2015-07-22 02:08:49 +02:00
// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
# include <cstring>
2015-08-12 06:00:44 +02:00
# include "common/assert.h"
# include "common/cpu_detect.h"
# include "common/logging/log.h"
# include "common/memory_util.h"
2015-07-22 02:08:49 +02:00
# include "abi.h"
2015-08-12 06:00:44 +02:00
# include "emitter.h"
2015-07-22 02:08:49 +02:00
# define PRIx64 "llx"
// Minimize the diff against Dolphin
# define DYNA_REC JIT
namespace Gen
{
struct NormalOpDef
{
u8 toRm8 , toRm32 , fromRm8 , fromRm32 , imm8 , imm32 , simm8 , eaximm8 , eaximm32 , ext ;
} ;
// 0xCC is code for invalid combination of immediates
static const NormalOpDef normalops [ 11 ] =
{
{ 0x00 , 0x01 , 0x02 , 0x03 , 0x80 , 0x81 , 0x83 , 0x04 , 0x05 , 0 } , //ADD
{ 0x10 , 0x11 , 0x12 , 0x13 , 0x80 , 0x81 , 0x83 , 0x14 , 0x15 , 2 } , //ADC
{ 0x28 , 0x29 , 0x2A , 0x2B , 0x80 , 0x81 , 0x83 , 0x2C , 0x2D , 5 } , //SUB
{ 0x18 , 0x19 , 0x1A , 0x1B , 0x80 , 0x81 , 0x83 , 0x1C , 0x1D , 3 } , //SBB
{ 0x20 , 0x21 , 0x22 , 0x23 , 0x80 , 0x81 , 0x83 , 0x24 , 0x25 , 4 } , //AND
{ 0x08 , 0x09 , 0x0A , 0x0B , 0x80 , 0x81 , 0x83 , 0x0C , 0x0D , 1 } , //OR
{ 0x30 , 0x31 , 0x32 , 0x33 , 0x80 , 0x81 , 0x83 , 0x34 , 0x35 , 6 } , //XOR
{ 0x88 , 0x89 , 0x8A , 0x8B , 0xC6 , 0xC7 , 0xCC , 0xCC , 0xCC , 0 } , //MOV
{ 0x84 , 0x85 , 0x84 , 0x85 , 0xF6 , 0xF7 , 0xCC , 0xA8 , 0xA9 , 0 } , //TEST (to == from)
{ 0x38 , 0x39 , 0x3A , 0x3B , 0x80 , 0x81 , 0x83 , 0x3C , 0x3D , 7 } , //CMP
{ 0x86 , 0x87 , 0x86 , 0x87 , 0xCC , 0xCC , 0xCC , 0xCC , 0xCC , 7 } , //XCHG
} ;
enum NormalSSEOps
{
sseCMP = 0xC2 ,
sseADD = 0x58 , //ADD
sseSUB = 0x5C , //SUB
sseAND = 0x54 , //AND
sseANDN = 0x55 , //ANDN
sseOR = 0x56 ,
sseXOR = 0x57 ,
sseMUL = 0x59 , //MUL
sseDIV = 0x5E , //DIV
sseMIN = 0x5D , //MIN
sseMAX = 0x5F , //MAX
sseCOMIS = 0x2F , //COMIS
sseUCOMIS = 0x2E , //UCOMIS
sseSQRT = 0x51 , //SQRT
sseRSQRT = 0x52 , //RSQRT (NO DOUBLE PRECISION!!!)
sseRCP = 0x53 , //RCP
sseMOVAPfromRM = 0x28 , //MOVAP from RM
sseMOVAPtoRM = 0x29 , //MOVAP to RM
sseMOVUPfromRM = 0x10 , //MOVUP from RM
sseMOVUPtoRM = 0x11 , //MOVUP to RM
sseMOVLPfromRM = 0x12 ,
sseMOVLPtoRM = 0x13 ,
sseMOVHPfromRM = 0x16 ,
sseMOVHPtoRM = 0x17 ,
sseMOVHLPS = 0x12 ,
sseMOVLHPS = 0x16 ,
sseMOVDQfromRM = 0x6F ,
sseMOVDQtoRM = 0x7F ,
sseMASKMOVDQU = 0xF7 ,
sseLDDQU = 0xF0 ,
sseSHUF = 0xC6 ,
sseMOVNTDQ = 0xE7 ,
sseMOVNTP = 0x2B ,
sseHADD = 0x7C ,
} ;
void XEmitter : : SetCodePtr ( u8 * ptr )
{
code = ptr ;
}
const u8 * XEmitter : : GetCodePtr ( ) const
{
return code ;
}
u8 * XEmitter : : GetWritableCodePtr ( )
{
return code ;
}
void XEmitter : : ReserveCodeSpace ( int bytes )
{
for ( int i = 0 ; i < bytes ; i + + )
* code + + = 0xCC ;
}
const u8 * XEmitter : : AlignCode4 ( )
{
int c = int ( ( u64 ) code & 3 ) ;
if ( c )
ReserveCodeSpace ( 4 - c ) ;
return code ;
}
const u8 * XEmitter : : AlignCode16 ( )
{
int c = int ( ( u64 ) code & 15 ) ;
if ( c )
ReserveCodeSpace ( 16 - c ) ;
return code ;
}
const u8 * XEmitter : : AlignCodePage ( )
{
int c = int ( ( u64 ) code & 4095 ) ;
if ( c )
ReserveCodeSpace ( 4096 - c ) ;
return code ;
}
// This operation modifies flags; check to see the flags are locked.
// If the flags are locked, we should immediately and loudly fail before
// causing a subtle JIT bug.
void XEmitter : : CheckFlags ( )
{
ASSERT_MSG ( ! flags_locked , " Attempt to modify flags while flags locked! " ) ;
}
void XEmitter : : WriteModRM ( int mod , int reg , int rm )
{
Write8 ( ( u8 ) ( ( mod < < 6 ) | ( ( reg & 7 ) < < 3 ) | ( rm & 7 ) ) ) ;
}
void XEmitter : : WriteSIB ( int scale , int index , int base )
{
Write8 ( ( u8 ) ( ( scale < < 6 ) | ( ( index & 7 ) < < 3 ) | ( base & 7 ) ) ) ;
}
void OpArg : : WriteRex ( XEmitter * emit , int opBits , int bits , int customOp ) const
{
if ( customOp = = - 1 ) customOp = operandReg ;
2015-08-12 06:00:44 +02:00
# ifdef ARCHITECTURE_X64
2015-07-22 02:08:49 +02:00
u8 op = 0x40 ;
// REX.W (whether operation is a 64-bit operation)
if ( opBits = = 64 ) op | = 8 ;
// REX.R (whether ModR/M reg field refers to R8-R15.
if ( customOp & 8 ) op | = 4 ;
// REX.X (whether ModR/M SIB index field refers to R8-R15)
if ( indexReg & 8 ) op | = 2 ;
// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
if ( offsetOrBaseReg & 8 ) op | = 1 ;
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
if ( op ! = 0x40 | |
( scale = = SCALE_NONE & & bits = = 8 & & ( offsetOrBaseReg & 0x10c ) = = 4 ) | |
( opBits = = 8 & & ( customOp & 0x10c ) = = 4 ) )
{
emit - > Write8 ( op ) ;
// Check the operation doesn't access AH, BH, CH, or DH.
DEBUG_ASSERT ( ( offsetOrBaseReg & 0x100 ) = = 0 ) ;
DEBUG_ASSERT ( ( customOp & 0x100 ) = = 0 ) ;
}
# else
DEBUG_ASSERT ( opBits ! = 64 ) ;
DEBUG_ASSERT ( ( customOp & 8 ) = = 0 | | customOp = = - 1 ) ;
DEBUG_ASSERT ( ( indexReg & 8 ) = = 0 ) ;
DEBUG_ASSERT ( ( offsetOrBaseReg & 8 ) = = 0 ) ;
DEBUG_ASSERT ( opBits ! = 8 | | ( customOp & 0x10c ) ! = 4 | | customOp = = - 1 ) ;
DEBUG_ASSERT ( scale = = SCALE_ATREG | | bits ! = 8 | | ( offsetOrBaseReg & 0x10c ) ! = 4 ) ;
# endif
}
void OpArg : : WriteVex ( XEmitter * emit , X64Reg regOp1 , X64Reg regOp2 , int L , int pp , int mmmmm , int W ) const
{
int R = ! ( regOp1 & 8 ) ;
int X = ! ( indexReg & 8 ) ;
int B = ! ( offsetOrBaseReg & 8 ) ;
int vvvv = ( regOp2 = = X64Reg : : INVALID_REG ) ? 0xf : ( regOp2 ^ 0xf ) ;
// do we need any VEX fields that only appear in the three-byte form?
if ( X = = 1 & & B = = 1 & & W = = 0 & & mmmmm = = 1 )
{
u8 RvvvvLpp = ( R < < 7 ) | ( vvvv < < 3 ) | ( L < < 1 ) | pp ;
emit - > Write8 ( 0xC5 ) ;
emit - > Write8 ( RvvvvLpp ) ;
}
else
{
u8 RXBmmmmm = ( R < < 7 ) | ( X < < 6 ) | ( B < < 5 ) | mmmmm ;
u8 WvvvvLpp = ( W < < 7 ) | ( vvvv < < 3 ) | ( L < < 1 ) | pp ;
emit - > Write8 ( 0xC4 ) ;
emit - > Write8 ( RXBmmmmm ) ;
emit - > Write8 ( WvvvvLpp ) ;
}
}
void OpArg : : WriteRest ( XEmitter * emit , int extraBytes , X64Reg _operandReg ,
bool warn_64bit_offset ) const
{
if ( _operandReg = = INVALID_REG )
_operandReg = ( X64Reg ) this - > operandReg ;
int mod = 0 ;
int ireg = indexReg ;
bool SIB = false ;
int _offsetOrBaseReg = this - > offsetOrBaseReg ;
if ( scale = = SCALE_RIP ) //Also, on 32-bit, just an immediate address
{
// Oh, RIP addressing.
