yuzu/src/core/hle/kernel/k_page_table.cpp

2432 lines
98 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "common/assert.h"
#include "common/literals.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/k_address_space_info.h"
#include "core/hle/kernel/k_memory_block.h"
#include "core/hle/kernel/k_memory_block_manager.h"
#include "core/hle/kernel/k_page_group.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_system_control.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/memory.h"
namespace Kernel {
namespace {
using namespace Common::Literals;
constexpr size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceType as_type) {
switch (as_type) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
return 32;
case FileSys::ProgramAddressSpaceType::Is36Bit:
return 36;
case FileSys::ProgramAddressSpaceType::Is39Bit:
return 39;
default:
ASSERT(false);
return {};
}
}
} // namespace
KPageTable::KPageTable(Core::System& system_)
: m_general_lock{system_.Kernel()},
m_map_physical_memory_lock{system_.Kernel()}, m_system{system_} {}
KPageTable::~KPageTable() = default;
Result KPageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr,
VAddr code_addr, size_t code_size,
KMemoryBlockSlabManager* mem_block_slab_manager,
KMemoryManager::Pool pool) {
const auto GetSpaceStart = [this](KAddressSpaceInfo::Type type) {
return KAddressSpaceInfo::GetAddressSpaceStart(m_address_space_width, type);
};
const auto GetSpaceSize = [this](KAddressSpaceInfo::Type type) {
return KAddressSpaceInfo::GetAddressSpaceSize(m_address_space_width, type);
};
// Set our width and heap/alias sizes
m_address_space_width = GetAddressSpaceWidthFromType(as_type);
const VAddr start = 0;
const VAddr end{1ULL << m_address_space_width};
size_t alias_region_size{GetSpaceSize(KAddressSpaceInfo::Type::Alias)};
size_t heap_region_size{GetSpaceSize(KAddressSpaceInfo::Type::Heap)};
ASSERT(code_addr < code_addr + code_size);
ASSERT(code_addr + code_size - 1 <= end - 1);
// Adjust heap/alias size if we don't have an alias region
if (as_type == FileSys::ProgramAddressSpaceType::Is32BitNoMap) {
heap_region_size += alias_region_size;
alias_region_size = 0;
}
// Set code regions and determine remaining
constexpr size_t RegionAlignment{2_MiB};
VAddr process_code_start{};
VAddr process_code_end{};
size_t stack_region_size{};
size_t kernel_map_region_size{};
if (m_address_space_width == 39) {
alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias);
heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap);
stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Stack);
kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::Map39Bit);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::Map39Bit);
m_alias_code_region_start = m_code_region_start;
m_alias_code_region_end = m_code_region_end;
process_code_start = Common::AlignDown(code_addr, RegionAlignment);
process_code_end = Common::AlignUp(code_addr + code_size, RegionAlignment);
} else {
stack_region_size = 0;
kernel_map_region_size = 0;
m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::MapSmall);
m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
m_stack_region_start = m_code_region_start;
m_alias_code_region_start = m_code_region_start;
m_alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type::MapLarge) +
GetSpaceSize(KAddressSpaceInfo::Type::MapLarge);
m_stack_region_end = m_code_region_end;
m_kernel_map_region_start = m_code_region_start;
m_kernel_map_region_end = m_code_region_end;
process_code_start = m_code_region_start;
process_code_end = m_code_region_end;
}
// Set other basic fields
m_enable_aslr = enable_aslr;
m_enable_device_address_space_merge = false;
m_address_space_start = start;
m_address_space_end = end;
m_is_kernel = false;
m_memory_block_slab_manager = mem_block_slab_manager;
// Determine the region we can place our undetermineds in
VAddr alloc_start{};
size_t alloc_size{};
if ((process_code_start - m_code_region_start) >= (end - process_code_end)) {
alloc_start = m_code_region_start;
alloc_size = process_code_start - m_code_region_start;
} else {
alloc_start = process_code_end;
alloc_size = end - process_code_end;
}
const size_t needed_size =
(alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
R_UNLESS(alloc_size >= needed_size, ResultOutOfMemory);
const size_t remaining_size{alloc_size - needed_size};
// Determine random placements for each region
size_t alias_rnd{}, heap_rnd{}, stack_rnd{}, kmap_rnd{};
if (enable_aslr) {
alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
RegionAlignment;
}
// Setup heap and alias regions
m_alias_region_start = alloc_start + alias_rnd;
m_alias_region_end = m_alias_region_start + alias_region_size;
m_heap_region_start = alloc_start + heap_rnd;
m_heap_region_end = m_heap_region_start + heap_region_size;
if (alias_rnd <= heap_rnd) {
m_heap_region_start += alias_region_size;
m_heap_region_end += alias_region_size;
} else {
m_alias_region_start += heap_region_size;
m_alias_region_end += heap_region_size;
}
// Setup stack region
if (stack_region_size) {
m_stack_region_start = alloc_start + stack_rnd;
m_stack_region_end = m_stack_region_start + stack_region_size;
if (alias_rnd < stack_rnd) {
m_stack_region_start += alias_region_size;
m_stack_region_end += alias_region_size;
} else {
m_alias_region_start += stack_region_size;
m_alias_region_end += stack_region_size;
}
if (heap_rnd < stack_rnd) {
m_stack_region_start += heap_region_size;
m_stack_region_end += heap_region_size;
} else {
m_heap_region_start += stack_region_size;
m_heap_region_end += stack_region_size;
}
}
// Setup kernel map region
if (kernel_map_region_size) {
m_kernel_map_region_start = alloc_start + kmap_rnd;
m_kernel_map_region_end = m_kernel_map_region_start + kernel_map_region_size;
if (alias_rnd < kmap_rnd) {
m_kernel_map_region_start += alias_region_size;
m_kernel_map_region_end += alias_region_size;
} else {
m_alias_region_start += kernel_map_region_size;
m_alias_region_end += kernel_map_region_size;
}
if (heap_rnd < kmap_rnd) {
m_kernel_map_region_start += heap_region_size;
m_kernel_map_region_end += heap_region_size;
} else {
m_heap_region_start += kernel_map_region_size;
m_heap_region_end += kernel_map_region_size;
}
if (stack_region_size) {
if (stack_rnd < kmap_rnd) {
m_kernel_map_region_start += stack_region_size;
m_kernel_map_region_end += stack_region_size;
} else {
m_stack_region_start += kernel_map_region_size;
m_stack_region_end += kernel_map_region_size;
}
}
}
// Set heap members
m_current_heap_end = m_heap_region_start;
m_max_heap_size = 0;
m_max_physical_memory_size = 0;
// Ensure that we regions inside our address space
auto IsInAddressSpace = [&](VAddr addr) {
return m_address_space_start <= addr && addr <= m_address_space_end;
};
ASSERT(IsInAddressSpace(m_alias_region_start));
ASSERT(IsInAddressSpace(m_alias_region_end));
ASSERT(IsInAddressSpace(m_heap_region_start));
ASSERT(IsInAddressSpace(m_heap_region_end));
ASSERT(IsInAddressSpace(m_stack_region_start));
ASSERT(IsInAddressSpace(m_stack_region_end));
ASSERT(IsInAddressSpace(m_kernel_map_region_start));
ASSERT(IsInAddressSpace(m_kernel_map_region_end));
// Ensure that we selected regions that don't overlap
const VAddr alias_start{m_alias_region_start};
const VAddr alias_last{m_alias_region_end - 1};
const VAddr heap_start{m_heap_region_start};
const VAddr heap_last{m_heap_region_end - 1};
const VAddr stack_start{m_stack_region_start};
const VAddr stack_last{m_stack_region_end - 1};
const VAddr kmap_start{m_kernel_map_region_start};
const VAddr kmap_last{m_kernel_map_region_end - 1};
ASSERT(alias_last < heap_start || heap_last < alias_start);
ASSERT(alias_last < stack_start || stack_last < alias_start);
ASSERT(alias_last < kmap_start || kmap_last < alias_start);
ASSERT(heap_last < stack_start || stack_last < heap_start);
ASSERT(heap_last < kmap_start || kmap_last < heap_start);
m_current_heap_end = m_heap_region_start;
m_max_heap_size = 0;
m_mapped_physical_memory_size = 0;
m_memory_pool = pool;
m_page_table_impl = std::make_unique<Common::PageTable>();
m_page_table_impl->Resize(m_address_space_width, PageBits);
// Initialize our memory block manager.
