Merge pull request from FearlessTobi/port-4182

Port  from Citra: "Prefix all size_t with std::"
This commit is contained in:
bunnei 2018-09-17 09:51:47 -04:00 committed by GitHub
commit 076add4ccd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
146 changed files with 778 additions and 749 deletions

View file

@ -35,12 +35,12 @@ Filter::Filter(double a0, double a1, double a2, double b0, double b1, double b2)
: a1(a1 / a0), a2(a2 / a0), b0(b0 / a0), b1(b1 / a0), b2(b2 / a0) {}
void Filter::Process(std::vector<s16>& signal) {
const size_t num_frames = signal.size() / 2;
for (size_t i = 0; i < num_frames; i++) {
const std::size_t num_frames = signal.size() / 2;
for (std::size_t i = 0; i < num_frames; i++) {
std::rotate(in.begin(), in.end() - 1, in.end());
std::rotate(out.begin(), out.end() - 1, out.end());
for (size_t ch = 0; ch < channel_count; ch++) {
for (std::size_t ch = 0; ch < channel_count; ch++) {
in[0][ch] = signal[i * channel_count + ch];
out[0][ch] = b0 * in[0][ch] + b1 * in[1][ch] + b2 * in[2][ch] - a1 * out[1][ch] -
@ -54,14 +54,14 @@ void Filter::Process(std::vector<s16>& signal) {
/// Calculates the appropriate Q for each biquad in a cascading filter.
/// @param total_count The total number of biquads to be cascaded.
/// @param index 0-index of the biquad to calculate the Q value for.
static double CascadingBiquadQ(size_t total_count, size_t index) {
static double CascadingBiquadQ(std::size_t total_count, std::size_t index) {
const double pole = M_PI * (2 * index + 1) / (4.0 * total_count);
return 1.0 / (2.0 * std::cos(pole));
}
CascadingFilter CascadingFilter::LowPass(double cutoff, size_t cascade_size) {
CascadingFilter CascadingFilter::LowPass(double cutoff, std::size_t cascade_size) {
std::vector<Filter> cascade(cascade_size);
for (size_t i = 0; i < cascade_size; i++) {
for (std::size_t i = 0; i < cascade_size; i++) {
cascade[i] = Filter::LowPass(cutoff, CascadingBiquadQ(cascade_size, i));
}
return CascadingFilter{std::move(cascade)};

View file

@ -30,7 +30,7 @@ public:
void Process(std::vector<s16>& signal);
private:
static constexpr size_t channel_count = 2;
static constexpr std::size_t channel_count = 2;
/// Coefficients are in normalized form (a0 = 1.0).
double a1, a2, b0, b1, b2;
@ -46,7 +46,7 @@ public:
/// Creates a cascading low-pass filter.
/// @param cutoff Determines the cutoff frequency. A value from 0.0 to 1.0.
/// @param cascade_size Number of biquads in cascade.
static CascadingFilter LowPass(double cutoff, size_t cascade_size);
static CascadingFilter LowPass(double cutoff, std::size_t cascade_size);
/// Passthrough.
CascadingFilter();

View file

@ -14,7 +14,7 @@
namespace AudioCore {
/// The Lanczos kernel
static double Lanczos(size_t a, double x) {
static double Lanczos(std::size_t a, double x) {
if (x == 0.0)
return 1.0;
const double px = M_PI * x;
@ -37,15 +37,15 @@ std::vector<s16> Interpolate(InterpolationState& state, std::vector<s16> input,
}
state.nyquist.Process(input);
constexpr size_t taps = InterpolationState::lanczos_taps;
const size_t num_frames = input.size() / 2;
constexpr std::size_t taps = InterpolationState::lanczos_taps;
const std::size_t num_frames = input.size() / 2;
std::vector<s16> output;
output.reserve(static_cast<size_t>(input.size() / ratio + 4));
output.reserve(static_cast<std::size_t>(input.size() / ratio + 4));
double& pos = state.position;
auto& h = state.history;
for (size_t i = 0; i < num_frames; ++i) {
for (std::size_t i = 0; i < num_frames; ++i) {
std::rotate(h.begin(), h.end() - 1, h.end());
h[0][0] = input[i * 2 + 0];
h[0][1] = input[i * 2 + 1];
@ -53,7 +53,7 @@ std::vector<s16> Interpolate(InterpolationState& state, std::vector<s16> input,
while (pos <= 1.0) {
double l = 0.0;
double r = 0.0;
for (size_t j = 0; j < h.size(); j++) {
for (std::size_t j = 0; j < h.size(); j++) {
l += Lanczos(taps, pos + j - taps + 1) * h[j][0];
r += Lanczos(taps, pos + j - taps + 1) * h[j][1];
}