_offsetOrBaseReg = 5 ;
emit - > WriteModRM ( 0 , _operandReg , _offsetOrBaseReg ) ;
//TODO : add some checks
2015-08-12 06:00:44 +02:00
# ifdef ARCHITECTURE_X64
2015-07-22 02:08:49 +02:00
u64 ripAddr = ( u64 ) emit - > GetCodePtr ( ) + 4 + extraBytes ;
s64 distance = ( s64 ) offset - ( s64 ) ripAddr ;
ASSERT_MSG (
( distance < 0x80000000LL & &
distance > = - 0x80000000LL ) | |
! warn_64bit_offset ,
" WriteRest: op out of range (0x% " PRIx64 " uses 0x% " PRIx64 " ) " ,
ripAddr , offset ) ;
s32 offs = ( s32 ) distance ;
emit - > Write32 ( ( u32 ) offs ) ;
# else
emit - > Write32 ( ( u32 ) offset ) ;
# endif
return ;
}
if ( scale = = 0 )
{
// Oh, no memory, Just a reg.
mod = 3 ; //11
}
else if ( scale > = 1 )
{
//Ah good, no scaling.
if ( scale = = SCALE_ATREG & & ! ( ( _offsetOrBaseReg & 7 ) = = 4 | | ( _offsetOrBaseReg & 7 ) = = 5 ) )
{
//Okay, we're good. No SIB necessary.
int ioff = ( int ) offset ;
if ( ioff = = 0 )
{
mod = 0 ;
}
else if ( ioff < - 128 | | ioff > 127 )
{
mod = 2 ; //32-bit displacement
}
else
{
mod = 1 ; //8-bit displacement
}
}
else if ( scale > = SCALE_NOBASE_2 & & scale < = SCALE_NOBASE_8 )
{
SIB = true ;
mod = 0 ;
_offsetOrBaseReg = 5 ;
}
else //if (scale != SCALE_ATREG)
{
if ( ( _offsetOrBaseReg & 7 ) = = 4 ) //this would occupy the SIB encoding :(
{
//So we have to fake it with SIB encoding :(
SIB = true ;
}
if ( scale > = SCALE_1 & & scale < SCALE_ATREG )
{
SIB = true ;
}
if ( scale = = SCALE_ATREG & & ( ( _offsetOrBaseReg & 7 ) = = 4 ) )
{
SIB = true ;
ireg = _offsetOrBaseReg ;
}
//Okay, we're fine. Just disp encoding.
//We need displacement. Which size?
int ioff = ( int ) ( s64 ) offset ;
if ( ioff < - 128 | | ioff > 127 )
{
mod = 2 ; //32-bit displacement
}
else
{
mod = 1 ; //8-bit displacement
}
}
}
// Okay. Time to do the actual writing
// ModRM byte:
int oreg = _offsetOrBaseReg ;
if ( SIB )
oreg = 4 ;
// TODO(ector): WTF is this if about? I don't remember writing it :-)
//if (RIP)
// oreg = 5;
emit - > WriteModRM ( mod , _operandReg & 7 , oreg & 7 ) ;
if ( SIB )
{
//SIB byte
int ss ;
switch ( scale )
{
case SCALE_NONE : _offsetOrBaseReg = 4 ; ss = 0 ; break ; //RSP
case SCALE_1 : ss = 0 ; break ;
case SCALE_2 : ss = 1 ; break ;
case SCALE_4 : ss = 2 ; break ;
case SCALE_8 : ss = 3 ; break ;
case SCALE_NOBASE_2 : ss = 1 ; break ;
case SCALE_NOBASE_4 : ss = 2 ; break ;
case SCALE_NOBASE_8 : ss = 3 ; break ;
case SCALE_ATREG : ss = 0 ; break ;
default : ASSERT_MSG ( 0 , " Invalid scale for SIB byte " ) ; ss = 0 ; break ;
}
emit - > Write8 ( ( u8 ) ( ( ss < < 6 ) | ( ( ireg & 7 ) < < 3 ) | ( _offsetOrBaseReg & 7 ) ) ) ;
}
if ( mod = = 1 ) //8-bit disp
{
emit - > Write8 ( ( u8 ) ( s8 ) ( s32 ) offset ) ;
}
else if ( mod = = 2 | | ( scale > = SCALE_NOBASE_2 & & scale < = SCALE_NOBASE_8 ) ) //32-bit disp
{
emit - > Write32 ( ( u32 ) offset ) ;
}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void XEmitter : : Rex ( int w , int r , int x , int b )
{
w = w ? 1 : 0 ;
r = r ? 1 : 0 ;
x = x ? 1 : 0 ;
b = b ? 1 : 0 ;
u8 rx = ( u8 ) ( 0x40 | ( w < < 3 ) | ( r < < 2 ) | ( x < < 1 ) | ( b ) ) ;
if ( rx ! = 0x40 )
Write8 ( rx ) ;
}
void XEmitter : : JMP ( const u8 * addr , bool force5Bytes )
{
u64 fn = ( u64 ) addr ;
if ( ! force5Bytes )
{
s64 distance = ( s64 ) ( fn - ( ( u64 ) code + 2 ) ) ;
ASSERT_MSG ( distance > = - 0x80 & & distance < 0x80 ,
" Jump target too far away, needs force5Bytes = true " ) ;
//8 bits will do
Write8 ( 0xEB ) ;
Write8 ( ( u8 ) ( s8 ) distance ) ;
}
else
{
s64 distance = ( s64 ) ( fn - ( ( u64 ) code + 5 ) ) ;
ASSERT_MSG (
distance > = - 0x80000000LL & & distance < 0x80000000LL ,
" Jump target too far away, needs indirect register " ) ;
Write8 ( 0xE9 ) ;
Write32 ( ( u32 ) ( s32 ) distance ) ;
}
}
void XEmitter : : JMPptr ( const OpArg & arg2 )
{
OpArg arg = arg2 ;
if ( arg . IsImm ( ) ) ASSERT_MSG ( 0 , " JMPptr - Imm argument " ) ;
arg . operandReg = 4 ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0xFF ) ;
arg . WriteRest ( this ) ;
}
//Can be used to trap other processors, before overwriting their code
// not used in dolphin
void XEmitter : : JMPself ( )
{
Write8 ( 0xEB ) ;
Write8 ( 0xFE ) ;
}
void XEmitter : : CALLptr ( OpArg arg )
{
if ( arg . IsImm ( ) ) ASSERT_MSG ( 0 , " CALLptr - Imm argument " ) ;
arg . operandReg = 2 ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0xFF ) ;
arg . WriteRest ( this ) ;
}
void XEmitter : : CALL ( const void * fnptr )
{
u64 distance = u64 ( fnptr ) - ( u64 ( code ) + 5 ) ;
ASSERT_MSG (
distance < 0x0000000080000000ULL | |
distance > = 0xFFFFFFFF80000000ULL ,
" CALL out of range (%p calls %p) " , code , fnptr ) ;
Write8 ( 0xE8 ) ;
Write32 ( u32 ( distance ) ) ;
}
FixupBranch XEmitter : : J ( bool force5bytes )
{
FixupBranch branch ;
branch . type = force5bytes ? 1 : 0 ;
branch . ptr = code + ( force5bytes ? 5 : 2 ) ;
if ( ! force5bytes )
{
//8 bits will do
Write8 ( 0xEB ) ;
Write8 ( 0 ) ;
}
else
{
Write8 ( 0xE9 ) ;
Write32 ( 0 ) ;
}
return branch ;
}
FixupBranch XEmitter : : J_CC ( CCFlags conditionCode , bool force5bytes )
{
FixupBranch branch ;
branch . type = force5bytes ? 1 : 0 ;
branch . ptr = code + ( force5bytes ? 6 : 2 ) ;
if ( ! force5bytes )
{
//8 bits will do
Write8 ( 0x70 + conditionCode ) ;
Write8 ( 0 ) ;
}
else
{
Write8 ( 0x0F ) ;
Write8 ( 0x80 + conditionCode ) ;
Write32 ( 0 ) ;
}
return branch ;
}
void XEmitter : : J_CC ( CCFlags conditionCode , const u8 * addr , bool force5bytes )
{
u64 fn = ( u64 ) addr ;
s64 distance = ( s64 ) ( fn - ( ( u64 ) code + 2 ) ) ;
if ( distance < - 0x80 | | distance > = 0x80 | | force5bytes )
{
distance = ( s64 ) ( fn - ( ( u64 ) code + 6 ) ) ;
ASSERT_MSG (
distance > = - 0x80000000LL & & distance < 0x80000000LL ,
" Jump target too far away, needs indirect register " ) ;
Write8 ( 0x0F ) ;
Write8 ( 0x80 + conditionCode ) ;
Write32 ( ( u32 ) ( s32 ) distance ) ;
}
else
{
Write8 ( 0x70 + conditionCode ) ;
Write8 ( ( u8 ) ( s8 ) distance ) ;
}
}
void XEmitter : : SetJumpTarget ( const FixupBranch & branch )
{
if ( branch . type = = 0 )
{
s64 distance = ( s64 ) ( code - branch . ptr ) ;
ASSERT_MSG ( distance > = - 0x80 & & distance < 0x80 , " Jump target too far away, needs force5Bytes = true " ) ;
branch . ptr [ - 1 ] = ( u8 ) ( s8 ) distance ;
}
else if ( branch . type = = 1 )
{
s64 distance = ( s64 ) ( code - branch . ptr ) ;
ASSERT_MSG ( distance > = - 0x80000000LL & & distance < 0x80000000LL , " Jump target too far away, needs indirect register " ) ;
( ( s32 * ) branch . ptr ) [ - 1 ] = ( s32 ) distance ;
}
}
// INC/DEC considered harmful on newer CPUs due to partial flag set.
// Use ADD, SUB instead.
/*
void XEmitter : : INC ( int bits , OpArg arg )
{
if ( arg . IsImm ( ) ) ASSERT_MSG ( 0 , " INC - Imm argument " ) ;
arg . operandReg = 0 ;
if ( bits = = 16 ) { Write8 ( 0x66 ) ; }
arg . WriteRex ( this , bits , bits ) ;
Write8 ( bits = = 8 ? 0xFE : 0xFF ) ;
arg . WriteRest ( this ) ;
}
void XEmitter : : DEC ( int bits , OpArg arg )
{
if ( arg . IsImm ( ) ) ASSERT_MSG ( 0 , " DEC - Imm argument " ) ;
arg . operandReg = 1 ;
if ( bits = = 16 ) { Write8 ( 0x66 ) ; }
arg . WriteRex ( this , bits , bits ) ;
Write8 ( bits = = 8 ? 0xFE : 0xFF ) ;
arg . WriteRest ( this ) ;
}
*/
//Single byte opcodes
//There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter : : INT3 ( ) { Write8 ( 0xCC ) ; }
void XEmitter : : RET ( ) { Write8 ( 0xC3 ) ; }
void XEmitter : : RET_FAST ( ) { Write8 ( 0xF3 ) ; Write8 ( 0xC3 ) ; } //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
// The first sign of decadence: optimized NOPs.
void XEmitter : : NOP ( size_t size )
{
DEBUG_ASSERT ( ( int ) size > 0 ) ;
while ( true )
{
switch ( size )
{
case 0 :
return ;
case 1 :
Write8 ( 0x90 ) ;
return ;
case 2 :
Write8 ( 0x66 ) ; Write8 ( 0x90 ) ;
return ;
case 3 :
Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x00 ) ;
return ;
case 4 :
Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x40 ) ; Write8 ( 0x00 ) ;
return ;
case 5 :
Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x44 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ;
return ;
case 6 :
Write8 ( 0x66 ) ; Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x44 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
return ;
case 7 :
Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x80 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
return ;
case 8 :
Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x84 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
return ;
case 9 :
Write8 ( 0x66 ) ; Write8 ( 0x0F ) ; Write8 ( 0x1F ) ; Write8 ( 0x84 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ;
return ;
case 10 :
Write8 ( 0x66 ) ; Write8 ( 0x66 ) ; Write8 ( 0x0F ) ; Write8 ( 0x1F ) ;
Write8 ( 0x84 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
return ;
default :
// Even though x86 instructions are allowed to be up to 15 bytes long,
// AMD advises against using NOPs longer than 11 bytes because they
// carry a performance penalty on CPUs older than AMD family 16h.