R_RETURN(m_memory_block_manager.Initialize(m_address_space_start, m_address_space_end,
m_memory_block_slab_manager));
}
void KPageTable::Finalize() {
// Finalize memory blocks.
m_memory_block_manager.Finalize(m_memory_block_slab_manager, [&](VAddr addr, u64 size) {
m_system.Memory().UnmapRegion(*m_page_table_impl, addr, size);
});
// Close the backing page table, as the destructor is not called for guest objects.
m_page_table_impl.reset();
}
Result KPageTable::MapProcessCode(VAddr addr, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
const u64 size{num_pages * PageSize};
// Validate the mapping request.
R_UNLESS(this->CanContain(addr, size, state), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify that the destination memory is unmapped.
R_TRY(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
// Allocate and open.
KPageGroup pg;
R_TRY(m_system.Kernel().MemoryManager().AllocateAndOpen(
&pg, num_pages,
KMemoryManager::EncodeOption(KMemoryManager::Pool::Application, m_allocation_option)));
R_TRY(Operate(addr, num_pages, pg, OperationType::MapGroup));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::MapCodeMemory(VAddr dst_address, VAddr src_address, size_t size) {
// Validate the mapping request.
R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
ResultInvalidMemoryRegion);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify that the source memory is normal heap.
KMemoryState src_state{};
KMemoryPermission src_perm{};
size_t num_src_allocator_blocks{};
R_TRY(this->CheckMemoryState(&src_state, &src_perm, nullptr, &num_src_allocator_blocks,
src_address, size, KMemoryState::All, KMemoryState::Normal,
KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None));
// Verify that the destination memory is unmapped.
size_t num_dst_allocator_blocks{};
R_TRY(this->CheckMemoryState(&num_dst_allocator_blocks, dst_address, size, KMemoryState::All,
KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Map the code memory.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create page groups for the memory being mapped.
KPageGroup pg;
AddRegionToPages(src_address, num_pages, pg);
// Reprotect the source as kernel-read/not mapped.
const auto new_perm = static_cast<KMemoryPermission>(KMemoryPermission::KernelRead |
KMemoryPermission::NotMapped);
R_TRY(Operate(src_address, num_pages, new_perm, OperationType::ChangePermissions));
// Ensure that we unprotect the source pages on failure.
auto unprot_guard = SCOPE_GUARD({
ASSERT(this->Operate(src_address, num_pages, src_perm, OperationType::ChangePermissions)
.IsSuccess());
});
// Map the alias pages.
R_TRY(MapPages(dst_address, pg, new_perm));
// We successfully mapped the alias pages, so we don't need to unprotect the src pages on
// failure.
unprot_guard.Cancel();
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages,
src_state, new_perm, KMemoryAttribute::Locked,
KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
m_memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages,
KMemoryState::AliasCode, new_perm, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
}
R_SUCCEED();
}
Result KPageTable::UnmapCodeMemory(VAddr dst_address, VAddr src_address, size_t size,
ICacheInvalidationStrategy icache_invalidation_strategy) {
// Validate the mapping request.
R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
ResultInvalidMemoryRegion);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify that the source memory is locked normal heap.
size_t num_src_allocator_blocks{};
R_TRY(this->CheckMemoryState(std::addressof(num_src_allocator_blocks), src_address, size,
KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked));
// Verify that the destination memory is aliasable code.
size_t num_dst_allocator_blocks{};
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_dst_allocator_blocks), dst_address, size, KMemoryState::FlagCanCodeAlias,
KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::None));
// Determine whether any pages being unmapped are code.
bool any_code_pages = false;
{
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(dst_address);
while (true) {
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Check if the memory has code flag.
if ((info.GetState() & KMemoryState::FlagCode) != KMemoryState::None) {
any_code_pages = true;
break;
}
// Check if we're done.
if (dst_address + size - 1 <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
}
}
// Ensure that we maintain the instruction cache.
bool reprotected_pages = false;
SCOPE_EXIT({
if (reprotected_pages && any_code_pages) {
if (icache_invalidation_strategy == ICacheInvalidationStrategy::InvalidateRange) {
m_system.InvalidateCpuInstructionCacheRange(dst_address, size);
} else {
m_system.InvalidateCpuInstructionCaches();
}
}
});
// Unmap.
{
// Determine the number of pages being operated on.
const size_t num_pages = size / PageSize;
// Create an update allocator for the source.
Result src_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Unmap the aliased copy of the pages.
R_TRY(Operate(dst_address, num_pages, KMemoryPermission::None, OperationType::Unmap));
// Try to set the permissions for the source pages back to what they should be.
R_TRY(Operate(src_address, num_pages, KMemoryPermission::UserReadWrite,
OperationType::ChangePermissions));
// Apply the memory block updates.
m_memory_block_manager.Update(
std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Normal);
m_memory_block_manager.Update(
std::addressof(src_allocator), src_address, num_pages, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Locked);
// Note that we reprotected pages.
reprotected_pages = true;
}
R_SUCCEED();
}
VAddr KPageTable::FindFreeArea(VAddr region_start, size_t region_num_pages, size_t num_pages,
size_t alignment, size_t offset, size_t guard_pages) {
VAddr address = 0;
if (num_pages <= region_num_pages) {
if (this->IsAslrEnabled()) {
UNIMPLEMENTED();
}
// Find the first free area.
if (address == 0) {
address = m_memory_block_manager.FindFreeArea(region_start, region_num_pages, num_pages,
alignment, offset, guard_pages);
}
}
return address;
}
Result KPageTable::MakePageGroup(KPageGroup& pg, VAddr addr, size_t num_pages) {
ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
// We're making a new group, not adding to an existing one.
R_UNLESS(pg.Empty(), ResultInvalidCurrentMemory);
// Begin traversal.
Common::PageTable::TraversalContext context;
Common::PageTable::TraversalEntry next_entry;
R_UNLESS(m_page_table_impl->BeginTraversal(next_entry, context, addr),
ResultInvalidCurrentMemory);
// Prepare tracking variables.
PAddr cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (cur_addr & (next_entry.block_size - 1));
size_t tot_size = cur_size;
// Iterate, adding to group as we go.
const auto& memory_layout = m_system.Kernel().MemoryLayout();
while (tot_size < size) {
R_UNLESS(m_page_table_impl->ContinueTraversal(next_entry, context),
ResultInvalidCurrentMemory);
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(memory_layout, cur_addr), ResultInvalidCurrentMemory);
R_TRY(pg.AddBlock(cur_addr, cur_pages));
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we add the right amount for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
// Add the last block.