View file

@ -12,8 +12,8 @@
namespace AudioCore {
struct InterpolationState {
static constexpr size_t lanczos_taps = 4;
static constexpr size_t history_size = lanczos_taps * 2 - 1;
static constexpr std::size_t lanczos_taps = 4;
static constexpr std::size_t history_size = lanczos_taps * 2 - 1;
double current_ratio = 0.0;
CascadingFilter nyquist;

View file

@ -39,7 +39,8 @@ StreamPtr AudioOut::OpenStream(u32 sample_rate, u32 num_channels, std::string&&
sink->AcquireSinkStream(sample_rate, num_channels, name), std::move(name));
}
std::vector<Buffer::Tag> AudioOut::GetTagsAndReleaseBuffers(StreamPtr stream, size_t max_count) {
std::vector<Buffer::Tag> AudioOut::GetTagsAndReleaseBuffers(StreamPtr stream,
std::size_t max_count) {
return stream->GetTagsAndReleaseBuffers(max_count);
}

View file

@ -25,7 +25,7 @@ public:
Stream::ReleaseCallback&& release_callback);
/// Returns a vector of recently released buffers specified by tag for the specified stream
std::vector<Buffer::Tag> GetTagsAndReleaseBuffers(StreamPtr stream, size_t max_count);
std::vector<Buffer::Tag> GetTagsAndReleaseBuffers(StreamPtr stream, std::size_t max_count);
/// Starts an audio stream for playback
void StartStream(StreamPtr stream);

View file

@ -52,8 +52,8 @@ std::vector<u8> AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_
memory_pool_count * sizeof(MemoryPoolInfo));
// Copy VoiceInfo structs
size_t offset{sizeof(UpdateDataHeader) + config.behavior_size + config.memory_pools_size +
config.voice_resource_size};
std::size_t offset{sizeof(UpdateDataHeader) + config.behavior_size + config.memory_pools_size +
config.voice_resource_size};
for (auto& voice : voices) {
std::memcpy(&voice.Info(), input_params.data() + offset, sizeof(VoiceInfo));
offset += sizeof(VoiceInfo);
@ -72,7 +72,7 @@ std::vector<u8> AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_
// Update memory pool state
std::vector<MemoryPoolEntry> memory_pool(memory_pool_count);
for (size_t index = 0; index < memory_pool.size(); ++index) {
for (std::size_t index = 0; index < memory_pool.size(); ++index) {
if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestAttach) {
memory_pool[index].state = MemoryPoolStates::Attached;
} else if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestDetach) {
@ -93,7 +93,7 @@ std::vector<u8> AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_
response_data.memory_pools_size);
// Copy output voice status
size_t voice_out_status_offset{sizeof(UpdateDataHeader) + response_data.memory_pools_size};
std::size_t voice_out_status_offset{sizeof(UpdateDataHeader) + response_data.memory_pools_size};
for (const auto& voice : voices) {
std::memcpy(output_params.data() + voice_out_status_offset, &voice.GetOutStatus(),
sizeof(VoiceOutStatus));
@ -103,12 +103,12 @@ std::vector<u8> AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_
return output_params;
}
void AudioRenderer::VoiceState::SetWaveIndex(size_t index) {
void AudioRenderer::VoiceState::SetWaveIndex(std::size_t index) {
wave_index = index & 3;
is_refresh_pending = true;
}
std::vector<s16> AudioRenderer::VoiceState::DequeueSamples(size_t sample_count) {
std::vector<s16> AudioRenderer::VoiceState::DequeueSamples(std::size_t sample_count) {
if (!IsPlaying()) {
return {};
}
@ -117,9 +117,9 @@ std::vector<s16> AudioRenderer::VoiceState::DequeueSamples(size_t sample_count)
RefreshBuffer();
}
const size_t max_size{samples.size() - offset};
const size_t dequeue_offset{offset};
size_t size{sample_count * STREAM_NUM_CHANNELS};
const std::size_t max_size{samples.size() - offset};
const std::size_t dequeue_offset{offset};
std::size_t size{sample_count * STREAM_NUM_CHANNELS};
if (size > max_size) {
size = max_size;
}
@ -184,7 +184,7 @@ void AudioRenderer::VoiceState::RefreshBuffer() {
case 1:
// 1 channel is upsampled to 2 channel
samples.resize(new_samples.size() * 2);
for (size_t index = 0; index < new_samples.size(); ++index) {
for (std::size_t index = 0; index < new_samples.size(); ++index) {
samples[index * 2] = new_samples[index];
samples[index * 2 + 1] = new_samples[index];
}
@ -210,7 +210,7 @@ static constexpr s16 ClampToS16(s32 value) {
}
void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
constexpr size_t BUFFER_SIZE{512};
constexpr std::size_t BUFFER_SIZE{512};
std::vector<s16> buffer(BUFFER_SIZE * stream->GetNumChannels());
for (auto& voice : voices) {
@ -218,7 +218,7 @@ void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
continue;
}
size_t offset{};
std::size_t offset{};
s64 samples_remaining{BUFFER_SIZE};
while (samples_remaining > 0) {
const std::vector<s16> samples{voice.DequeueSamples(samples_remaining)};