Write8 ( 0x66 ) ; Write8 ( 0x66 ) ; Write8 ( 0x66 ) ; Write8 ( 0x0F ) ;
Write8 ( 0x1F ) ; Write8 ( 0x84 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
Write8 ( 0x00 ) ; Write8 ( 0x00 ) ; Write8 ( 0x00 ) ;
size - = 11 ;
continue ;
}
}
}
void XEmitter : : PAUSE ( ) { Write8 ( 0xF3 ) ; NOP ( ) ; } //use in tight spinloops for energy saving on some cpu
void XEmitter : : CLC ( ) { CheckFlags ( ) ; Write8 ( 0xF8 ) ; } //clear carry
void XEmitter : : CMC ( ) { CheckFlags ( ) ; Write8 ( 0xF5 ) ; } //flip carry
void XEmitter : : STC ( ) { CheckFlags ( ) ; Write8 ( 0xF9 ) ; } //set carry
//TODO: xchg ah, al ???
void XEmitter : : XCHG_AHAL ( )
{
Write8 ( 0x86 ) ;
Write8 ( 0xe0 ) ;
// alt. 86 c4
}
//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void XEmitter : : LAHF ( ) { Write8 ( 0x9F ) ; }
void XEmitter : : SAHF ( ) { CheckFlags ( ) ; Write8 ( 0x9E ) ; }
void XEmitter : : PUSHF ( ) { Write8 ( 0x9C ) ; }
void XEmitter : : POPF ( ) { CheckFlags ( ) ; Write8 ( 0x9D ) ; }
void XEmitter : : LFENCE ( ) { Write8 ( 0x0F ) ; Write8 ( 0xAE ) ; Write8 ( 0xE8 ) ; }
void XEmitter : : MFENCE ( ) { Write8 ( 0x0F ) ; Write8 ( 0xAE ) ; Write8 ( 0xF0 ) ; }
void XEmitter : : SFENCE ( ) { Write8 ( 0x0F ) ; Write8 ( 0xAE ) ; Write8 ( 0xF8 ) ; }
void XEmitter : : WriteSimple1Byte ( int bits , u8 byte , X64Reg reg )
{
if ( bits = = 16 )
Write8 ( 0x66 ) ;
Rex ( bits = = 64 , 0 , 0 , ( int ) reg > > 3 ) ;
Write8 ( byte + ( ( int ) reg & 7 ) ) ;
}
void XEmitter : : WriteSimple2Byte ( int bits , u8 byte1 , u8 byte2 , X64Reg reg )
{
if ( bits = = 16 )
Write8 ( 0x66 ) ;
Rex ( bits = = 64 , 0 , 0 , ( int ) reg > > 3 ) ;
Write8 ( byte1 ) ;
Write8 ( byte2 + ( ( int ) reg & 7 ) ) ;
}
void XEmitter : : CWD ( int bits )
{
if ( bits = = 16 )
Write8 ( 0x66 ) ;
Rex ( bits = = 64 , 0 , 0 , 0 ) ;
Write8 ( 0x99 ) ;
}
void XEmitter : : CBW ( int bits )
{
if ( bits = = 8 )
Write8 ( 0x66 ) ;
Rex ( bits = = 32 , 0 , 0 , 0 ) ;
Write8 ( 0x98 ) ;
}
//Simple opcodes
//push/pop do not need wide to be 64-bit
void XEmitter : : PUSH ( X64Reg reg ) { WriteSimple1Byte ( 32 , 0x50 , reg ) ; }
void XEmitter : : POP ( X64Reg reg ) { WriteSimple1Byte ( 32 , 0x58 , reg ) ; }
void XEmitter : : PUSH ( int bits , const OpArg & reg )
{
if ( reg . IsSimpleReg ( ) )
PUSH ( reg . GetSimpleReg ( ) ) ;
else if ( reg . IsImm ( ) )
{
switch ( reg . GetImmBits ( ) )
{
case 8 :
Write8 ( 0x6A ) ;
Write8 ( ( u8 ) ( s8 ) reg . offset ) ;
break ;
case 16 :
Write8 ( 0x66 ) ;
Write8 ( 0x68 ) ;
Write16 ( ( u16 ) ( s16 ) ( s32 ) reg . offset ) ;
break ;
case 32 :
Write8 ( 0x68 ) ;
Write32 ( ( u32 ) reg . offset ) ;
break ;
default :
ASSERT_MSG ( 0 , " PUSH - Bad imm bits " ) ;
break ;
}
}
else
{
if ( bits = = 16 )
Write8 ( 0x66 ) ;
reg . WriteRex ( this , bits , bits ) ;
Write8 ( 0xFF ) ;
reg . WriteRest ( this , 0 , ( X64Reg ) 6 ) ;
}
}
void XEmitter : : POP ( int /*bits*/ , const OpArg & reg )
{
if ( reg . IsSimpleReg ( ) )
POP ( reg . GetSimpleReg ( ) ) ;
else
ASSERT_MSG ( 0 , " POP - Unsupported encoding " ) ;
}
void XEmitter : : BSWAP ( int bits , X64Reg reg )
{
if ( bits > = 32 )
{
WriteSimple2Byte ( bits , 0x0F , 0xC8 , reg ) ;
}
else if ( bits = = 16 )
{
ROL ( 16 , R ( reg ) , Imm8 ( 8 ) ) ;
}
else if ( bits = = 8 )
{
// Do nothing - can't bswap a single byte...
}
else
{
ASSERT_MSG ( 0 , " BSWAP - Wrong number of bits " ) ;
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void XEmitter : : UD2 ( )
{
Write8 ( 0x0F ) ;
Write8 ( 0x0B ) ;
}
void XEmitter : : PREFETCH ( PrefetchLevel level , OpArg arg )
{
ASSERT_MSG ( ! arg . IsImm ( ) , " PREFETCH - Imm argument " ) ;
arg . operandReg = ( u8 ) level ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0x0F ) ;
Write8 ( 0x18 ) ;
arg . WriteRest ( this ) ;
}
void XEmitter : : SETcc ( CCFlags flag , OpArg dest )
{
ASSERT_MSG ( ! dest . IsImm ( ) , " SETcc - Imm argument " ) ;
dest . operandReg = 0 ;
dest . WriteRex ( this , 0 , 8 ) ;
Write8 ( 0x0F ) ;
Write8 ( 0x90 + ( u8 ) flag ) ;
dest . WriteRest ( this ) ;
}
void XEmitter : : CMOVcc ( int bits , X64Reg dest , OpArg src , CCFlags flag )
{
ASSERT_MSG ( ! src . IsImm ( ) , " CMOVcc - Imm argument " ) ;
ASSERT_MSG ( bits ! = 8 , " CMOVcc - 8 bits unsupported " ) ;
if ( bits = = 16 )
Write8 ( 0x66 ) ;
src . operandReg = dest ;
src . WriteRex ( this , bits , bits ) ;
Write8 ( 0x0F ) ;
Write8 ( 0x40 + ( u8 ) flag ) ;
src . WriteRest ( this ) ;
}
void XEmitter : : WriteMulDivType ( int bits , OpArg src , int ext )
{
ASSERT_MSG ( ! src . IsImm ( ) , " WriteMulDivType - Imm argument " ) ;
CheckFlags ( ) ;
src . operandReg = ext ;
if ( bits = = 16 )
Write8 ( 0x66 ) ;
src . WriteRex ( this , bits , bits , 0 ) ;
if ( bits = = 8 )
{
Write8 ( 0xF6 ) ;
}
else
{
Write8 ( 0xF7 ) ;
}
src . WriteRest ( this ) ;
}
void XEmitter : : MUL ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 4 ) ; }
void XEmitter : : DIV ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 6 ) ; }
void XEmitter : : IMUL ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 5 ) ; }
void XEmitter : : IDIV ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 7 ) ; }
void XEmitter : : NEG ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 3 ) ; }
void XEmitter : : NOT ( int bits , OpArg src ) { WriteMulDivType ( bits , src , 2 ) ; }
void XEmitter : : WriteBitSearchType ( int bits , X64Reg dest , OpArg src , u8 byte2 , bool rep )
{
ASSERT_MSG ( ! src . IsImm ( ) , " WriteBitSearchType - Imm argument " ) ;
CheckFlags ( ) ;
src . operandReg = ( u8 ) dest ;
if ( bits = = 16 )
Write8 ( 0x66 ) ;
if ( rep )
Write8 ( 0xF3 ) ;
src . WriteRex ( this , bits , bits ) ;
Write8 ( 0x0F ) ;
Write8 ( byte2 ) ;
src . WriteRest ( this ) ;
}
void XEmitter : : MOVNTI ( int bits , OpArg dest , X64Reg src )
{
if ( bits < = 16 )
ASSERT_MSG ( 0 , " MOVNTI - bits<=16 " ) ;
WriteBitSearchType ( bits , src , dest , 0xC3 ) ;
}
void XEmitter : : BSF ( int bits , X64Reg dest , OpArg src ) { WriteBitSearchType ( bits , dest , src , 0xBC ) ; } //bottom bit to top bit
void XEmitter : : BSR ( int bits , X64Reg dest , OpArg src ) { WriteBitSearchType ( bits , dest , src , 0xBD ) ; } //top bit to bottom bit
void XEmitter : : TZCNT ( int bits , X64Reg dest , OpArg src )
{
CheckFlags ( ) ;
if ( ! Common : : cpu_info . bBMI1 )
ASSERT_MSG ( 0 , " Trying to use BMI1 on a system that doesn't support it. Bad programmer. " ) ;
WriteBitSearchType ( bits , dest , src , 0xBC , true ) ;
}
void XEmitter : : LZCNT ( int bits , X64Reg dest , OpArg src )
{
CheckFlags ( ) ;
if ( ! Common : : cpu_info . bLZCNT )
ASSERT_MSG ( 0 , " Trying to use LZCNT on a system that doesn't support it. Bad programmer. " ) ;
WriteBitSearchType ( bits , dest , src , 0xBD , true ) ;
}
void XEmitter : : MOVSX ( int dbits , int sbits , X64Reg dest , OpArg src )
{
ASSERT_MSG ( ! src . IsImm ( ) , " MOVSX - Imm argument " ) ;
if ( dbits = = sbits )
{
MOV ( dbits , R ( dest ) , src ) ;
return ;
}
src . operandReg = ( u8 ) dest ;
if ( dbits = = 16 )
Write8 ( 0x66 ) ;
src . WriteRex ( this , dbits , sbits ) ;
if ( sbits = = 8 )
{
Write8 ( 0x0F ) ;
Write8 ( 0xBE ) ;
}
else if ( sbits = = 16 )
{
Write8 ( 0x0F ) ;
Write8 ( 0xBF ) ;
}
else if ( sbits = = 32 & & dbits = = 64 )
{
Write8 ( 0x63 ) ;
}
else
{
Crash ( ) ;
}
src . WriteRest ( this ) ;
}
void XEmitter : : MOVZX ( int dbits , int sbits , X64Reg dest , OpArg src )
{
ASSERT_MSG ( ! src . IsImm ( ) , " MOVZX - Imm argument " ) ;
if ( dbits = = sbits )
{
MOV ( dbits , R ( dest ) , src ) ;
return ;
}
src . operandReg = ( u8 ) dest ;
if ( dbits = = 16 )
Write8 ( 0x66 ) ;
//the 32bit result is automatically zero extended to 64bit
src . WriteRex ( this , dbits = = 64 ? 32 : dbits , sbits ) ;
if ( sbits = = 8 )
{
Write8 ( 0x0F ) ;
Write8 ( 0xB6 ) ;
}
else if ( sbits = = 16 )