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(memory_layout, cur_addr), ResultInvalidCurrentMemory);
R_TRY(pg.AddBlock(cur_addr, cur_pages));
R_SUCCEED();
}
bool KPageTable::IsValidPageGroup(const KPageGroup& pg_ll, VAddr addr, size_t num_pages) {
2022-06-09 18:33:28 +02:00
ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
const auto& pg = pg_ll.Nodes();
const auto& memory_layout = m_system.Kernel().MemoryLayout();
2022-06-09 18:33:28 +02:00
// Empty groups are necessarily invalid.
if (pg.empty()) {
return false;
}
// We're going to validate that the group we'd expect is the group we see.
auto cur_it = pg.begin();
PAddr cur_block_address = cur_it->GetAddress();
size_t cur_block_pages = cur_it->GetNumPages();
auto UpdateCurrentIterator = [&]() {
if (cur_block_pages == 0) {
if ((++cur_it) == pg.end()) {
return false;
}
cur_block_address = cur_it->GetAddress();
cur_block_pages = cur_it->GetNumPages();
}
return true;
};
// Begin traversal.
Common::PageTable::TraversalContext context;
Common::PageTable::TraversalEntry next_entry;
if (!m_page_table_impl->BeginTraversal(next_entry, context, addr)) {
2022-06-09 18:33:28 +02:00
return false;
}
// Prepare tracking variables.
PAddr cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (cur_addr & (next_entry.block_size - 1));
size_t tot_size = cur_size;
// Iterate, comparing expected to actual.
while (tot_size < size) {
if (!m_page_table_impl->ContinueTraversal(next_entry, context)) {
2022-06-09 18:33:28 +02:00
return false;
}
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
if (!IsHeapPhysicalAddress(memory_layout, cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
if (cur_block_address != cur_addr || cur_block_pages < cur_pages) {
return false;
}
cur_block_address += cur_size;
cur_block_pages -= cur_pages;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
// Ensure we compare the right amount for the last block.
if (tot_size > size) {
cur_size -= (tot_size - size);
}
if (!IsHeapPhysicalAddress(memory_layout, cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
return cur_block_address == cur_addr && cur_block_pages == (cur_size / PageSize);
}
Result KPageTable::UnmapProcessMemory(VAddr dst_addr, size_t size, KPageTable& src_page_table,
VAddr src_addr) {
KScopedLightLock lk(m_general_lock);
const size_t num_pages{size / PageSize};
// Check that the memory is mapped in the destination process.
size_t num_allocator_blocks;
R_TRY(CheckMemoryState(&num_allocator_blocks, dst_addr, size, KMemoryState::All,
KMemoryState::SharedCode, KMemoryPermission::UserReadWrite,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None));
// Check that the memory is mapped in the source process.
R_TRY(src_page_table.CheckMemoryState(src_addr, size, KMemoryState::FlagCanMapProcess,
KMemoryState::FlagCanMapProcess, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap));
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), dst_addr, num_pages,
KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
m_system.InvalidateCpuInstructionCaches();
R_SUCCEED();
}
Result KPageTable::MapPhysicalMemory(VAddr address, size_t size) {
// Lock the physical memory lock.
KScopedLightLock map_phys_mem_lk(m_map_physical_memory_lock);
// Calculate the last address for convenience.
const VAddr last_address = address + size - 1;
// Define iteration variables.
VAddr cur_address;
size_t mapped_size;
// The entire mapping process can be retried.
while (true) {
// Check if the memory is already mapped.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Iterate over the memory.
cur_address = address;
mapped_size = 0;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
if (info.GetState() != KMemoryState::Free) {
mapped_size += (last_address + 1 - cur_address);
}
break;
}
// Track the memory if it's mapped.
if (info.GetState() != KMemoryState::Free) {
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If the size mapped is the size requested, we've nothing to do.
R_SUCCEED_IF(size == mapped_size);
}
// Allocate and map the memory.
{
// Reserve the memory from the process resource limit.
KScopedResourceReservation memory_reservation(
m_system.Kernel().CurrentProcess()->GetResourceLimit(),
LimitableResource::PhysicalMemory, size - mapped_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate pages for the new memory.
KPageGroup pg;
R_TRY(m_system.Kernel().MemoryManager().AllocateAndOpenForProcess(
&pg, (size - mapped_size) / PageSize,
KMemoryManager::EncodeOption(m_memory_pool, m_allocation_option), 0, 0));
// Map the memory.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
size_t num_allocator_blocks = 0;
// Verify that nobody has mapped memory since we first checked.
{
// Iterate over the memory.
size_t checked_mapped_size = 0;
cur_address = address;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
const bool is_free = info.GetState() == KMemoryState::Free;
if (is_free) {
if (info.GetAddress() < address) {
++num_allocator_blocks;
}
if (last_address < info.GetLastAddress()) {
++num_allocator_blocks;
}
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
if (!is_free) {
checked_mapped_size += (last_address + 1 - cur_address);
}
break;
}
// Track the memory if it's mapped.
if (!is_free) {
checked_mapped_size += VAddr(info.GetEndAddress()) - cur_address;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If the size now isn't what it was before, somebody mapped or unmapped
// concurrently. If this happened, retry.
if (mapped_size != checked_mapped_size) {
continue;
}
}
// Create an update allocator.
ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager,
num_allocator_blocks);
R_TRY(allocator_result);
// Reset the current tracking address, and make sure we clean up on failure.
cur_address = address;
auto unmap_guard = detail::ScopeExit([&] {
if (cur_address > address) {
const VAddr last_unmap_address = cur_address - 1;
// Iterate, unmapping the pages.
cur_address = address;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If the memory state is free, we mapped it and need to unmap it.
if (info.GetState() == KMemoryState::Free) {
// Determine the range to unmap.
const size_t cur_pages =
std::min(VAddr(info.GetEndAddress()) - cur_address,
last_unmap_address + 1 - cur_address) /
PageSize;
// Unmap.
ASSERT(Operate(cur_address, cur_pages, KMemoryPermission::None,
OperationType::Unmap)
.IsSuccess());
}
// Check if we're done.
if (last_unmap_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
}
});
// Iterate over the memory.
auto pg_it = pg.Nodes().begin();
PAddr pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If it's unmapped, we need to map it.
if (info.GetState() == KMemoryState::Free) {
// Determine the range to map.
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
last_address + 1 - cur_address) /
PageSize;
// While we have pages to map, map them.
while (map_pages > 0) {
// Check if we're at the end of the physical block.
if (pg_pages == 0) {
// Ensure there are more pages to map.
ASSERT(pg_it != pg.Nodes().end());
// Advance our physical block.
++pg_it;
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
// Map whatever we can.
const size_t cur_pages = std::min(pg_pages, map_pages);
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::UserReadWrite,
OperationType::Map, pg_phys_addr));
// Advance.
cur_address += cur_pages * PageSize;
map_pages -= cur_pages;
pg_phys_addr += cur_pages * PageSize;
pg_pages -= cur_pages;
}
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// We succeeded, so commit the memory reservation.
memory_reservation.Commit();
// Increase our tracked mapped size.
m_mapped_physical_memory_size += (size - mapped_size);
// Update the relevant memory blocks.
m_memory_block_manager.UpdateIfMatch(
std::addressof(allocator), address, size / PageSize, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None);
// Cancel our guard.
unmap_guard.Cancel();
R_SUCCEED();
}
}
}
}
Result KPageTable::UnmapPhysicalMemory(VAddr address, size_t size) {
// Lock the physical memory lock.