View file

@ -184,16 +184,16 @@ private:
return info;
}
void SetWaveIndex(size_t index);
std::vector<s16> DequeueSamples(size_t sample_count);
void SetWaveIndex(std::size_t index);
std::vector<s16> DequeueSamples(std::size_t sample_count);
void UpdateState();
void RefreshBuffer();
private:
bool is_in_use{};
bool is_refresh_pending{};
size_t wave_index{};
size_t offset{};
std::size_t wave_index{};
std::size_t offset{};
Codec::ADPCMState adpcm_state{};
InterpolationState interp_state{};
std::vector<s16> samples;

View file

@ -8,27 +8,27 @@
namespace AudioCore::Codec {
std::vector<s16> DecodeADPCM(const u8* const data, size_t size, const ADPCM_Coeff& coeff,
std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM_Coeff& coeff,
ADPCMState& state) {
// GC-ADPCM with scale factor and variable coefficients.
// Frames are 8 bytes long containing 14 samples each.
// Samples are 4 bits (one nibble) long.
constexpr size_t FRAME_LEN = 8;
constexpr size_t SAMPLES_PER_FRAME = 14;
constexpr std::size_t FRAME_LEN = 8;
constexpr std::size_t SAMPLES_PER_FRAME = 14;
constexpr std::array<int, 16> SIGNED_NIBBLES = {
{0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1}};
const size_t sample_count = (size / FRAME_LEN) * SAMPLES_PER_FRAME;
const size_t ret_size =
const std::size_t sample_count = (size / FRAME_LEN) * SAMPLES_PER_FRAME;
const std::size_t ret_size =
sample_count % 2 == 0 ? sample_count : sample_count + 1; // Ensure multiple of two.
std::vector<s16> ret(ret_size);
int yn1 = state.yn1, yn2 = state.yn2;
const size_t NUM_FRAMES =
const std::size_t NUM_FRAMES =
(sample_count + (SAMPLES_PER_FRAME - 1)) / SAMPLES_PER_FRAME; // Round up.
for (size_t framei = 0; framei < NUM_FRAMES; framei++) {
for (std::size_t framei = 0; framei < NUM_FRAMES; framei++) {
const int frame_header = data[framei * FRAME_LEN];
const int scale = 1 << (frame_header & 0xF);
const int idx = (frame_header >> 4) & 0x7;
@ -53,9 +53,9 @@ std::vector<s16> DecodeADPCM(const u8* const data, size_t size, const ADPCM_Coef
return static_cast<s16>(val);
};
size_t outputi = framei * SAMPLES_PER_FRAME;
size_t datai = framei * FRAME_LEN + 1;
for (size_t i = 0; i < SAMPLES_PER_FRAME && outputi < sample_count; i += 2) {
std::size_t outputi = framei * SAMPLES_PER_FRAME;
std::size_t datai = framei * FRAME_LEN + 1;
for (std::size_t i = 0; i < SAMPLES_PER_FRAME && outputi < sample_count; i += 2) {
const s16 sample1 = decode_sample(SIGNED_NIBBLES[data[datai] >> 4]);
ret[outputi] = sample1;
outputi++;