{
Write8 ( 0x0F ) ;
Write8 ( 0xB7 ) ;
}
else if ( sbits = = 32 & & dbits = = 64 )
{
Write8 ( 0x8B ) ;
}
else
{
ASSERT_MSG ( 0 , " MOVZX - Invalid size " ) ;
}
src . WriteRest ( this ) ;
}
void XEmitter : : MOVBE ( int bits , const OpArg & dest , const OpArg & src )
{
ASSERT_MSG ( Common : : cpu_info . bMOVBE , " Generating MOVBE on a system that does not support it. " ) ;
if ( bits = = 8 )
{
MOV ( bits , dest , src ) ;
return ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
if ( dest . IsSimpleReg ( ) )
{
ASSERT_MSG ( ! src . IsSimpleReg ( ) & & ! src . IsImm ( ) , " MOVBE: Loading from !mem " ) ;
src . WriteRex ( this , bits , bits , dest . GetSimpleReg ( ) ) ;
Write8 ( 0x0F ) ; Write8 ( 0x38 ) ; Write8 ( 0xF0 ) ;
src . WriteRest ( this , 0 , dest . GetSimpleReg ( ) ) ;
}
else if ( src . IsSimpleReg ( ) )
{
ASSERT_MSG ( ! dest . IsSimpleReg ( ) & & ! dest . IsImm ( ) , " MOVBE: Storing to !mem " ) ;
dest . WriteRex ( this , bits , bits , src . GetSimpleReg ( ) ) ;
Write8 ( 0x0F ) ; Write8 ( 0x38 ) ; Write8 ( 0xF1 ) ;
dest . WriteRest ( this , 0 , src . GetSimpleReg ( ) ) ;
}
else
{
ASSERT_MSG ( 0 , " MOVBE: Not loading or storing to mem " ) ;
}
}
void XEmitter : : LEA ( int bits , X64Reg dest , OpArg src )
{
ASSERT_MSG ( ! src . IsImm ( ) , " LEA - Imm argument " ) ;
src . operandReg = ( u8 ) dest ;
if ( bits = = 16 )
Write8 ( 0x66 ) ; //TODO: performance warning
src . WriteRex ( this , bits , bits ) ;
Write8 ( 0x8D ) ;
src . WriteRest ( this , 0 , INVALID_REG , bits = = 64 ) ;
}
//shift can be either imm8 or cl
void XEmitter : : WriteShift ( int bits , OpArg dest , OpArg & shift , int ext )
{
CheckFlags ( ) ;
bool writeImm = false ;
if ( dest . IsImm ( ) )
{
ASSERT_MSG ( 0 , " WriteShift - can't shift imms " ) ;
}
if ( ( shift . IsSimpleReg ( ) & & shift . GetSimpleReg ( ) ! = ECX ) | | ( shift . IsImm ( ) & & shift . GetImmBits ( ) ! = 8 ) )
{
ASSERT_MSG ( 0 , " WriteShift - illegal argument " ) ;
}
dest . operandReg = ext ;
if ( bits = = 16 )
Write8 ( 0x66 ) ;
dest . WriteRex ( this , bits , bits , 0 ) ;
if ( shift . GetImmBits ( ) = = 8 )
{
//ok an imm
u8 imm = ( u8 ) shift . offset ;
if ( imm = = 1 )
{
Write8 ( bits = = 8 ? 0xD0 : 0xD1 ) ;
}
else
{
writeImm = true ;
Write8 ( bits = = 8 ? 0xC0 : 0xC1 ) ;
}
}
else
{
Write8 ( bits = = 8 ? 0xD2 : 0xD3 ) ;
}
dest . WriteRest ( this , writeImm ? 1 : 0 ) ;
if ( writeImm )
Write8 ( ( u8 ) shift . offset ) ;
}
// large rotates and shift are slower on intel than amd
// intel likes to rotate by 1, and the op is smaller too
void XEmitter : : ROL ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 0 ) ; }
void XEmitter : : ROR ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 1 ) ; }
void XEmitter : : RCL ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 2 ) ; }
void XEmitter : : RCR ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 3 ) ; }
void XEmitter : : SHL ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 4 ) ; }
void XEmitter : : SHR ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 5 ) ; }
void XEmitter : : SAR ( int bits , OpArg dest , OpArg shift ) { WriteShift ( bits , dest , shift , 7 ) ; }
// index can be either imm8 or register, don't use memory destination because it's slow
void XEmitter : : WriteBitTest ( int bits , OpArg & dest , OpArg & index , int ext )
{
CheckFlags ( ) ;
if ( dest . IsImm ( ) )
{
ASSERT_MSG ( 0 , " WriteBitTest - can't test imms " ) ;
}
if ( ( index . IsImm ( ) & & index . GetImmBits ( ) ! = 8 ) )
{
ASSERT_MSG ( 0 , " WriteBitTest - illegal argument " ) ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
if ( index . IsImm ( ) )
{
dest . WriteRex ( this , bits , bits ) ;
Write8 ( 0x0F ) ; Write8 ( 0xBA ) ;
dest . WriteRest ( this , 1 , ( X64Reg ) ext ) ;
Write8 ( ( u8 ) index . offset ) ;
}
else
{
X64Reg operand = index . GetSimpleReg ( ) ;
dest . WriteRex ( this , bits , bits , operand ) ;
Write8 ( 0x0F ) ; Write8 ( 0x83 + 8 * ext ) ;
dest . WriteRest ( this , 1 , operand ) ;
}
}
void XEmitter : : BT ( int bits , OpArg dest , OpArg index ) { WriteBitTest ( bits , dest , index , 4 ) ; }
void XEmitter : : BTS ( int bits , OpArg dest , OpArg index ) { WriteBitTest ( bits , dest , index , 5 ) ; }
void XEmitter : : BTR ( int bits , OpArg dest , OpArg index ) { WriteBitTest ( bits , dest , index , 6 ) ; }
void XEmitter : : BTC ( int bits , OpArg dest , OpArg index ) { WriteBitTest ( bits , dest , index , 7 ) ; }
//shift can be either imm8 or cl
void XEmitter : : SHRD ( int bits , OpArg dest , OpArg src , OpArg shift )
{
CheckFlags ( ) ;
if ( dest . IsImm ( ) )
{
ASSERT_MSG ( 0 , " SHRD - can't use imms as destination " ) ;
}
if ( ! src . IsSimpleReg ( ) )
{
ASSERT_MSG ( 0 , " SHRD - must use simple register as source " ) ;
}
if ( ( shift . IsSimpleReg ( ) & & shift . GetSimpleReg ( ) ! = ECX ) | | ( shift . IsImm ( ) & & shift . GetImmBits ( ) ! = 8 ) )
{
ASSERT_MSG ( 0 , " SHRD - illegal shift " ) ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
X64Reg operand = src . GetSimpleReg ( ) ;
dest . WriteRex ( this , bits , bits , operand ) ;
if ( shift . GetImmBits ( ) = = 8 )
{
Write8 ( 0x0F ) ; Write8 ( 0xAC ) ;
dest . WriteRest ( this , 1 , operand ) ;
Write8 ( ( u8 ) shift . offset ) ;
}
else
{
Write8 ( 0x0F ) ; Write8 ( 0xAD ) ;
dest . WriteRest ( this , 0 , operand ) ;
}
}
void XEmitter : : SHLD ( int bits , OpArg dest , OpArg src , OpArg shift )
{
CheckFlags ( ) ;
if ( dest . IsImm ( ) )
{
ASSERT_MSG ( 0 , " SHLD - can't use imms as destination " ) ;
}
if ( ! src . IsSimpleReg ( ) )
{
ASSERT_MSG ( 0 , " SHLD - must use simple register as source " ) ;
}
if ( ( shift . IsSimpleReg ( ) & & shift . GetSimpleReg ( ) ! = ECX ) | | ( shift . IsImm ( ) & & shift . GetImmBits ( ) ! = 8 ) )
{
ASSERT_MSG ( 0 , " SHLD - illegal shift " ) ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
X64Reg operand = src . GetSimpleReg ( ) ;
dest . WriteRex ( this , bits , bits , operand ) ;
if ( shift . GetImmBits ( ) = = 8 )
{
Write8 ( 0x0F ) ; Write8 ( 0xA4 ) ;
dest . WriteRest ( this , 1 , operand ) ;
Write8 ( ( u8 ) shift . offset ) ;
}
else
{
Write8 ( 0x0F ) ; Write8 ( 0xA5 ) ;
dest . WriteRest ( this , 0 , operand ) ;
}
}
void OpArg : : WriteSingleByteOp ( XEmitter * emit , u8 op , X64Reg _operandReg , int bits )
{
if ( bits = = 16 )
emit - > Write8 ( 0x66 ) ;
this - > operandReg = ( u8 ) _operandReg ;
WriteRex ( emit , bits , bits ) ;
emit - > Write8 ( op ) ;
WriteRest ( emit ) ;
}
//operand can either be immediate or register
void OpArg : : WriteNormalOp ( XEmitter * emit , bool toRM , NormalOp op , const OpArg & operand , int bits ) const
{
X64Reg _operandReg ;
if ( IsImm ( ) )
{
ASSERT_MSG ( 0 , " WriteNormalOp - Imm argument, wrong order " ) ;
}
if ( bits = = 16 )
emit - > Write8 ( 0x66 ) ;
int immToWrite = 0 ;
if ( operand . IsImm ( ) )
{
WriteRex ( emit , bits , bits ) ;
if ( ! toRM )
{
ASSERT_MSG ( 0 , " WriteNormalOp - Writing to Imm (!toRM) " ) ;
}
if ( operand . scale = = SCALE_IMM8 & & bits = = 8 )
{
// op al, imm8
if ( ! scale & & offsetOrBaseReg = = AL & & normalops [ op ] . eaximm8 ! = 0xCC )
{
emit - > Write8 ( normalops [ op ] . eaximm8 ) ;
emit - > Write8 ( ( u8 ) operand . offset ) ;
return ;
}
// mov reg, imm8
if ( ! scale & & op = = nrmMOV )
{
emit - > Write8 ( 0xB0 + ( offsetOrBaseReg & 7 ) ) ;
emit - > Write8 ( ( u8 ) operand . offset ) ;
return ;
}
// op r/m8, imm8
emit - > Write8 ( normalops [ op ] . imm8 ) ;
immToWrite = 8 ;
}
else if ( ( operand . scale = = SCALE_IMM16 & & bits = = 16 ) | |
( operand . scale = = SCALE_IMM32 & & bits = = 32 ) | |
( operand . scale = = SCALE_IMM32 & & bits = = 64 ) )
{
// Try to save immediate size if we can, but first check to see
// if the instruction supports simm8.