KScopedLightLock map_phys_mem_lk(m_map_physical_memory_lock);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Calculate the last address for convenience.
const VAddr last_address = address + size - 1;
// Define iteration variables.
VAddr cur_address = 0;
size_t mapped_size = 0;
size_t num_allocator_blocks = 0;
// Check if the memory is mapped.
{
// Iterate over the memory.
cur_address = address;
mapped_size = 0;
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// Verify the memory's state.
const bool is_normal = info.GetState() == KMemoryState::Normal &&
info.GetAttribute() == KMemoryAttribute::None;
const bool is_free = info.GetState() == KMemoryState::Free;
R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
if (is_normal) {
R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
if (info.GetAddress() < address) {
++num_allocator_blocks;
}
if (last_address < info.GetLastAddress()) {
++num_allocator_blocks;
}
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
if (is_normal) {
mapped_size += (last_address + 1 - cur_address);
}
break;
}
// Track the memory if it's mapped.
if (is_normal) {
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// If there's nothing mapped, we've nothing to do.
R_SUCCEED_IF(mapped_size == 0);
}
// Make a page group for the unmap region.
KPageGroup pg;
{
auto& impl = this->PageTableImpl();
// Begin traversal.
Common::PageTable::TraversalContext context;
Common::PageTable::TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
bool cur_valid = false;
Common::PageTable::TraversalEntry next_entry;
bool next_valid = false;
size_t tot_size = 0;
cur_address = address;
next_valid = impl.BeginTraversal(next_entry, context, cur_address);
next_entry.block_size =
(next_entry.block_size - (next_entry.phys_addr & (next_entry.block_size - 1)));
// Iterate, building the group.
while (true) {
if ((!next_valid && !cur_valid) ||
(next_valid && cur_valid &&
next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
cur_entry.block_size += next_entry.block_size;
} else {
if (cur_valid) {
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
R_TRY(pg.AddBlock(cur_entry.phys_addr, cur_entry.block_size / PageSize));
}
// Update tracking variables.
tot_size += cur_entry.block_size;
cur_entry = next_entry;
cur_valid = next_valid;
}
if (cur_entry.block_size + tot_size >= size) {
break;
}
next_valid = impl.ContinueTraversal(next_entry, context);
}
// Add the last block.
if (cur_valid) {
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
R_TRY(pg.AddBlock(cur_entry.phys_addr, (size - tot_size) / PageSize));
}
}
ASSERT(pg.GetNumPages() == mapped_size / PageSize);
// Create an update allocator.
ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Reset the current tracking address, and make sure we clean up on failure.
cur_address = address;
auto remap_guard = detail::ScopeExit([&] {
if (cur_address > address) {
const VAddr last_map_address = cur_address - 1;
cur_address = address;
// Iterate over the memory we unmapped.
auto it = m_memory_block_manager.FindIterator(cur_address);
auto pg_it = pg.Nodes().begin();
PAddr pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
while (true) {
// Get the memory info for the pages we unmapped, convert to property.
const KMemoryInfo info = it->GetMemoryInfo();
// If the memory is normal, we unmapped it and need to re-map it.
if (info.GetState() == KMemoryState::Normal) {
// Determine the range to map.
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
last_map_address + 1 - cur_address) /
PageSize;
// While we have pages to map, map them.
while (map_pages > 0) {
// Check if we're at the end of the physical block.
if (pg_pages == 0) {
// Ensure there are more pages to map.
ASSERT(pg_it != pg.Nodes().end());
// Advance our physical block.
++pg_it;
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
// Map whatever we can.
const size_t cur_pages = std::min(pg_pages, map_pages);
ASSERT(this->Operate(cur_address, cur_pages, info.GetPermission(),
OperationType::Map, pg_phys_addr) == ResultSuccess);
// Advance.
cur_address += cur_pages * PageSize;
map_pages -= cur_pages;
pg_phys_addr += cur_pages * PageSize;
pg_pages -= cur_pages;
}
}
// Check if we're done.
if (last_map_address <= info.GetLastAddress()) {
break;
}
// Advance.
++it;
}
}
});
// Iterate over the memory, unmapping as we go.
auto it = m_memory_block_manager.FindIterator(cur_address);
while (true) {
// Check that the iterator is valid.
ASSERT(it != m_memory_block_manager.end());
// Get the memory info.
const KMemoryInfo info = it->GetMemoryInfo();
// If the memory state is normal, we need to unmap it.
if (info.GetState() == KMemoryState::Normal) {
// Determine the range to unmap.
const size_t cur_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
last_address + 1 - cur_address) /
PageSize;
// Unmap.
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::None, OperationType::Unmap));
}
// Check if we're done.
if (last_address <= info.GetLastAddress()) {
break;
}
// Advance.
cur_address = info.GetEndAddress();
++it;
}
// Release the memory resource.
m_mapped_physical_memory_size -= mapped_size;
auto process{m_system.Kernel().CurrentProcess()};
process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
// Update memory blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, size / PageSize,
KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
// TODO(bunnei): This is a workaround until the next set of changes, where we add reference
// counting for mapped pages. Until then, we must manually close the reference to the page
// group.
m_system.Kernel().MemoryManager().Close(pg);
// We succeeded.
remap_guard.Cancel();
R_SUCCEED();
}
Result KPageTable::MapMemory(VAddr dst_address, VAddr src_address, size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that the source address's state is valid.
KMemoryState src_state;
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr,
std::addressof(num_src_allocator_blocks), src_address, size,
KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None));
// Validate that the dst address's state is valid.
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_dst_allocator_blocks), dst_address, size,
KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
// Map the memory.
KPageGroup page_linked_list;
const size_t num_pages{size / PageSize};
const KMemoryPermission new_src_perm = static_cast<KMemoryPermission>(
KMemoryPermission::KernelRead | KMemoryPermission::NotMapped);
const KMemoryAttribute new_src_attr = KMemoryAttribute::Locked;
AddRegionToPages(src_address, num_pages, page_linked_list);
{
// Reprotect the source as kernel-read/not mapped.
auto block_guard = detail::ScopeExit([&] {
Operate(src_address, num_pages, KMemoryPermission::UserReadWrite,
OperationType::ChangePermissions);
});
R_TRY(Operate(src_address, num_pages, new_src_perm, OperationType::ChangePermissions));
R_TRY(MapPages(dst_address, page_linked_list, KMemoryPermission::UserReadWrite));
block_guard.Cancel();
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state,
new_src_perm, new_src_attr,
KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
m_memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages,
KMemoryState::Stack, KMemoryPermission::UserReadWrite,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::UnmapMemory(VAddr dst_address, VAddr src_address, size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that the source address's state is valid.
KMemoryState src_state;
size_t num_src_allocator_blocks;
R_TRY(this->CheckMemoryState(
std::addressof(src_state), nullptr, nullptr, std::addressof(num_src_allocator_blocks),
src_address, size, KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
KMemoryPermission::All, KMemoryPermission::NotMapped | KMemoryPermission::KernelRead,
KMemoryAttribute::All, KMemoryAttribute::Locked));
// Validate that the dst address's state is valid.
KMemoryPermission dst_perm;
size_t num_dst_allocator_blocks;
R_TRY(this->CheckMemoryState(
nullptr, std::addressof(dst_perm), nullptr, std::addressof(num_dst_allocator_blocks),
dst_address, size, KMemoryState::All, KMemoryState::Stack, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None));
// Create an update allocator for the source.
Result src_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
m_memory_block_slab_manager,
num_src_allocator_blocks);
R_TRY(src_allocator_result);
// Create an update allocator for the destination.