View file

@ -38,7 +38,7 @@ using ADPCM_Coeff = std::array<s16, 16>;
* @param state ADPCM state, this is updated with new state
* @return Decoded stereo signed PCM16 data, sample_count in length
*/
std::vector<s16> DecodeADPCM(const u8* const data, size_t size, const ADPCM_Coeff& coeff,
std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM_Coeff& coeff,
ADPCMState& state);
}; // namespace AudioCore::Codec

View file

@ -63,8 +63,8 @@ public:
// Downsample 6 channels to 2
std::vector<s16> buf;
buf.reserve(samples.size() * num_channels / source_num_channels);
for (size_t i = 0; i < samples.size(); i += source_num_channels) {
for (size_t ch = 0; ch < num_channels; ch++) {
for (std::size_t i = 0; i < samples.size(); i += source_num_channels) {
for (std::size_t ch = 0; ch < num_channels; ch++) {
buf.push_back(samples[i + ch]);
}
}
@ -75,7 +75,7 @@ public:
queue.Push(samples);
}
size_t SamplesInQueue(u32 num_channels) const override {
std::size_t SamplesInQueue(u32 num_channels) const override {
if (!ctx)
return 0;
@ -159,15 +159,16 @@ long CubebSinkStream::DataCallback(cubeb_stream* stream, void* user_data, const
return {};
}
const size_t num_channels = impl->GetNumChannels();
const size_t samples_to_write = num_channels * num_frames;
size_t samples_written;
const std::size_t num_channels = impl->GetNumChannels();
const std::size_t samples_to_write = num_channels * num_frames;
std::size_t samples_written;
if (Settings::values.enable_audio_stretching) {
const std::vector<s16> in{impl->queue.Pop()};
const size_t num_in{in.size() / num_channels};
const std::size_t num_in{in.size() / num_channels};
s16* const out{reinterpret_cast<s16*>(buffer)};
const size_t out_frames = impl->time_stretch.Process(in.data(), num_in, out, num_frames);
const std::size_t out_frames =
impl->time_stretch.Process(in.data(), num_in, out, num_frames);
samples_written = out_frames * num_channels;
if (impl->should_flush) {
@ -184,7 +185,7 @@ long CubebSinkStream::DataCallback(cubeb_stream* stream, void* user_data, const
}
// Fill the rest of the frames with last_frame
for (size_t i = samples_written; i < samples_to_write; i += num_channels) {
for (std::size_t i = samples_written; i < samples_to_write; i += num_channels) {
std::memcpy(buffer + i * sizeof(s16), &impl->last_frame[0], num_channels * sizeof(s16));
}
@ -206,7 +207,7 @@ std::vector<std::string> ListCubebSinkDevices() {
if (cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
for (size_t i = 0; i < collection.count; i++) {
for (std::size_t i = 0; i < collection.count; i++) {
const cubeb_device_info& device = collection.device[i];
if (device.friendly_name) {
device_list.emplace_back(device.friendly_name);

View file

@ -22,7 +22,7 @@ private:
struct NullSinkStreamImpl final : SinkStream {
void EnqueueSamples(u32 /*num_channels*/, const std::vector<s16>& /*samples*/) override {}
size_t SamplesInQueue(u32 /*num_channels*/) const override {
std::size_t SamplesInQueue(u32 /*num_channels*/) const override {
return 0;
}