// op r/m, imm8
if ( normalops [ op ] . simm8 ! = 0xCC & &
( ( operand . scale = = SCALE_IMM16 & & ( s16 ) operand . offset = = ( s8 ) operand . offset ) | |
( operand . scale = = SCALE_IMM32 & & ( s32 ) operand . offset = = ( s8 ) operand . offset ) ) )
{
emit - > Write8 ( normalops [ op ] . simm8 ) ;
immToWrite = 8 ;
}
else
{
// mov reg, imm
if ( ! scale & & op = = nrmMOV & & bits ! = 64 )
{
emit - > Write8 ( 0xB8 + ( offsetOrBaseReg & 7 ) ) ;
if ( bits = = 16 )
emit - > Write16 ( ( u16 ) operand . offset ) ;
else
emit - > Write32 ( ( u32 ) operand . offset ) ;
return ;
}
// op eax, imm
if ( ! scale & & offsetOrBaseReg = = EAX & & normalops [ op ] . eaximm32 ! = 0xCC )
{
emit - > Write8 ( normalops [ op ] . eaximm32 ) ;
if ( bits = = 16 )
emit - > Write16 ( ( u16 ) operand . offset ) ;
else
emit - > Write32 ( ( u32 ) operand . offset ) ;
return ;
}
// op r/m, imm
emit - > Write8 ( normalops [ op ] . imm32 ) ;
immToWrite = bits = = 16 ? 16 : 32 ;
}
}
else if ( ( operand . scale = = SCALE_IMM8 & & bits = = 16 ) | |
( operand . scale = = SCALE_IMM8 & & bits = = 32 ) | |
( operand . scale = = SCALE_IMM8 & & bits = = 64 ) )
{
// op r/m, imm8
emit - > Write8 ( normalops [ op ] . simm8 ) ;
immToWrite = 8 ;
}
else if ( operand . scale = = SCALE_IMM64 & & bits = = 64 )
{
if ( scale )
{
ASSERT_MSG ( 0 , " WriteNormalOp - MOV with 64-bit imm requres register destination " ) ;
}
// mov reg64, imm64
else if ( op = = nrmMOV )
{
emit - > Write8 ( 0xB8 + ( offsetOrBaseReg & 7 ) ) ;
emit - > Write64 ( ( u64 ) operand . offset ) ;
return ;
}
ASSERT_MSG ( 0 , " WriteNormalOp - Only MOV can take 64-bit imm " ) ;
}
else
{
ASSERT_MSG ( 0 , " WriteNormalOp - Unhandled case " ) ;
}
_operandReg = ( X64Reg ) normalops [ op ] . ext ; //pass extension in REG of ModRM
}
else
{
_operandReg = ( X64Reg ) operand . offsetOrBaseReg ;
WriteRex ( emit , bits , bits , _operandReg ) ;
// op r/m, reg
if ( toRM )
{
emit - > Write8 ( bits = = 8 ? normalops [ op ] . toRm8 : normalops [ op ] . toRm32 ) ;
}
// op reg, r/m
else
{
emit - > Write8 ( bits = = 8 ? normalops [ op ] . fromRm8 : normalops [ op ] . fromRm32 ) ;
}
}
WriteRest ( emit , immToWrite > > 3 , _operandReg ) ;
switch ( immToWrite )
{
case 0 :
break ;
case 8 :
emit - > Write8 ( ( u8 ) operand . offset ) ;
break ;
case 16 :
emit - > Write16 ( ( u16 ) operand . offset ) ;
break ;
case 32 :
emit - > Write32 ( ( u32 ) operand . offset ) ;
break ;
default :
ASSERT_MSG ( 0 , " WriteNormalOp - Unhandled case " ) ;
}
}
void XEmitter : : WriteNormalOp ( XEmitter * emit , int bits , NormalOp op , const OpArg & a1 , const OpArg & a2 )
{
if ( a1 . IsImm ( ) )
{
//Booh! Can't write to an imm
ASSERT_MSG ( 0 , " WriteNormalOp - a1 cannot be imm " ) ;
return ;
}
if ( a2 . IsImm ( ) )
{
a1 . WriteNormalOp ( emit , true , op , a2 , bits ) ;
}
else
{
if ( a1 . IsSimpleReg ( ) )
{
a2 . WriteNormalOp ( emit , false , op , a1 , bits ) ;
}
else
{
ASSERT_MSG ( a2 . IsSimpleReg ( ) | | a2 . IsImm ( ) , " WriteNormalOp - a1 and a2 cannot both be memory " ) ;
a1 . WriteNormalOp ( emit , true , op , a2 , bits ) ;
}
}
}
void XEmitter : : ADD ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmADD , a1 , a2 ) ; }
void XEmitter : : ADC ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmADC , a1 , a2 ) ; }
void XEmitter : : SUB ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmSUB , a1 , a2 ) ; }
void XEmitter : : SBB ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmSBB , a1 , a2 ) ; }
void XEmitter : : AND ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmAND , a1 , a2 ) ; }
void XEmitter : : OR ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmOR , a1 , a2 ) ; }
void XEmitter : : XOR ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmXOR , a1 , a2 ) ; }
void XEmitter : : MOV ( int bits , const OpArg & a1 , const OpArg & a2 )
{
if ( a1 . IsSimpleReg ( ) & & a2 . IsSimpleReg ( ) & & a1 . GetSimpleReg ( ) = = a2 . GetSimpleReg ( ) )
LOG_ERROR ( Common , " Redundant MOV @ %p - bug in JIT? " , code ) ;
WriteNormalOp ( this , bits , nrmMOV , a1 , a2 ) ;
}
void XEmitter : : TEST ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmTEST , a1 , a2 ) ; }
void XEmitter : : CMP ( int bits , const OpArg & a1 , const OpArg & a2 ) { CheckFlags ( ) ; WriteNormalOp ( this , bits , nrmCMP , a1 , a2 ) ; }
void XEmitter : : XCHG ( int bits , const OpArg & a1 , const OpArg & a2 ) { WriteNormalOp ( this , bits , nrmXCHG , a1 , a2 ) ; }
void XEmitter : : IMUL ( int bits , X64Reg regOp , OpArg a1 , OpArg a2 )
{
CheckFlags ( ) ;
if ( bits = = 8 )
{
ASSERT_MSG ( 0 , " IMUL - illegal bit size! " ) ;
return ;
}
if ( a1 . IsImm ( ) )
{
ASSERT_MSG ( 0 , " IMUL - second arg cannot be imm! " ) ;
return ;
}
if ( ! a2 . IsImm ( ) )
{
ASSERT_MSG ( 0 , " IMUL - third arg must be imm! " ) ;
return ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
a1 . WriteRex ( this , bits , bits , regOp ) ;
if ( a2 . GetImmBits ( ) = = 8 | |
( a2 . GetImmBits ( ) = = 16 & & ( s8 ) a2 . offset = = ( s16 ) a2 . offset ) | |
( a2 . GetImmBits ( ) = = 32 & & ( s8 ) a2 . offset = = ( s32 ) a2 . offset ) )
{
Write8 ( 0x6B ) ;
a1 . WriteRest ( this , 1 , regOp ) ;
Write8 ( ( u8 ) a2 . offset ) ;
}
else
{
Write8 ( 0x69 ) ;
if ( a2 . GetImmBits ( ) = = 16 & & bits = = 16 )
{
a1 . WriteRest ( this , 2 , regOp ) ;
Write16 ( ( u16 ) a2 . offset ) ;
}
else if ( a2 . GetImmBits ( ) = = 32 & & ( bits = = 32 | | bits = = 64 ) )
{
a1 . WriteRest ( this , 4 , regOp ) ;
Write32 ( ( u32 ) a2 . offset ) ;
}
else
{
ASSERT_MSG ( 0 , " IMUL - unhandled case! " ) ;
}
}
}
void XEmitter : : IMUL ( int bits , X64Reg regOp , OpArg a )
{
CheckFlags ( ) ;
if ( bits = = 8 )
{
ASSERT_MSG ( 0 , " IMUL - illegal bit size! " ) ;
return ;
}
if ( a . IsImm ( ) )
{
IMUL ( bits , regOp , R ( regOp ) , a ) ;
return ;
}
if ( bits = = 16 )
Write8 ( 0x66 ) ;
a . WriteRex ( this , bits , bits , regOp ) ;
Write8 ( 0x0F ) ;
Write8 ( 0xAF ) ;
a . WriteRest ( this , 0 , regOp ) ;
}
void XEmitter : : WriteSSEOp ( u8 opPrefix , u16 op , X64Reg regOp , OpArg arg , int extrabytes )
{
if ( opPrefix )
Write8 ( opPrefix ) ;
arg . operandReg = regOp ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0x0F ) ;
if ( op > 0xFF )
Write8 ( ( op > > 8 ) & 0xFF ) ;
Write8 ( op & 0xFF ) ;
arg . WriteRest ( this , extrabytes ) ;
}
void XEmitter : : WriteAVXOp ( u8 opPrefix , u16 op , X64Reg regOp , OpArg arg , int extrabytes )
{
WriteAVXOp ( opPrefix , op , regOp , INVALID_REG , arg , extrabytes ) ;
}
static int GetVEXmmmmm ( u16 op )
{
// Currently, only 0x38 and 0x3A are used as secondary escape byte.