Result dst_allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
m_memory_block_slab_manager,
num_dst_allocator_blocks);
R_TRY(dst_allocator_result);
KPageGroup src_pages;
KPageGroup dst_pages;
const size_t num_pages{size / PageSize};
AddRegionToPages(src_address, num_pages, src_pages);
AddRegionToPages(dst_address, num_pages, dst_pages);
R_UNLESS(dst_pages.IsEqual(src_pages), ResultInvalidMemoryRegion);
{
auto block_guard = detail::ScopeExit([&] { MapPages(dst_address, dst_pages, dst_perm); });
R_TRY(Operate(dst_address, num_pages, KMemoryPermission::None, OperationType::Unmap));
R_TRY(Operate(src_address, num_pages, KMemoryPermission::UserReadWrite,
OperationType::ChangePermissions));
block_guard.Cancel();
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Locked);
m_memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages,
KMemoryState::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTable::MapPages(VAddr addr, const KPageGroup& page_linked_list,
KMemoryPermission perm) {
ASSERT(this->IsLockedByCurrentThread());
VAddr cur_addr{addr};
for (const auto& node : page_linked_list.Nodes()) {
if (const auto result{
Operate(cur_addr, node.GetNumPages(), perm, OperationType::Map, node.GetAddress())};
result.IsError()) {
const size_t num_pages{(addr - cur_addr) / PageSize};
ASSERT(Operate(addr, num_pages, KMemoryPermission::None, OperationType::Unmap)
.IsSuccess());
R_RETURN(result);
}
cur_addr += node.GetNumPages() * PageSize;
}
R_SUCCEED();
}
Result KPageTable::MapPages(VAddr address, KPageGroup& page_linked_list, KMemoryState state,
KMemoryPermission perm) {
// Check that the map is in range.
const size_t num_pages{page_linked_list.GetNumPages()};
const size_t size{num_pages * PageSize};
R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
R_TRY(this->CheckMemoryState(address, size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
// Map the pages.
R_TRY(MapPages(address, page_linked_list, perm));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::MapPages(VAddr* out_addr, size_t num_pages, size_t alignment, PAddr phys_addr,
bool is_pa_valid, VAddr region_start, size_t region_num_pages,
KMemoryState state, KMemoryPermission perm) {
ASSERT(Common::IsAligned(alignment, PageSize) && alignment >= PageSize);
// Ensure this is a valid map request.
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
ResultInvalidCurrentMemory);
R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Find a random address to map at.
VAddr addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
this->GetNumGuardPages());
R_UNLESS(addr != 0, ResultOutOfMemory);
ASSERT(Common::IsAligned(addr, alignment));
ASSERT(this->CanContain(addr, num_pages * PageSize, state));
ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None)
.IsSuccess());
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
// Perform mapping operation.
if (is_pa_valid) {
R_TRY(this->Operate(addr, num_pages, perm, OperationType::Map, phys_addr));
} else {
UNIMPLEMENTED();
}
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
// We successfully mapped the pages.
*out_addr = addr;
R_SUCCEED();
}
Result KPageTable::UnmapPages(VAddr addr, const KPageGroup& page_linked_list) {
ASSERT(this->IsLockedByCurrentThread());
VAddr cur_addr{addr};
for (const auto& node : page_linked_list.Nodes()) {
if (const auto result{Operate(cur_addr, node.GetNumPages(), KMemoryPermission::None,
OperationType::Unmap)};
result.IsError()) {
R_RETURN(result);
}
cur_addr += node.GetNumPages() * PageSize;
}
R_SUCCEED();
}
Result KPageTable::UnmapPages(VAddr address, KPageGroup& page_linked_list, KMemoryState state) {
// Check that the unmap is in range.
const size_t num_pages{page_linked_list.GetNumPages()};
const size_t size{num_pages * PageSize};
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, state, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Perform the unmap.
R_TRY(UnmapPages(address, page_linked_list));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTable::UnmapPages(VAddr address, size_t num_pages, KMemoryState state) {
// Check that the unmap is in range.
const size_t size = num_pages * PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks{};
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
KMemoryState::All, state, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Perform the unmap.
R_TRY(Operate(address, num_pages, KMemoryPermission::None, OperationType::Unmap));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
KMemoryPermission::None, KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Normal);
R_SUCCEED();
}
Result KPageTable::MakeAndOpenPageGroup(KPageGroup* out, VAddr address, size_t num_pages,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) {
// Ensure that the page group isn't null.
ASSERT(out != nullptr);
// Make sure that the region we're mapping is valid for the table.
const size_t size = num_pages * PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check if state allows us to create the group.
R_TRY(this->CheckMemoryState(address, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Create a new page group for the region.
R_TRY(this->MakePageGroup(*out, address, num_pages));
R_SUCCEED();
}
Result KPageTable::SetProcessMemoryPermission(VAddr addr, size_t size,
Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
KMemoryPermission old_perm;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
std::addressof(num_allocator_blocks), addr, size,
KMemoryState::FlagCode, KMemoryState::FlagCode,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::None));
// Determine new perm/state.
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
KMemoryState new_state = old_state;
const bool is_w = (new_perm & KMemoryPermission::UserWrite) == KMemoryPermission::UserWrite;
const bool is_x = (new_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
const bool was_x =
(old_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
ASSERT(!(is_w && is_x));
if (is_w) {
switch (old_state) {
case KMemoryState::Code:
new_state = KMemoryState::CodeData;
break;
case KMemoryState::AliasCode:
new_state = KMemoryState::AliasCodeData;
break;
default:
ASSERT(false);
}
}
// Succeed if there's nothing to do.
R_SUCCEED_IF(old_perm == new_perm && old_state == new_state);
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Perform mapping operation.
const auto operation =
was_x ? OperationType::ChangePermissionsAndRefresh : OperationType::ChangePermissions;
R_TRY(Operate(addr, num_pages, new_perm, operation));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, new_state, new_perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
// Ensure cache coherency, if we're setting pages as executable.
if (is_x) {
m_system.InvalidateCpuInstructionCacheRange(addr, size);
}
R_SUCCEED();
}
KMemoryInfo KPageTable::QueryInfoImpl(VAddr addr) {
KScopedLightLock lk(m_general_lock);
return m_memory_block_manager.FindBlock(addr)->GetMemoryInfo();
}
KMemoryInfo KPageTable::QueryInfo(VAddr addr) {
if (!Contains(addr, 1)) {
return {
.m_address = m_address_space_end,
.m_size = 0 - m_address_space_end,
.m_state = static_cast<KMemoryState>(Svc::MemoryState::Inaccessible),
.m_device_disable_merge_left_count = 0,
.m_device_disable_merge_right_count = 0,
.m_ipc_lock_count = 0,
.m_device_use_count = 0,
.m_ipc_disable_merge_count = 0,
.m_permission = KMemoryPermission::None,
.m_attribute = KMemoryAttribute::None,
.m_original_permission = KMemoryPermission::None,
.m_disable_merge_attribute = KMemoryBlockDisableMergeAttribute::None,
};
}
return QueryInfoImpl(addr);
}
Result KPageTable::SetMemoryPermission(VAddr addr, size_t size, Svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory permission.
KMemoryState old_state;
KMemoryPermission old_perm;
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
std::addressof(num_allocator_blocks), addr, size,
KMemoryState::FlagCanReprotect, KMemoryState::FlagCanReprotect,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::None));
// Determine new perm.
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
R_SUCCEED_IF(old_perm == new_perm);
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Perform mapping operation.