View file

@ -17,7 +17,7 @@
namespace AudioCore {
constexpr size_t MaxAudioBufferCount{32};
constexpr std::size_t MaxAudioBufferCount{32};
u32 Stream::GetNumChannels() const {
switch (format) {
@ -52,7 +52,7 @@ void Stream::Stop() {
}
s64 Stream::GetBufferReleaseCycles(const Buffer& buffer) const {
const size_t num_samples{buffer.GetSamples().size() / GetNumChannels()};
const std::size_t num_samples{buffer.GetSamples().size() / GetNumChannels()};
return CoreTiming::usToCycles((static_cast<u64>(num_samples) * 1000000) / sample_rate);
}
@ -122,9 +122,9 @@ bool Stream::ContainsBuffer(Buffer::Tag tag) const {
return {};
}
std::vector<Buffer::Tag> Stream::GetTagsAndReleaseBuffers(size_t max_count) {
std::vector<Buffer::Tag> Stream::GetTagsAndReleaseBuffers(std::size_t max_count) {
std::vector<Buffer::Tag> tags;
for (size_t count = 0; count < max_count && !released_buffers.empty(); ++count) {
for (std::size_t count = 0; count < max_count && !released_buffers.empty(); ++count) {
tags.push_back(released_buffers.front()->GetTag());
released_buffers.pop();
}

View file

@ -49,7 +49,7 @@ public:
bool ContainsBuffer(Buffer::Tag tag) const;
/// Returns a vector of recently released buffers specified by tag
std::vector<Buffer::Tag> GetTagsAndReleaseBuffers(size_t max_count);
std::vector<Buffer::Tag> GetTagsAndReleaseBuffers(std::size_t max_count);
/// Returns true if the stream is currently playing
bool IsPlaying() const {
@ -57,7 +57,7 @@ public:
}
/// Returns the number of queued buffers
size_t GetQueueSize() const {
std::size_t GetQueueSize() const {
return queued_buffers.size();
}

View file

@ -26,7 +26,8 @@ void TimeStretcher::Flush() {
m_sound_touch.flush();
}
size_t TimeStretcher::Process(const s16* in, size_t num_in, s16* out, size_t num_out) {
std::size_t TimeStretcher::Process(const s16* in, std::size_t num_in, s16* out,
std::size_t num_out) {
const double time_delta = static_cast<double>(num_out) / m_sample_rate; // seconds
// We were given actual_samples number of samples, and num_samples were requested from us.

View file

@ -20,7 +20,7 @@ public:
/// @param out Output sample buffer
/// @param num_out Desired number of output frames in `out`
/// @returns Actual number of frames written to `out`
size_t Process(const s16* in, size_t num_in, s16* out, size_t num_out);
std::size_t Process(const s16* in, std::size_t num_in, s16* out, std::size_t num_out);
void Clear();

View file

@ -8,13 +8,13 @@
namespace Common {
template <typename T>
constexpr T AlignUp(T value, size_t size) {
constexpr T AlignUp(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>(value + (size - value % size) % size);
}
template <typename T>
constexpr T AlignDown(T value, size_t size) {
constexpr T AlignDown(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>(value - value % size);
}

View file

@ -129,8 +129,8 @@ private:
public:
/// Constants to allow limited introspection of fields if needed
static constexpr size_t position = Position;
static constexpr size_t bits = Bits;
static constexpr std::size_t position = Position;
static constexpr std::size_t bits = Bits;
static constexpr StorageType mask = (((StorageTypeU)~0) >> (8 * sizeof(T) - bits)) << position;
/**

View file

@ -170,14 +170,14 @@ public:
m_val |= (IntTy)1 << bit;
}
static BitSet AllTrue(size_t count) {
static BitSet AllTrue(std::size_t count) {
return BitSet(count == sizeof(IntTy) * 8 ? ~(IntTy)0 : (((IntTy)1 << count) - 1));
}
Ref operator[](size_t bit) {
Ref operator[](std::size_t bit) {
return Ref(this, (IntTy)1 << bit);
}
const Ref operator[](size_t bit) const {
const Ref operator[](std::size_t bit) const {
return (*const_cast<BitSet*>(this))[bit];
}
bool operator==(BitSet other) const {