if ( ( op > > 8 ) = = 0x3A )
return 3 ;
else if ( ( op > > 8 ) = = 0x38 )
return 2 ;
else
return 1 ;
}
static int GetVEXpp ( u8 opPrefix )
{
if ( opPrefix = = 0x66 )
return 1 ;
else if ( opPrefix = = 0xF3 )
return 2 ;
else if ( opPrefix = = 0xF2 )
return 3 ;
else
return 0 ;
}
void XEmitter : : WriteAVXOp ( u8 opPrefix , u16 op , X64Reg regOp1 , X64Reg regOp2 , OpArg arg , int extrabytes )
{
if ( ! Common : : cpu_info . bAVX )
ASSERT_MSG ( 0 , " Trying to use AVX on a system that doesn't support it. Bad programmer. " ) ;
int mmmmm = GetVEXmmmmm ( op ) ;
int pp = GetVEXpp ( opPrefix ) ;
// FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
arg . WriteVex ( this , regOp1 , regOp2 , 0 , pp , mmmmm ) ;
Write8 ( op & 0xFF ) ;
arg . WriteRest ( this , extrabytes , regOp1 ) ;
}
// Like the above, but more general; covers GPR-based VEX operations, like BMI1/2
void XEmitter : : WriteVEXOp ( int size , u8 opPrefix , u16 op , X64Reg regOp1 , X64Reg regOp2 , OpArg arg , int extrabytes )
{
if ( size ! = 32 & & size ! = 64 )
ASSERT_MSG ( 0 , " VEX GPR instructions only support 32-bit and 64-bit modes! " ) ;
int mmmmm = GetVEXmmmmm ( op ) ;
int pp = GetVEXpp ( opPrefix ) ;
arg . WriteVex ( this , regOp1 , regOp2 , 0 , pp , mmmmm , size = = 64 ) ;
Write8 ( op & 0xFF ) ;
arg . WriteRest ( this , extrabytes , regOp1 ) ;
}
void XEmitter : : WriteBMI1Op ( int size , u8 opPrefix , u16 op , X64Reg regOp1 , X64Reg regOp2 , OpArg arg , int extrabytes )
{
CheckFlags ( ) ;
if ( ! Common : : cpu_info . bBMI1 )
ASSERT_MSG ( 0 , " Trying to use BMI1 on a system that doesn't support it. Bad programmer. " ) ;
WriteVEXOp ( size , opPrefix , op , regOp1 , regOp2 , arg , extrabytes ) ;
}
void XEmitter : : WriteBMI2Op ( int size , u8 opPrefix , u16 op , X64Reg regOp1 , X64Reg regOp2 , OpArg arg , int extrabytes )
{
CheckFlags ( ) ;
if ( ! Common : : cpu_info . bBMI2 )
ASSERT_MSG ( 0 , " Trying to use BMI2 on a system that doesn't support it. Bad programmer. " ) ;
WriteVEXOp ( size , opPrefix , op , regOp1 , regOp2 , arg , extrabytes ) ;
}
void XEmitter : : MOVD_xmm ( X64Reg dest , const OpArg & arg ) { WriteSSEOp ( 0x66 , 0x6E , dest , arg , 0 ) ; }
void XEmitter : : MOVD_xmm ( const OpArg & arg , X64Reg src ) { WriteSSEOp ( 0x66 , 0x7E , src , arg , 0 ) ; }
void XEmitter : : MOVQ_xmm ( X64Reg dest , OpArg arg )
{
2015-08-12 06:00:44 +02:00
# ifdef ARCHITECTURE_X64
2015-07-22 02:08:49 +02:00
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg . operandReg = dest ;
Write8 ( 0x66 ) ;
arg . WriteRex ( this , 64 , 0 ) ;
Write8 ( 0x0f ) ;
Write8 ( 0x6E ) ;
arg . WriteRest ( this , 0 ) ;
# else
arg . operandReg = dest ;
Write8 ( 0xF3 ) ;
Write8 ( 0x0f ) ;
Write8 ( 0x7E ) ;
arg . WriteRest ( this , 0 ) ;
# endif
}
void XEmitter : : MOVQ_xmm ( OpArg arg , X64Reg src )
{
if ( src > 7 | | arg . IsSimpleReg ( ) )
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg . operandReg = src ;
Write8 ( 0x66 ) ;
arg . WriteRex ( this , 64 , 0 ) ;
Write8 ( 0x0f ) ;
Write8 ( 0x7E ) ;
arg . WriteRest ( this , 0 ) ;
}
else
{
arg . operandReg = src ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0x66 ) ;
Write8 ( 0x0f ) ;
Write8 ( 0xD6 ) ;
arg . WriteRest ( this , 0 ) ;
}
}
void XEmitter : : WriteMXCSR ( OpArg arg , int ext )
{
if ( arg . IsImm ( ) | | arg . IsSimpleReg ( ) )
ASSERT_MSG ( 0 , " MXCSR - invalid operand " ) ;
arg . operandReg = ext ;
arg . WriteRex ( this , 0 , 0 ) ;
Write8 ( 0x0F ) ;
Write8 ( 0xAE ) ;
arg . WriteRest ( this ) ;
}
void XEmitter : : STMXCSR ( OpArg memloc ) { WriteMXCSR ( memloc , 3 ) ; }
void XEmitter : : LDMXCSR ( OpArg memloc ) { WriteMXCSR ( memloc , 2 ) ; }
void XEmitter : : MOVNTDQ ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVNTDQ , regOp , arg ) ; }
void XEmitter : : MOVNTPS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x00 , sseMOVNTP , regOp , arg ) ; }
void XEmitter : : MOVNTPD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVNTP , regOp , arg ) ; }
void XEmitter : : ADDSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseADD , regOp , arg ) ; }
void XEmitter : : ADDSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseADD , regOp , arg ) ; }
void XEmitter : : SUBSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseSUB , regOp , arg ) ; }
void XEmitter : : SUBSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseSUB , regOp , arg ) ; }
void XEmitter : : CMPSS ( X64Reg regOp , OpArg arg , u8 compare ) { WriteSSEOp ( 0xF3 , sseCMP , regOp , arg , 1 ) ; Write8 ( compare ) ; }
void XEmitter : : CMPSD ( X64Reg regOp , OpArg arg , u8 compare ) { WriteSSEOp ( 0xF2 , sseCMP , regOp , arg , 1 ) ; Write8 ( compare ) ; }
void XEmitter : : MULSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseMUL , regOp , arg ) ; }
void XEmitter : : MULSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseMUL , regOp , arg ) ; }
void XEmitter : : DIVSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseDIV , regOp , arg ) ; }
void XEmitter : : DIVSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseDIV , regOp , arg ) ; }
void XEmitter : : MINSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseMIN , regOp , arg ) ; }
void XEmitter : : MINSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseMIN , regOp , arg ) ; }
void XEmitter : : MAXSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseMAX , regOp , arg ) ; }
void XEmitter : : MAXSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseMAX , regOp , arg ) ; }
void XEmitter : : SQRTSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseSQRT , regOp , arg ) ; }
void XEmitter : : SQRTSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseSQRT , regOp , arg ) ; }
void XEmitter : : RSQRTSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseRSQRT , regOp , arg ) ; }
void XEmitter : : ADDPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseADD , regOp , arg ) ; }
void XEmitter : : ADDPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseADD , regOp , arg ) ; }
void XEmitter : : SUBPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseSUB , regOp , arg ) ; }
void XEmitter : : SUBPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseSUB , regOp , arg ) ; }
void XEmitter : : CMPPS ( X64Reg regOp , OpArg arg , u8 compare ) { WriteSSEOp ( 0x00 , sseCMP , regOp , arg , 1 ) ; Write8 ( compare ) ; }
void XEmitter : : CMPPD ( X64Reg regOp , OpArg arg , u8 compare ) { WriteSSEOp ( 0x66 , sseCMP , regOp , arg , 1 ) ; Write8 ( compare ) ; }
void XEmitter : : ANDPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseAND , regOp , arg ) ; }
void XEmitter : : ANDPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseAND , regOp , arg ) ; }
void XEmitter : : ANDNPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseANDN , regOp , arg ) ; }
void XEmitter : : ANDNPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseANDN , regOp , arg ) ; }
void XEmitter : : ORPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseOR , regOp , arg ) ; }
void XEmitter : : ORPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseOR , regOp , arg ) ; }
void XEmitter : : XORPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseXOR , regOp , arg ) ; }
void XEmitter : : XORPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseXOR , regOp , arg ) ; }
void XEmitter : : MULPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMUL , regOp , arg ) ; }
void XEmitter : : MULPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMUL , regOp , arg ) ; }
void XEmitter : : DIVPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseDIV , regOp , arg ) ; }
void XEmitter : : DIVPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseDIV , regOp , arg ) ; }
void XEmitter : : MINPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMIN , regOp , arg ) ; }
void XEmitter : : MINPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMIN , regOp , arg ) ; }
void XEmitter : : MAXPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMAX , regOp , arg ) ; }
void XEmitter : : MAXPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMAX , regOp , arg ) ; }
void XEmitter : : SQRTPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseSQRT , regOp , arg ) ; }
void XEmitter : : SQRTPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseSQRT , regOp , arg ) ; }
void XEmitter : : RCPPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseRCP , regOp , arg ) ; }
void XEmitter : : RSQRTPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseRSQRT , regOp , arg ) ; }
void XEmitter : : SHUFPS ( X64Reg regOp , OpArg arg , u8 shuffle ) { WriteSSEOp ( 0x00 , sseSHUF , regOp , arg , 1 ) ; Write8 ( shuffle ) ; }
void XEmitter : : SHUFPD ( X64Reg regOp , OpArg arg , u8 shuffle ) { WriteSSEOp ( 0x66 , sseSHUF , regOp , arg , 1 ) ; Write8 ( shuffle ) ; }
void XEmitter : : HADDPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseHADD , regOp , arg ) ; }
void XEmitter : : COMISS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseCOMIS , regOp , arg ) ; } //weird that these should be packed
void XEmitter : : COMISD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseCOMIS , regOp , arg ) ; } //ordered
void XEmitter : : UCOMISS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseUCOMIS , regOp , arg ) ; } //unordered
void XEmitter : : UCOMISD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseUCOMIS , regOp , arg ) ; }
void XEmitter : : MOVAPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMOVAPfromRM , regOp , arg ) ; }
void XEmitter : : MOVAPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMOVAPfromRM , regOp , arg ) ; }
void XEmitter : : MOVAPS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x00 , sseMOVAPtoRM , regOp , arg ) ; }
void XEmitter : : MOVAPD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVAPtoRM , regOp , arg ) ; }
void XEmitter : : MOVUPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMOVUPfromRM , regOp , arg ) ; }
void XEmitter : : MOVUPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMOVUPfromRM , regOp , arg ) ; }
void XEmitter : : MOVUPS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x00 , sseMOVUPtoRM , regOp , arg ) ; }
void XEmitter : : MOVUPD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVUPtoRM , regOp , arg ) ; }
void XEmitter : : MOVDQA ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMOVDQfromRM , regOp , arg ) ; }
void XEmitter : : MOVDQA ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVDQtoRM , regOp , arg ) ; }
void XEmitter : : MOVDQU ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseMOVDQfromRM , regOp , arg ) ; }
void XEmitter : : MOVDQU ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0xF3 , sseMOVDQtoRM , regOp , arg ) ; }
void XEmitter : : MOVSS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , sseMOVUPfromRM , regOp , arg ) ; }
void XEmitter : : MOVSD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , sseMOVUPfromRM , regOp , arg ) ; }
void XEmitter : : MOVSS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0xF3 , sseMOVUPtoRM , regOp , arg ) ; }
void XEmitter : : MOVSD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0xF2 , sseMOVUPtoRM , regOp , arg ) ; }
void XEmitter : : MOVLPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMOVLPfromRM , regOp , arg ) ; }
void XEmitter : : MOVLPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMOVLPfromRM , regOp , arg ) ; }
void XEmitter : : MOVLPS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x00 , sseMOVLPtoRM , regOp , arg ) ; }
void XEmitter : : MOVLPD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVLPtoRM , regOp , arg ) ; }
void XEmitter : : MOVHPS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , sseMOVHPfromRM , regOp , arg ) ; }
void XEmitter : : MOVHPD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , sseMOVHPfromRM , regOp , arg ) ; }
void XEmitter : : MOVHPS ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x00 , sseMOVHPtoRM , regOp , arg ) ; }
void XEmitter : : MOVHPD ( OpArg arg , X64Reg regOp ) { WriteSSEOp ( 0x66 , sseMOVHPtoRM , regOp , arg ) ; }
void XEmitter : : MOVHLPS ( X64Reg regOp1 , X64Reg regOp2 ) { WriteSSEOp ( 0x00 , sseMOVHLPS , regOp1 , R ( regOp2 ) ) ; }
void XEmitter : : MOVLHPS ( X64Reg regOp1 , X64Reg regOp2 ) { WriteSSEOp ( 0x00 , sseMOVLHPS , regOp1 , R ( regOp2 ) ) ; }
void XEmitter : : CVTPS2PD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , 0x5A , regOp , arg ) ; }
void XEmitter : : CVTPD2PS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , 0x5A , regOp , arg ) ; }
void XEmitter : : CVTSD2SS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , 0x5A , regOp , arg ) ; }
void XEmitter : : CVTSS2SD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0x5A , regOp , arg ) ; }