R_TRY(Operate(addr, num_pages, new_perm, OperationType::ChangePermissions));
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::SetMemoryAttribute(VAddr addr, size_t size, u32 mask, u32 attr) {
const size_t num_pages = size / PageSize;
ASSERT((static_cast<KMemoryAttribute>(mask) | KMemoryAttribute::SetMask) ==
KMemoryAttribute::SetMask);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Verify we can change the memory attribute.
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
size_t num_allocator_blocks;
constexpr auto AttributeTestMask =
~(KMemoryAttribute::SetMask | KMemoryAttribute::DeviceShared);
R_TRY(this->CheckMemoryState(
std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr),
std::addressof(num_allocator_blocks), addr, size, KMemoryState::FlagCanChangeAttribute,
KMemoryState::FlagCanChangeAttribute, KMemoryPermission::None, KMemoryPermission::None,
AttributeTestMask, KMemoryAttribute::None, ~AttributeTestMask));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Determine the new attribute.
const KMemoryAttribute new_attr =
static_cast<KMemoryAttribute>(((old_attr & static_cast<KMemoryAttribute>(~mask)) |
static_cast<KMemoryAttribute>(attr & mask)));
// Perform operation.
this->Operate(addr, num_pages, old_perm, OperationType::ChangePermissionsAndRefresh);
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, old_perm,
new_attr, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::SetMaxHeapSize(size_t size) {
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Only process page tables are allowed to set heap size.
ASSERT(!this->IsKernel());
m_max_heap_size = size;
R_SUCCEED();
}
Result KPageTable::SetHeapSize(VAddr* out, size_t size) {
// Lock the physical memory mutex.
KScopedLightLock map_phys_mem_lk(m_map_physical_memory_lock);
// Try to perform a reduction in heap, instead of an extension.
VAddr cur_address{};
size_t allocation_size{};
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Validate that setting heap size is possible at all.
R_UNLESS(!m_is_kernel, ResultOutOfMemory);
R_UNLESS(size <= static_cast<size_t>(m_heap_region_end - m_heap_region_start),
ResultOutOfMemory);
R_UNLESS(size <= m_max_heap_size, ResultOutOfMemory);
if (size < GetHeapSize()) {
// The size being requested is less than the current size, so we need to free the end of
// the heap.
// Validate memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks),
m_heap_region_start + size, GetHeapSize() - size,
KMemoryState::All, KMemoryState::Normal,
KMemoryPermission::All, KMemoryPermission::UserReadWrite,
KMemoryAttribute::All, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager,
num_allocator_blocks);
R_TRY(allocator_result);
// Unmap the end of the heap.
const auto num_pages = (GetHeapSize() - size) / PageSize;
R_TRY(Operate(m_heap_region_start + size, num_pages, KMemoryPermission::None,
OperationType::Unmap));
// Release the memory from the resource limit.
m_system.Kernel().CurrentProcess()->GetResourceLimit()->Release(
LimitableResource::PhysicalMemory, num_pages * PageSize);
// Apply the memory block update.
m_memory_block_manager.Update(std::addressof(allocator), m_heap_region_start + size,
num_pages, KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None,
KMemoryBlockDisableMergeAttribute::None,
size == 0 ? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None);
// Update the current heap end.
m_current_heap_end = m_heap_region_start + size;
// Set the output.
*out = m_heap_region_start;
R_SUCCEED();
} else if (size == GetHeapSize()) {
// The size requested is exactly the current size.
*out = m_heap_region_start;
R_SUCCEED();
} else {
// We have to allocate memory. Determine how much to allocate and where while the table
// is locked.
cur_address = m_current_heap_end;
allocation_size = size - GetHeapSize();
}
}
// Reserve memory for the heap extension.
KScopedResourceReservation memory_reservation(
m_system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory,
allocation_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate pages for the heap extension.
KPageGroup pg;
R_TRY(m_system.Kernel().MemoryManager().AllocateAndOpen(
&pg, allocation_size / PageSize,
KMemoryManager::EncodeOption(m_memory_pool, m_allocation_option)));
// Clear all the newly allocated pages.
for (const auto& it : pg.Nodes()) {
std::memset(m_system.DeviceMemory().GetPointer<void>(it.GetAddress()), m_heap_fill_value,
it.GetSize());
}
// Map the pages.
{
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Ensure that the heap hasn't changed since we began executing.
ASSERT(cur_address == m_current_heap_end);
// Check the memory state.
size_t num_allocator_blocks{};
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), m_current_heap_end,
allocation_size, KMemoryState::All, KMemoryState::Free,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::None, KMemoryAttribute::None));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(
std::addressof(allocator_result), m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Map the pages.
const auto num_pages = allocation_size / PageSize;
R_TRY(Operate(m_current_heap_end, num_pages, pg, OperationType::MapGroup));
// Clear all the newly allocated pages.
for (size_t cur_page = 0; cur_page < num_pages; ++cur_page) {
std::memset(m_system.Memory().GetPointer(m_current_heap_end + (cur_page * PageSize)), 0,
PageSize);
}
// We succeeded, so commit our memory reservation.
memory_reservation.Commit();
// Apply the memory block update.
m_memory_block_manager.Update(
std::addressof(allocator), m_current_heap_end, num_pages, KMemoryState::Normal,
KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
m_heap_region_start == m_current_heap_end ? KMemoryBlockDisableMergeAttribute::Normal
: KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::None);
// Update the current heap end.
m_current_heap_end = m_heap_region_start + size;
// Set the output.
*out = m_heap_region_start;
R_SUCCEED();
}
}
ResultVal<VAddr> KPageTable::AllocateAndMapMemory(size_t needed_num_pages, size_t align,
bool is_map_only, VAddr region_start,
size_t region_num_pages, KMemoryState state,
KMemoryPermission perm, PAddr map_addr) {
KScopedLightLock lk(m_general_lock);
R_UNLESS(CanContain(region_start, region_num_pages * PageSize, state),
ResultInvalidCurrentMemory);
R_UNLESS(region_num_pages > needed_num_pages, ResultOutOfMemory);
const VAddr addr{
AllocateVirtualMemory(region_start, region_num_pages, needed_num_pages, align)};
R_UNLESS(addr, ResultOutOfMemory);
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager);
if (is_map_only) {
R_TRY(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr));
} else {
KPageGroup page_group;
R_TRY(m_system.Kernel().MemoryManager().AllocateAndOpenForProcess(
&page_group, needed_num_pages,
KMemoryManager::EncodeOption(m_memory_pool, m_allocation_option), 0, 0));
R_TRY(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup));
}
// Update the blocks.
m_memory_block_manager.Update(std::addressof(allocator), addr, needed_num_pages, state, perm,
KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
KMemoryBlockDisableMergeAttribute::None);
return addr;
}
Result KPageTable::LockForMapDeviceAddressSpace(VAddr address, size_t size, KMemoryPermission perm,
bool is_aligned) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
const auto test_state =
(is_aligned ? KMemoryState::FlagCanAlignedDeviceMap : KMemoryState::FlagCanDeviceMap);
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size, test_state,
test_state, perm, perm,
KMemoryAttribute::IpcLocked | KMemoryAttribute::Locked,
KMemoryAttribute::None, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
&KMemoryBlock::ShareToDevice, KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTable::LockForUnmapDeviceAddressSpace(VAddr address, size_t size) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_allocator_blocks), address, size,
KMemoryState::FlagReferenceCounted | KMemoryState::FlagCanDeviceMap,
KMemoryState::FlagReferenceCounted | KMemoryState::FlagCanDeviceMap,
KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
const KMemoryBlockManager::MemoryBlockLockFunction lock_func =
m_enable_device_address_space_merge
? &KMemoryBlock::UpdateDeviceDisableMergeStateForShare
: &KMemoryBlock::UpdateDeviceDisableMergeStateForShareRight;
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages, lock_func,
KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTable::UnlockForDeviceAddressSpace(VAddr address, size_t size) {
// Lightly validate the range before doing anything else.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the memory state.