View file

@ -114,7 +114,7 @@ static uint64 HashLen16(uint64 u, uint64 v, uint64 mul) {
return b;
}
static uint64 HashLen0to16(const char* s, size_t len) {
static uint64 HashLen0to16(const char* s, std::size_t len) {
if (len >= 8) {
uint64 mul = k2 + len * 2;
uint64 a = Fetch64(s) + k2;
@ -141,7 +141,7 @@ static uint64 HashLen0to16(const char* s, size_t len) {
// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64 HashLen17to32(const char* s, size_t len) {
static uint64 HashLen17to32(const char* s, std::size_t len) {
uint64 mul = k2 + len * 2;
uint64 a = Fetch64(s) * k1;
uint64 b = Fetch64(s + 8);
@ -170,7 +170,7 @@ static pair<uint64, uint64> WeakHashLen32WithSeeds(const char* s, uint64 a, uint
}
// Return an 8-byte hash for 33 to 64 bytes.
static uint64 HashLen33to64(const char* s, size_t len) {
static uint64 HashLen33to64(const char* s, std::size_t len) {
uint64 mul = k2 + len * 2;
uint64 a = Fetch64(s) * k2;
uint64 b = Fetch64(s + 8);
@ -191,7 +191,7 @@ static uint64 HashLen33to64(const char* s, size_t len) {
return b + x;
}
uint64 CityHash64(const char* s, size_t len) {
uint64 CityHash64(const char* s, std::size_t len) {
if (len <= 32) {
if (len <= 16) {
return HashLen0to16(s, len);
@ -212,7 +212,7 @@ uint64 CityHash64(const char* s, size_t len) {
x = x * k1 + Fetch64(s);
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
len = (len - 1) & ~static_cast<size_t>(63);
len = (len - 1) & ~static_cast<std::size_t>(63);
do {
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
@ -229,17 +229,17 @@ uint64 CityHash64(const char* s, size_t len) {
HashLen16(v.second, w.second) + x);
}
uint64 CityHash64WithSeed(const char* s, size_t len, uint64 seed) {
uint64 CityHash64WithSeed(const char* s, std::size_t len, uint64 seed) {
return CityHash64WithSeeds(s, len, k2, seed);
}
uint64 CityHash64WithSeeds(const char* s, size_t len, uint64 seed0, uint64 seed1) {
uint64 CityHash64WithSeeds(const char* s, std::size_t len, uint64 seed0, uint64 seed1) {
return HashLen16(CityHash64(s, len) - seed0, seed1);
}
// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings
// of any length representable in signed long. Based on City and Murmur.
static uint128 CityMurmur(const char* s, size_t len, uint128 seed) {
static uint128 CityMurmur(const char* s, std::size_t len, uint128 seed) {
uint64 a = Uint128Low64(seed);
uint64 b = Uint128High64(seed);
uint64 c = 0;
@ -269,7 +269,7 @@ static uint128 CityMurmur(const char* s, size_t len, uint128 seed) {
return uint128(a ^ b, HashLen16(b, a));
}
uint128 CityHash128WithSeed(const char* s, size_t len, uint128 seed) {
uint128 CityHash128WithSeed(const char* s, std::size_t len, uint128 seed) {
if (len < 128) {
return CityMurmur(s, len, seed);
}
@ -313,7 +313,7 @@ uint128 CityHash128WithSeed(const char* s, size_t len, uint128 seed) {
w.first *= 9;
v.first *= k0;
// If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
for (size_t tail_done = 0; tail_done < len;) {
for (std::size_t tail_done = 0; tail_done < len;) {
tail_done += 32;
y = Rotate(x + y, 42) * k0 + v.second;
w.first += Fetch64(s + len - tail_done + 16);
@ -331,7 +331,7 @@ uint128 CityHash128WithSeed(const char* s, size_t len, uint128 seed) {
return uint128(HashLen16(x + v.second, w.second) + y, HashLen16(x + w.second, y + v.second));
}
uint128 CityHash128(const char* s, size_t len) {
uint128 CityHash128(const char* s, std::size_t len) {
return len >= 16
? CityHash128WithSeed(s + 16, len - 16, uint128(Fetch64(s), Fetch64(s + 8) + k0))
: CityHash128WithSeed(s, len, uint128(k0, k1));