void XEmitter : : CVTSD2SI ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , 0x2D , regOp , arg ) ; }
void XEmitter : : CVTSS2SI ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0x2D , regOp , arg ) ; }
void XEmitter : : CVTSI2SD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , 0x2A , regOp , arg ) ; }
void XEmitter : : CVTSI2SS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0x2A , regOp , arg ) ; }
void XEmitter : : CVTDQ2PD ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0xE6 , regOp , arg ) ; }
void XEmitter : : CVTDQ2PS ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x00 , 0x5B , regOp , arg ) ; }
void XEmitter : : CVTPD2DQ ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , 0xE6 , regOp , arg ) ; }
void XEmitter : : CVTPS2DQ ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , 0x5B , regOp , arg ) ; }
void XEmitter : : CVTTSD2SI ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF2 , 0x2C , regOp , arg ) ; }
void XEmitter : : CVTTSS2SI ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0x2C , regOp , arg ) ; }
void XEmitter : : CVTTPS2DQ ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0xF3 , 0x5B , regOp , arg ) ; }
void XEmitter : : CVTTPD2DQ ( X64Reg regOp , OpArg arg ) { WriteSSEOp ( 0x66 , 0xE6 , regOp , arg ) ; }
void XEmitter : : MASKMOVDQU ( X64Reg dest , X64Reg src ) { WriteSSEOp ( 0x66 , sseMASKMOVDQU , dest , R ( src ) ) ; }
void XEmitter : : MOVMSKPS ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x00 , 0x50 , dest , arg ) ; }
void XEmitter : : MOVMSKPD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x50 , dest , arg ) ; }
void XEmitter : : LDDQU ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0xF2 , sseLDDQU , dest , arg ) ; } // For integer data only
// THESE TWO ARE UNTESTED.
void XEmitter : : UNPCKLPS ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x00 , 0x14 , dest , arg ) ; }
void XEmitter : : UNPCKHPS ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x00 , 0x15 , dest , arg ) ; }
void XEmitter : : UNPCKLPD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x14 , dest , arg ) ; }
void XEmitter : : UNPCKHPD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x15 , dest , arg ) ; }
void XEmitter : : MOVDDUP ( X64Reg regOp , OpArg arg )
{
if ( Common : : cpu_info . bSSE3 )
{
WriteSSEOp ( 0xF2 , 0x12 , regOp , arg ) ; //SSE3 movddup
}
else
{
// Simulate this instruction with SSE2 instructions
if ( ! arg . IsSimpleReg ( regOp ) )
MOVSD ( regOp , arg ) ;
UNPCKLPD ( regOp , R ( regOp ) ) ;
}
}
//There are a few more left
// Also some integer instructions are missing
void XEmitter : : PACKSSDW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x6B , dest , arg ) ; }
void XEmitter : : PACKSSWB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x63 , dest , arg ) ; }
void XEmitter : : PACKUSWB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x67 , dest , arg ) ; }
void XEmitter : : PUNPCKLBW ( X64Reg dest , const OpArg & arg ) { WriteSSEOp ( 0x66 , 0x60 , dest , arg ) ; }
void XEmitter : : PUNPCKLWD ( X64Reg dest , const OpArg & arg ) { WriteSSEOp ( 0x66 , 0x61 , dest , arg ) ; }
void XEmitter : : PUNPCKLDQ ( X64Reg dest , const OpArg & arg ) { WriteSSEOp ( 0x66 , 0x62 , dest , arg ) ; }
void XEmitter : : PUNPCKLQDQ ( X64Reg dest , const OpArg & arg ) { WriteSSEOp ( 0x66 , 0x6C , dest , arg ) ; }
void XEmitter : : PSRLW ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x71 , ( X64Reg ) 2 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSRLD ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x72 , ( X64Reg ) 2 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSRLQ ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x73 , ( X64Reg ) 2 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSRLQ ( X64Reg reg , OpArg arg )
{
WriteSSEOp ( 0x66 , 0xd3 , reg , arg ) ;
}
void XEmitter : : PSRLDQ ( X64Reg reg , int shift ) {
WriteSSEOp ( 0x66 , 0x73 , ( X64Reg ) 3 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSLLW ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x71 , ( X64Reg ) 6 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSLLD ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x72 , ( X64Reg ) 6 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSLLQ ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x73 , ( X64Reg ) 6 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSLLDQ ( X64Reg reg , int shift ) {
WriteSSEOp ( 0x66 , 0x73 , ( X64Reg ) 7 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSRAW ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x71 , ( X64Reg ) 4 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : PSRAD ( X64Reg reg , int shift )
{
WriteSSEOp ( 0x66 , 0x72 , ( X64Reg ) 4 , R ( reg ) ) ;
Write8 ( shift ) ;
}
void XEmitter : : WriteSSSE3Op ( u8 opPrefix , u16 op , X64Reg regOp , OpArg arg , int extrabytes )
{
if ( ! Common : : cpu_info . bSSSE3 )
ASSERT_MSG ( 0 , " Trying to use SSSE3 on a system that doesn't support it. Bad programmer. " ) ;
WriteSSEOp ( opPrefix , op , regOp , arg , extrabytes ) ;
}
void XEmitter : : WriteSSE41Op ( u8 opPrefix , u16 op , X64Reg regOp , OpArg arg , int extrabytes )
{
if ( ! Common : : cpu_info . bSSE4_1 )
ASSERT_MSG ( 0 , " Trying to use SSE4.1 on a system that doesn't support it. Bad programmer. " ) ;
WriteSSEOp ( opPrefix , op , regOp , arg , extrabytes ) ;
}
void XEmitter : : PSHUFB ( X64Reg dest , OpArg arg ) { WriteSSSE3Op ( 0x66 , 0x3800 , dest , arg ) ; }
void XEmitter : : PTEST ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3817 , dest , arg ) ; }
void XEmitter : : PACKUSDW ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x382b , dest , arg ) ; }
void XEmitter : : DPPS ( X64Reg dest , OpArg arg , u8 mask ) { WriteSSE41Op ( 0x66 , 0x3A40 , dest , arg , 1 ) ; Write8 ( mask ) ; }
void XEmitter : : PMINSB ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3838 , dest , arg ) ; }
void XEmitter : : PMINSD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3839 , dest , arg ) ; }
void XEmitter : : PMINUW ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383a , dest , arg ) ; }
void XEmitter : : PMINUD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383b , dest , arg ) ; }
void XEmitter : : PMAXSB ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383c , dest , arg ) ; }
void XEmitter : : PMAXSD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383d , dest , arg ) ; }
void XEmitter : : PMAXUW ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383e , dest , arg ) ; }
void XEmitter : : PMAXUD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x383f , dest , arg ) ; }
void XEmitter : : PMOVSXBW ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3820 , dest , arg ) ; }
void XEmitter : : PMOVSXBD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3821 , dest , arg ) ; }
void XEmitter : : PMOVSXBQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3822 , dest , arg ) ; }
void XEmitter : : PMOVSXWD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3823 , dest , arg ) ; }
void XEmitter : : PMOVSXWQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3824 , dest , arg ) ; }
void XEmitter : : PMOVSXDQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3825 , dest , arg ) ; }
void XEmitter : : PMOVZXBW ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3830 , dest , arg ) ; }
void XEmitter : : PMOVZXBD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3831 , dest , arg ) ; }
void XEmitter : : PMOVZXBQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3832 , dest , arg ) ; }
void XEmitter : : PMOVZXWD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3833 , dest , arg ) ; }
void XEmitter : : PMOVZXWQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3834 , dest , arg ) ; }
void XEmitter : : PMOVZXDQ ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3835 , dest , arg ) ; }
void XEmitter : : PBLENDVB ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3810 , dest , arg ) ; }
void XEmitter : : BLENDVPS ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3814 , dest , arg ) ; }
void XEmitter : : BLENDVPD ( X64Reg dest , OpArg arg ) { WriteSSE41Op ( 0x66 , 0x3815 , dest , arg ) ; }
void XEmitter : : BLENDPS ( X64Reg dest , const OpArg & arg , u8 blend ) { WriteSSE41Op ( 0x66 , 0x3A0C , dest , arg , 1 ) ; Write8 ( blend ) ; }
void XEmitter : : BLENDPD ( X64Reg dest , const OpArg & arg , u8 blend ) { WriteSSE41Op ( 0x66 , 0x3A0D , dest , arg , 1 ) ; Write8 ( blend ) ; }
void XEmitter : : ROUNDSS ( X64Reg dest , OpArg arg , u8 mode ) { WriteSSE41Op ( 0x66 , 0x3A0A , dest , arg , 1 ) ; Write8 ( mode ) ; }
void XEmitter : : ROUNDSD ( X64Reg dest , OpArg arg , u8 mode ) { WriteSSE41Op ( 0x66 , 0x3A0B , dest , arg , 1 ) ; Write8 ( mode ) ; }
void XEmitter : : ROUNDPS ( X64Reg dest , OpArg arg , u8 mode ) { WriteSSE41Op ( 0x66 , 0x3A08 , dest , arg , 1 ) ; Write8 ( mode ) ; }
void XEmitter : : ROUNDPD ( X64Reg dest , OpArg arg , u8 mode ) { WriteSSE41Op ( 0x66 , 0x3A09 , dest , arg , 1 ) ; Write8 ( mode ) ; }
void XEmitter : : PAND ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDB , dest , arg ) ; }
void XEmitter : : PANDN ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDF , dest , arg ) ; }
void XEmitter : : PXOR ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xEF , dest , arg ) ; }
void XEmitter : : POR ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xEB , dest , arg ) ; }
void XEmitter : : PADDB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xFC , dest , arg ) ; }
void XEmitter : : PADDW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xFD , dest , arg ) ; }
void XEmitter : : PADDD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xFE , dest , arg ) ; }
void XEmitter : : PADDQ ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xD4 , dest , arg ) ; }
void XEmitter : : PADDSB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xEC , dest , arg ) ; }
void XEmitter : : PADDSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xED , dest , arg ) ; }
void XEmitter : : PADDUSB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDC , dest , arg ) ; }
void XEmitter : : PADDUSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDD , dest , arg ) ; }
void XEmitter : : PSUBB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xF8 , dest , arg ) ; }
void XEmitter : : PSUBW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xF9 , dest , arg ) ; }
void XEmitter : : PSUBD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xFA , dest , arg ) ; }
void XEmitter : : PSUBQ ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xFB , dest , arg ) ; }
void XEmitter : : PSUBSB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xE8 , dest , arg ) ; }
void XEmitter : : PSUBSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xE9 , dest , arg ) ; }
void XEmitter : : PSUBUSB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xD8 , dest , arg ) ; }
void XEmitter : : PSUBUSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xD9 , dest , arg ) ; }
void XEmitter : : PAVGB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xE0 , dest , arg ) ; }
void XEmitter : : PAVGW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xE3 , dest , arg ) ; }
void XEmitter : : PCMPEQB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x74 , dest , arg ) ; }
void XEmitter : : PCMPEQW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x75 , dest , arg ) ; }
void XEmitter : : PCMPEQD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x76 , dest , arg ) ; }
void XEmitter : : PCMPGTB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x64 , dest , arg ) ; }
void XEmitter : : PCMPGTW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x65 , dest , arg ) ; }
void XEmitter : : PCMPGTD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0x66 , dest , arg ) ; }
void XEmitter : : PEXTRW ( X64Reg dest , OpArg arg , u8 subreg ) { WriteSSEOp ( 0x66 , 0xC5 , dest , arg , 1 ) ; Write8 ( subreg ) ; }
void XEmitter : : PINSRW ( X64Reg dest , OpArg arg , u8 subreg ) { WriteSSEOp ( 0x66 , 0xC4 , dest , arg , 1 ) ; Write8 ( subreg ) ; }
void XEmitter : : PMADDWD ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xF5 , dest , arg ) ; }
void XEmitter : : PSADBW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xF6 , dest , arg ) ; }
void XEmitter : : PMAXSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xEE , dest , arg ) ; }
void XEmitter : : PMAXUB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDE , dest , arg ) ; }
void XEmitter : : PMINSW ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xEA , dest , arg ) ; }
void XEmitter : : PMINUB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xDA , dest , arg ) ; }