size_t num_allocator_blocks;
R_TRY(this->CheckMemoryStateContiguous(
std::addressof(num_allocator_blocks), address, size, KMemoryState::FlagCanDeviceMap,
KMemoryState::FlagCanDeviceMap, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update the memory blocks.
m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
&KMemoryBlock::UnshareToDevice, KMemoryPermission::None);
R_SUCCEED();
}
Result KPageTable::LockForCodeMemory(KPageGroup* out, VAddr addr, size_t size) {
R_RETURN(this->LockMemoryAndOpen(
2022-06-09 18:33:28 +02:00
out, nullptr, addr, size, KMemoryState::FlagCanCodeMemory, KMemoryState::FlagCanCodeMemory,
KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None,
static_cast<KMemoryPermission>(KMemoryPermission::NotMapped |
KMemoryPermission::KernelReadWrite),
KMemoryAttribute::Locked));
}
Result KPageTable::UnlockForCodeMemory(VAddr addr, size_t size, const KPageGroup& pg) {
R_RETURN(this->UnlockMemory(
2022-06-09 18:33:28 +02:00
addr, size, KMemoryState::FlagCanCodeMemory, KMemoryState::FlagCanCodeMemory,
KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite, KMemoryAttribute::Locked, &pg));
}
bool KPageTable::IsRegionContiguous(VAddr addr, u64 size) const {
auto start_ptr = m_system.DeviceMemory().GetPointer<u8>(addr);
for (u64 offset{}; offset < size; offset += PageSize) {
if (start_ptr != m_system.DeviceMemory().GetPointer<u8>(addr + offset)) {
return false;
}
start_ptr += PageSize;
}
return true;
}
void KPageTable::AddRegionToPages(VAddr start, size_t num_pages, KPageGroup& page_linked_list) {
VAddr addr{start};
while (addr < start + (num_pages * PageSize)) {
const PAddr paddr{GetPhysicalAddr(addr)};
ASSERT(paddr != 0);
page_linked_list.AddBlock(paddr, 1);
addr += PageSize;
}
}
VAddr KPageTable::AllocateVirtualMemory(VAddr start, size_t region_num_pages, u64 needed_num_pages,
size_t align) {
if (m_enable_aslr) {
UNIMPLEMENTED();
}
return m_memory_block_manager.FindFreeArea(start, region_num_pages, needed_num_pages, align, 0,
IsKernel() ? 1 : 4);
}
Result KPageTable::Operate(VAddr addr, size_t num_pages, const KPageGroup& page_group,
OperationType operation) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(Common::IsAligned(addr, PageSize));
ASSERT(num_pages > 0);
ASSERT(num_pages == page_group.GetNumPages());
for (const auto& node : page_group.Nodes()) {
const size_t size{node.GetNumPages() * PageSize};
switch (operation) {
case OperationType::MapGroup:
m_system.Memory().MapMemoryRegion(*m_page_table_impl, addr, size, node.GetAddress());
break;
default:
ASSERT(false);
}
addr += size;
}
R_SUCCEED();
}
Result KPageTable::Operate(VAddr addr, size_t num_pages, KMemoryPermission perm,
OperationType operation, PAddr map_addr) {
ASSERT(this->IsLockedByCurrentThread());
ASSERT(num_pages > 0);
ASSERT(Common::IsAligned(addr, PageSize));
ASSERT(ContainsPages(addr, num_pages));
switch (operation) {
case OperationType::Unmap:
m_system.Memory().UnmapRegion(*m_page_table_impl, addr, num_pages * PageSize);
break;
case OperationType::Map: {
ASSERT(map_addr);
ASSERT(Common::IsAligned(map_addr, PageSize));
m_system.Memory().MapMemoryRegion(*m_page_table_impl, addr, num_pages * PageSize, map_addr);
break;
}
case OperationType::ChangePermissions:
case OperationType::ChangePermissionsAndRefresh:
break;
default:
ASSERT(false);
}
R_SUCCEED();
}
VAddr KPageTable::GetRegionAddress(KMemoryState state) const {
switch (state) {
case KMemoryState::Free:
case KMemoryState::Kernel:
return m_address_space_start;
case KMemoryState::Normal:
return m_heap_region_start;
case KMemoryState::Ipc:
case KMemoryState::NonSecureIpc:
case KMemoryState::NonDeviceIpc:
return m_alias_region_start;
case KMemoryState::Stack:
return m_stack_region_start;
case KMemoryState::Static:
case KMemoryState::ThreadLocal:
return m_kernel_map_region_start;
case KMemoryState::Io:
case KMemoryState::Shared:
case KMemoryState::AliasCode:
case KMemoryState::AliasCodeData:
case KMemoryState::Transfered:
case KMemoryState::SharedTransfered:
case KMemoryState::SharedCode:
case KMemoryState::GeneratedCode:
case KMemoryState::CodeOut:
case KMemoryState::Coverage:
return m_alias_code_region_start;
case KMemoryState::Code:
case KMemoryState::CodeData:
return m_code_region_start;
default:
UNREACHABLE();
}
}
size_t KPageTable::GetRegionSize(KMemoryState state) const {
switch (state) {
case KMemoryState::Free:
case KMemoryState::Kernel:
return m_address_space_end - m_address_space_start;
case KMemoryState::Normal:
return m_heap_region_end - m_heap_region_start;
case KMemoryState::Ipc:
case KMemoryState::NonSecureIpc:
case KMemoryState::NonDeviceIpc:
return m_alias_region_end - m_alias_region_start;
case KMemoryState::Stack:
return m_stack_region_end - m_stack_region_start;
case KMemoryState::Static:
case KMemoryState::ThreadLocal:
return m_kernel_map_region_end - m_kernel_map_region_start;
case KMemoryState::Io:
case KMemoryState::Shared:
case KMemoryState::AliasCode:
case KMemoryState::AliasCodeData:
case KMemoryState::Transfered:
case KMemoryState::SharedTransfered:
case KMemoryState::SharedCode:
case KMemoryState::GeneratedCode:
case KMemoryState::CodeOut:
case KMemoryState::Coverage:
return m_alias_code_region_end - m_alias_code_region_start;
case KMemoryState::Code:
case KMemoryState::CodeData:
return m_code_region_end - m_code_region_start;
default:
UNREACHABLE();
}
}
bool KPageTable::CanContain(VAddr addr, size_t size, KMemoryState state) const {
const VAddr end = addr + size;
const VAddr last = end - 1;
const VAddr region_start = this->GetRegionAddress(state);
const size_t region_size = this->GetRegionSize(state);
const bool is_in_region =
region_start <= addr && addr < end && last <= region_start + region_size - 1;
const bool is_in_heap = !(end <= m_heap_region_start || m_heap_region_end <= addr ||
m_heap_region_start == m_heap_region_end);
const bool is_in_alias = !(end <= m_alias_region_start || m_alias_region_end <= addr ||
m_alias_region_start == m_alias_region_end);
switch (state) {
case KMemoryState::Free:
case KMemoryState::Kernel:
return is_in_region;
case KMemoryState::Io:
case KMemoryState::Static:
case KMemoryState::Code:
case KMemoryState::CodeData:
case KMemoryState::Shared:
case KMemoryState::AliasCode:
case KMemoryState::AliasCodeData:
case KMemoryState::Stack:
case KMemoryState::ThreadLocal:
case KMemoryState::Transfered:
case KMemoryState::SharedTransfered:
case KMemoryState::SharedCode:
case KMemoryState::GeneratedCode:
case KMemoryState::CodeOut:
case KMemoryState::Coverage:
return is_in_region && !is_in_heap && !is_in_alias;
case KMemoryState::Normal:
ASSERT(is_in_heap);
return is_in_region && !is_in_alias;
case KMemoryState::Ipc:
case KMemoryState::NonSecureIpc:
case KMemoryState::NonDeviceIpc:
ASSERT(is_in_alias);
return is_in_region && !is_in_heap;
default:
return false;
}
}
Result KPageTable::CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
// Validate the states match expectation.