View file

@ -63,7 +63,7 @@
#include <utility>
#include <stdint.h>
#include <stdlib.h> // for size_t.
#include <stdlib.h> // for std::size_t.
namespace Common {
@ -77,22 +77,22 @@ inline uint64_t Uint128High64(const uint128& x) {
}
// Hash function for a byte array.
uint64_t CityHash64(const char* buf, size_t len);
uint64_t CityHash64(const char* buf, std::size_t len);
// Hash function for a byte array. For convenience, a 64-bit seed is also
// hashed into the result.
uint64_t CityHash64WithSeed(const char* buf, size_t len, uint64_t seed);
uint64_t CityHash64WithSeed(const char* buf, std::size_t len, uint64_t seed);
// Hash function for a byte array. For convenience, two seeds are also
// hashed into the result.
uint64_t CityHash64WithSeeds(const char* buf, size_t len, uint64_t seed0, uint64_t seed1);
uint64_t CityHash64WithSeeds(const char* buf, std::size_t len, uint64_t seed0, uint64_t seed1);
// Hash function for a byte array.
uint128 CityHash128(const char* s, size_t len);
uint128 CityHash128(const char* s, std::size_t len);
// Hash function for a byte array. For convenience, a 128-bit seed is also
// hashed into the result.
uint128 CityHash128WithSeed(const char* s, size_t len, uint128 seed);
uint128 CityHash128WithSeed(const char* s, std::size_t len, uint128 seed);
// Hash 128 input bits down to 64 bits of output.
// This is intended to be a reasonably good hash function.

View file

@ -76,7 +76,7 @@ namespace FileUtil {
// Modifies argument.
static void StripTailDirSlashes(std::string& fname) {
if (fname.length() > 1) {
size_t i = fname.length();
std::size_t i = fname.length();
while (i > 0 && fname[i - 1] == DIR_SEP_CHR)
--i;
fname.resize(i);
@ -201,7 +201,7 @@ bool CreateFullPath(const std::string& fullPath) {
return true;
}
size_t position = 0;
std::size_t position = 0;
while (true) {
// Find next sub path
position = fullPath.find(DIR_SEP_CHR, position);
@ -299,7 +299,7 @@ bool Copy(const std::string& srcFilename, const std::string& destFilename) {
std::array<char, 1024> buffer;
while (!feof(input.get())) {
// read input
size_t rnum = fread(buffer.data(), sizeof(char), buffer.size(), input.get());
std::size_t rnum = fread(buffer.data(), sizeof(char), buffer.size(), input.get());
if (rnum != buffer.size()) {
if (ferror(input.get()) != 0) {
LOG_ERROR(Common_Filesystem, "failed reading from source, {} --> {}: {}",
@ -309,7 +309,7 @@ bool Copy(const std::string& srcFilename, const std::string& destFilename) {
}
// write output
size_t wnum = fwrite(buffer.data(), sizeof(char), rnum, output.get());
std::size_t wnum = fwrite(buffer.data(), sizeof(char), rnum, output.get());
if (wnum != rnum) {
LOG_ERROR(Common_Filesystem, "failed writing to output, {} --> {}: {}", srcFilename,
destFilename, GetLastErrorMsg());
@ -756,11 +756,11 @@ std::string GetNANDRegistrationDir(bool system) {
return GetUserPath(UserPath::NANDDir) + "user/Contents/registered/";
}
size_t WriteStringToFile(bool text_file, const std::string& str, const char* filename) {
std::size_t WriteStringToFile(bool text_file, const std::string& str, const char* filename) {
return FileUtil::IOFile(filename, text_file ? "w" : "wb").WriteBytes(str.data(), str.size());
}
size_t ReadFileToString(bool text_file, const char* filename, std::string& str) {
std::size_t ReadFileToString(bool text_file, const char* filename, std::string& str) {
IOFile file(filename, text_file ? "r" : "rb");
if (!file.IsOpen())
@ -829,7 +829,7 @@ std::vector<std::string> SplitPathComponents(std::string_view filename) {
std::string_view GetParentPath(std::string_view path) {
const auto name_bck_index = path.rfind('\\');
const auto name_fwd_index = path.rfind('/');
size_t name_index;
std::size_t name_index;
if (name_bck_index == std::string_view::npos || name_fwd_index == std::string_view::npos) {
name_index = std::min(name_bck_index, name_fwd_index);
@ -868,7 +868,7 @@ std::string_view GetFilename(std::string_view path) {
}
std::string_view GetExtensionFromFilename(std::string_view name) {
const size_t index = name.rfind('.');
const std::size_t index = name.rfind('.');
if (index == std::string_view::npos) {
return {};