void XEmitter : : PMOVMSKB ( X64Reg dest , OpArg arg ) { WriteSSEOp ( 0x66 , 0xD7 , dest , arg ) ; }
void XEmitter : : PSHUFD ( X64Reg regOp , OpArg arg , u8 shuffle ) { WriteSSEOp ( 0x66 , 0x70 , regOp , arg , 1 ) ; Write8 ( shuffle ) ; }
void XEmitter : : PSHUFLW ( X64Reg regOp , OpArg arg , u8 shuffle ) { WriteSSEOp ( 0xF2 , 0x70 , regOp , arg , 1 ) ; Write8 ( shuffle ) ; }
void XEmitter : : PSHUFHW ( X64Reg regOp , OpArg arg , u8 shuffle ) { WriteSSEOp ( 0xF3 , 0x70 , regOp , arg , 1 ) ; Write8 ( shuffle ) ; }
// VEX
void XEmitter : : VADDSD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0xF2 , sseADD , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VSUBSD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0xF2 , sseSUB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VMULSD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0xF2 , sseMUL , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VDIVSD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0xF2 , sseDIV , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VADDPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseADD , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VSUBPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseSUB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VMULPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseMUL , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VDIVPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseDIV , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VSQRTSD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0xF2 , sseSQRT , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VSHUFPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg , u8 shuffle ) { WriteAVXOp ( 0x66 , sseSHUF , regOp1 , regOp2 , arg , 1 ) ; Write8 ( shuffle ) ; }
void XEmitter : : VUNPCKLPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x14 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VUNPCKHPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x15 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VANDPS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x00 , sseAND , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VANDPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseAND , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VANDNPS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x00 , sseANDN , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VANDNPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseANDN , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VORPS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x00 , sseOR , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VORPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseOR , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VXORPS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x00 , sseXOR , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VXORPD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , sseXOR , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VPAND ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0xDB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VPANDN ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0xDF , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VPOR ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0xEB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VPXOR ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0xEF , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3898 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A8 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B8 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3898 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADD213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A8 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADD231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B8 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADD132SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3899 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD213SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A9 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD231SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B9 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADD132SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3899 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADD213SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A9 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADD231SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B9 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389A , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AA , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BA , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389A , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AA , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BA , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB132SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389B , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB213SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB231SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BB , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUB132SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389B , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB213SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AB , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUB231SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BB , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389C , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AC , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BC , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389C , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AC , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BC , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD132SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389D , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD213SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AD , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD231SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BD , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMADD132SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389D , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD213SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AD , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMADD231SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BD , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389E , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AE , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BE , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389E , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AE , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BE , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB132SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389F , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB213SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AF , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB231SS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BF , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFNMSUB132SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x389F , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB213SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38AF , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFNMSUB231SD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38BF , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADDSUB132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3896 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADDSUB213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A6 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADDSUB231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B6 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMADDSUB132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3896 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADDSUB213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A6 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMADDSUB231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B6 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUBADD132PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3897 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUBADD213PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUBADD231PS ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : VFMSUBADD132PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x3897 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUBADD213PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38A7 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : VFMSUBADD231PD ( X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteAVXOp ( 0x66 , 0x38B7 , regOp1 , regOp2 , arg , 1 ) ; }
void XEmitter : : SARX ( int bits , X64Reg regOp1 , OpArg arg , X64Reg regOp2 ) { WriteBMI2Op ( bits , 0xF3 , 0x38F7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : SHLX ( int bits , X64Reg regOp1 , OpArg arg , X64Reg regOp2 ) { WriteBMI2Op ( bits , 0x66 , 0x38F7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : SHRX ( int bits , X64Reg regOp1 , OpArg arg , X64Reg regOp2 ) { WriteBMI2Op ( bits , 0xF2 , 0x38F7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : RORX ( int bits , X64Reg regOp , OpArg arg , u8 rotate ) { WriteBMI2Op ( bits , 0xF2 , 0x3AF0 , regOp , INVALID_REG , arg , 1 ) ; Write8 ( rotate ) ; }
void XEmitter : : PEXT ( int bits , X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteBMI2Op ( bits , 0xF3 , 0x38F5 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : PDEP ( int bits , X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteBMI2Op ( bits , 0xF2 , 0x38F5 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : MULX ( int bits , X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteBMI2Op ( bits , 0xF2 , 0x38F6 , regOp2 , regOp1 , arg ) ; }
void XEmitter : : BZHI ( int bits , X64Reg regOp1 , OpArg arg , X64Reg regOp2 ) { WriteBMI2Op ( bits , 0x00 , 0x38F5 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : BLSR ( int bits , X64Reg regOp , OpArg arg ) { WriteBMI1Op ( bits , 0x00 , 0x38F3 , ( X64Reg ) 0x1 , regOp , arg ) ; }
void XEmitter : : BLSMSK ( int bits , X64Reg regOp , OpArg arg ) { WriteBMI1Op ( bits , 0x00 , 0x38F3 , ( X64Reg ) 0x2 , regOp , arg ) ; }
void XEmitter : : BLSI ( int bits , X64Reg regOp , OpArg arg ) { WriteBMI1Op ( bits , 0x00 , 0x38F3 , ( X64Reg ) 0x3 , regOp , arg ) ; }
void XEmitter : : BEXTR ( int bits , X64Reg regOp1 , OpArg arg , X64Reg regOp2 ) { WriteBMI1Op ( bits , 0x00 , 0x38F7 , regOp1 , regOp2 , arg ) ; }
void XEmitter : : ANDN ( int bits , X64Reg regOp1 , X64Reg regOp2 , OpArg arg ) { WriteBMI1Op ( bits , 0x00 , 0x38F2 , regOp1 , regOp2 , arg ) ; }
// Prefixes
void XEmitter : : LOCK ( ) { Write8 ( 0xF0 ) ; }
void XEmitter : : REP ( ) { Write8 ( 0xF3 ) ; }
void XEmitter : : REPNE ( ) { Write8 ( 0xF2 ) ; }
void XEmitter : : FSOverride ( ) { Write8 ( 0x64 ) ; }
void XEmitter : : GSOverride ( ) { Write8 ( 0x65 ) ; }
void XEmitter : : FWAIT ( )
{
Write8 ( 0x9B ) ;
}
// TODO: make this more generic
void XEmitter : : WriteFloatLoadStore ( int bits , FloatOp op , FloatOp op_80b , OpArg arg )
{
int mf = 0 ;
ASSERT_MSG ( ! ( bits = = 80 & & op_80b = = floatINVALID ) , " WriteFloatLoadStore: 80 bits not supported for this instruction " ) ;
switch ( bits )
{
case 32 : mf = 0 ; break ;
case 64 : mf = 4 ; break ;
case 80 : mf = 2 ; break ;
default : ASSERT_MSG ( 0 , " WriteFloatLoadStore: invalid bits (should be 32/64/80) " ) ;
}
Write8 ( 0xd9 | mf ) ;
// x87 instructions use the reg field of the ModR/M byte as opcode:
if ( bits = = 80 )
op = op_80b ;
arg . WriteRest ( this , 0 , ( X64Reg ) op ) ;
}
void XEmitter : : FLD ( int bits , OpArg src ) { WriteFloatLoadStore ( bits , floatLD , floatLD80 , src ) ; }
void XEmitter : : FST ( int bits , OpArg dest ) { WriteFloatLoadStore ( bits , floatST , floatINVALID , dest ) ; }
void XEmitter : : FSTP ( int bits , OpArg dest ) { WriteFloatLoadStore ( bits , floatSTP , floatSTP80 , dest ) ; }
void XEmitter : : FNSTSW_AX ( ) { Write8 ( 0xDF ) ; Write8 ( 0xE0 ) ; }
void XEmitter : : RDTSC ( ) { Write8 ( 0x0F ) ; Write8 ( 0x31 ) ; }
void XCodeBlock : : PoisonMemory ( ) {
// x86/64: 0xCC = breakpoint
memset ( region , 0xCC , region_size ) ;
}
}