R_UNLESS((info.m_state & state_mask) == state, ResultInvalidCurrentMemory);
R_UNLESS((info.m_permission & perm_mask) == perm, ResultInvalidCurrentMemory);
R_UNLESS((info.m_attribute & attr_mask) == attr, ResultInvalidCurrentMemory);
R_SUCCEED();
}
Result KPageTable::CheckMemoryStateContiguous(size_t* out_blocks_needed, VAddr addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
ASSERT(this->IsLockedByCurrentThread());
// Get information about the first block.
const VAddr last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
KMemoryInfo info = it->GetMemoryInfo();
// If the start address isn't aligned, we need a block.
const size_t blocks_for_start_align =
(Common::AlignDown(addr, PageSize) != info.GetAddress()) ? 1 : 0;
while (true) {
// Validate against the provided masks.
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
// Break once we're done.
if (last_addr <= info.GetLastAddress()) {
break;
}
// Advance our iterator.
it++;
ASSERT(it != m_memory_block_manager.cend());
info = it->GetMemoryInfo();
}
// If the end address isn't aligned, we need a block.
const size_t blocks_for_end_align =
(Common::AlignUp(addr + size, PageSize) != info.GetEndAddress()) ? 1 : 0;
if (out_blocks_needed != nullptr) {
*out_blocks_needed = blocks_for_start_align + blocks_for_end_align;
}
R_SUCCEED();
}
Result KPageTable::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
VAddr addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryAttribute ignore_attr) const {
ASSERT(this->IsLockedByCurrentThread());
// Get information about the first block.
const VAddr last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
KMemoryInfo info = it->GetMemoryInfo();
// If the start address isn't aligned, we need a block.
const size_t blocks_for_start_align =
(Common::AlignDown(addr, PageSize) != info.GetAddress()) ? 1 : 0;
// Validate all blocks in the range have correct state.
const KMemoryState first_state = info.m_state;
const KMemoryPermission first_perm = info.m_permission;
const KMemoryAttribute first_attr = info.m_attribute;
while (true) {
// Validate the current block.
R_UNLESS(info.m_state == first_state, ResultInvalidCurrentMemory);
R_UNLESS(info.m_permission == first_perm, ResultInvalidCurrentMemory);
R_UNLESS((info.m_attribute | ignore_attr) == (first_attr | ignore_attr),
ResultInvalidCurrentMemory);
// Validate against the provided masks.
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
// Break once we're done.
if (last_addr <= info.GetLastAddress()) {
break;
}
// Advance our iterator.
it++;
ASSERT(it != m_memory_block_manager.cend());
info = it->GetMemoryInfo();
}
// If the end address isn't aligned, we need a block.
const size_t blocks_for_end_align =
(Common::AlignUp(addr + size, PageSize) != info.GetEndAddress()) ? 1 : 0;
// Write output state.
if (out_state != nullptr) {
*out_state = first_state;
}
if (out_perm != nullptr) {
*out_perm = first_perm;
}
if (out_attr != nullptr) {
*out_attr = static_cast<KMemoryAttribute>(first_attr & ~ignore_attr);
}
if (out_blocks_needed != nullptr) {
*out_blocks_needed = blocks_for_start_align + blocks_for_end_align;
}
R_SUCCEED();
}
Result KPageTable::LockMemoryAndOpen(KPageGroup* out_pg, PAddr* out_paddr, VAddr addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryPermission new_perm, KMemoryAttribute lock_attr) {
// Validate basic preconditions.
ASSERT((lock_attr & attr) == KMemoryAttribute::None);
ASSERT((lock_attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)) ==
KMemoryAttribute::None);
// Validate the lock request.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check that the output page group is empty, if it exists.
if (out_pg) {
ASSERT(out_pg->GetNumPages() == 0);
}
// Check the state.
KMemoryState old_state{};
KMemoryPermission old_perm{};
KMemoryAttribute old_attr{};
size_t num_allocator_blocks{};
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
std::addressof(old_attr), std::addressof(num_allocator_blocks),
addr, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Get the physical address, if we're supposed to.
if (out_paddr != nullptr) {
ASSERT(this->GetPhysicalAddressLocked(out_paddr, addr));
}
// Make the page group, if we're supposed to.
if (out_pg != nullptr) {
R_TRY(this->MakePageGroup(*out_pg, addr, num_pages));
}
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Decide on new perm and attr.
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
KMemoryAttribute new_attr = static_cast<KMemoryAttribute>(old_attr | lock_attr);
// Update permission, if we need to.
if (new_perm != old_perm) {
R_TRY(Operate(addr, num_pages, new_perm, OperationType::ChangePermissions));
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
new_attr, KMemoryBlockDisableMergeAttribute::Locked,
KMemoryBlockDisableMergeAttribute::None);
R_SUCCEED();
}
Result KPageTable::UnlockMemory(VAddr addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryPermission new_perm,
KMemoryAttribute lock_attr, const KPageGroup* pg) {
// Validate basic preconditions.
ASSERT((attr_mask & lock_attr) == lock_attr);
ASSERT((attr & lock_attr) == lock_attr);
// Validate the unlock request.
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
// Lock the table.
KScopedLightLock lk(m_general_lock);
// Check the state.
KMemoryState old_state{};
KMemoryPermission old_perm{};
KMemoryAttribute old_attr{};
size_t num_allocator_blocks{};
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
std::addressof(old_attr), std::addressof(num_allocator_blocks),
addr, size, state_mask | KMemoryState::FlagReferenceCounted,
state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
attr_mask, attr));
// Check the page group.
if (pg != nullptr) {
2022-06-09 18:33:28 +02:00
R_UNLESS(this->IsValidPageGroup(*pg, addr, num_pages), ResultInvalidMemoryRegion);
}
// Decide on new perm and attr.
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
KMemoryAttribute new_attr = static_cast<KMemoryAttribute>(old_attr & ~lock_attr);
// Create an update allocator.
Result allocator_result{ResultSuccess};
KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
m_memory_block_slab_manager, num_allocator_blocks);
R_TRY(allocator_result);
// Update permission, if we need to.
if (new_perm != old_perm) {
R_TRY(Operate(addr, num_pages, new_perm, OperationType::ChangePermissions));
}
// Apply the memory block updates.
m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
new_attr, KMemoryBlockDisableMergeAttribute::None,
KMemoryBlockDisableMergeAttribute::Locked);
R_SUCCEED();
}
2021-12-06 16:37:09 +01:00
} // namespace Kernel