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value();
switch (op) {
case compare_op.Equal:
state.conditional_code[i] = (src1[i] == src2[i]);
break;
case compare_op.NotEqual:
state.conditional_code[i] = (src1[i] != src2[i]);
break;
case compare_op.LessThan:
state.conditional_code[i] = (src1[i] < src2[i]);
break;
case compare_op.LessEqual:
state.conditional_code[i] = (src1[i] <= src2[i]);
break;
case compare_op.GreaterThan:
state.conditional_code[i] = (src1[i] > src2[i]);
break;
case compare_op.GreaterEqual:
state.conditional_code[i] = (src1[i] >= src2[i]);
break;
default:
LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op));
break;
}
}
break;
default:
LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);
_dbg_assert_(HW_GPU, 0);
break;
}
break;
}
default:
// Handle each instruction on its own
switch (instr.opcode) {
// NOP is currently used as a heuristic for leaving from a function.
// TODO: This is completely incorrect.
case Instruction::OpCode::NOP:
if (*state.call_stack_pointer == VertexShaderState::INVALID_ADDRESS) {
exit_loop = true;
} else {
// Jump back to call stack position, invalidate call stack entry, move up call stack pointer
state.program_counter = &shader_memory[*state.call_stack_pointer];
*state.call_stack_pointer-- = VertexShaderState::INVALID_ADDRESS;
}
break;
case Instruction::OpCode::CALL:
increment_pc = false;
_dbg_assert_(HW_GPU, state.call_stack_pointer - state.call_stack < sizeof(state.call_stack));
*++state.call_stack_pointer = state.program_counter - shader_memory.data();
state.program_counter = &shader_memory[instr.flow_control.dest_offset];
break;
case Instruction::OpCode::END:
// TODO
break;
case Instruction::OpCode::IFC:
{
// TODO: Do we need to consider swizzlers here?
auto flow_control = instr.flow_control;
bool results[3] = { flow_control.refx == state.conditional_code[0],
flow_control.refy == state.conditional_code[1] };
switch (flow_control.op) {
case flow_control.Or:
results[2] = results[0] || results[1];
break;
case flow_control.And:
results[2] = results[0] && results[1];
break;
case flow_control.JustX:
results[2] = results[0];
break;
case flow_control.JustY:
results[2] = results[1];
break;
}
if (results[2]) {
++state.if_stack_pointer;
state.if_stack_pointer->else_addr = instr.flow_control.dest_offset;
state.if_stack_pointer->else_instructions = instr.flow_control.num_instructions;
} else {
state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1;
}
break;
}
default:
LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);
break;
}
break;
}
if (increment_pc)
++state.program_counter;
if (state.if_stack_pointer >= &state.if_stack[0]) {
if (state.program_counter - shader_memory.data() == state.if_stack_pointer->else_addr) {
state.program_counter += state.if_stack_pointer->else_instructions;
state.if_stack_pointer--;
}
}
if (exit_loop)
break;
}
}
OutputVertex RunShader(const InputVertex& input, int num_attributes)
{
VertexShaderState state;
const u32* main = &shader_memory[registers.vs_main_offset];
state.program_counter = (u32*)main;
state.debug.max_offset = 0;
state.debug.max_opdesc_id = 0;
// Setup input register table
const auto& attribute_register_map = registers.vs_input_register_map;
float24 dummy_register;
boost::fill(state.input_register_table, &dummy_register);
if(num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x;
if(num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x;
if(num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x;
if(num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x;
if(num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x;
if(num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x;
if(num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x;
if(num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x;
if(num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x;
if(num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x;
if(num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x;
if(num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x;
if(num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x;
if(num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x;
if(num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x;
if(num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x;
// Setup output register table
OutputVertex ret;
for (int i = 0; i < 7; ++i) {
const auto& output_register_map = registers.vs_output_attributes[i];
u32 semantics[4] = {
output_register_map.map_x, output_register_map.map_y,
output_register_map.map_z, output_register_map.map_w
};
for (int comp = 0; comp < 4; ++comp)
state.output_register_table[4*i+comp] = ((float24*)&ret) + semantics[comp];
}
state.conditional_code[0] = false;
state.conditional_code[1] = false;
boost::fill(state.call_stack, VertexShaderState::INVALID_ADDRESS);
state.call_stack_pointer = &state.call_stack[0];
std::fill(state.if_stack, state.if_stack + sizeof(state.if_stack) / sizeof(state.if_stack[0]),
VertexShaderState::IfStackElement{VertexShaderState::INVALID_ADDRESS, VertexShaderState::INVALID_ADDRESS});
state.if_stack_pointer = state.if_stack - 1; // Meh. TODO: Make this less ugly
ProcessShaderCode(state);
DebugUtils::DumpShader(shader_memory.data(), state.debug.max_offset, swizzle_data.data(),
state.debug.max_opdesc_id, registers.vs_main_offset,
registers.vs_output_attributes);
LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());
return ret;
}
} // namespace
} // namespace