View file

@ -143,8 +143,9 @@ const std::string& GetExeDirectory();
std::string AppDataRoamingDirectory();
#endif
size_t WriteStringToFile(bool text_file, const std::string& str, const char* filename);
size_t ReadFileToString(bool text_file, const char* filename, std::string& str);
std::size_t WriteStringToFile(bool text_file, const std::string& str, const char* filename);
std::size_t ReadFileToString(bool text_file, const char* filename, std::string& str);
/**
* Splits the filename into 8.3 format
@ -177,10 +178,10 @@ std::string_view RemoveTrailingSlash(std::string_view path);
// Creates a new vector containing indices [first, last) from the original.
template <typename T>
std::vector<T> SliceVector(const std::vector<T>& vector, size_t first, size_t last) {
std::vector<T> SliceVector(const std::vector<T>& vector, std::size_t first, std::size_t last) {
if (first >= last)
return {};
last = std::min<size_t>(last, vector.size());
last = std::min<std::size_t>(last, vector.size());
return std::vector<T>(vector.begin() + first, vector.begin() + first + last);
}
@ -213,47 +214,47 @@ public:
bool Close();
template <typename T>
size_t ReadArray(T* data, size_t length) const {
std::size_t ReadArray(T* data, std::size_t length) const {
static_assert(std::is_trivially_copyable_v<T>,
"Given array does not consist of trivially copyable objects");
if (!IsOpen()) {
return std::numeric_limits<size_t>::max();
return std::numeric_limits<std::size_t>::max();
}
return std::fread(data, sizeof(T), length, m_file);
}
template <typename T>
size_t WriteArray(const T* data, size_t length) {
std::size_t WriteArray(const T* data, std::size_t length) {
static_assert(std::is_trivially_copyable_v<T>,
"Given array does not consist of trivially copyable objects");
if (!IsOpen()) {
return std::numeric_limits<size_t>::max();
return std::numeric_limits<std::size_t>::max();
}
return std::fwrite(data, sizeof(T), length, m_file);
}
template <typename T>
size_t ReadBytes(T* data, size_t length) const {
std::size_t ReadBytes(T* data, std::size_t length) const {
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable");
return ReadArray(reinterpret_cast<char*>(data), length);
}
template <typename T>
size_t WriteBytes(const T* data, size_t length) {
std::size_t WriteBytes(const T* data, std::size_t length) {
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable");
return WriteArray(reinterpret_cast<const char*>(data), length);
}
template <typename T>
size_t WriteObject(const T& object) {
std::size_t WriteObject(const T& object) {
static_assert(!std::is_pointer_v<T>, "WriteObject arguments must not be a pointer");
return WriteArray(&object, 1);
}
size_t WriteString(const std::string& str) {
std::size_t WriteString(const std::string& str) {
return WriteArray(str.c_str(), str.length());
}

View file

@ -17,7 +17,7 @@ namespace Common {
* @param len Length of data (in bytes) to compute hash over
* @returns 64-bit hash value that was computed over the data block
*/
static inline u64 ComputeHash64(const void* data, size_t len) {
static inline u64 ComputeHash64(const void* data, std::size_t len) {
return CityHash64(static_cast<const char*>(data), len);
}
@ -63,7 +63,7 @@ struct HashableStruct {
return !(*this == o);
};
size_t Hash() const {
std::size_t Hash() const {
return Common::ComputeStructHash64(state);
}
};

View file

@ -18,7 +18,7 @@ u8 ToHexNibble(char c1) {
return 0;
}
std::array<u8, 16> operator""_array16(const char* str, size_t len) {
std::array<u8, 16> operator""_array16(const char* str, std::size_t len) {
if (len != 32) {
LOG_ERROR(Common,
"Attempting to parse string to array that is not of correct size (expected=32, "
@ -29,7 +29,7 @@ std::array<u8, 16> operator""_array16(const char* str, size_t len) {
return HexStringToArray<16>(str);
}
std::array<u8, 32> operator""_array32(const char* str, size_t len) {
std::array<u8, 32> operator""_array32(const char* str, std::size_t len) {
if (len != 64) {
LOG_ERROR(Common,
"Attempting to parse string to array that is not of correct size (expected=64, "

View file

@ -14,20 +14,20 @@ namespace Common {
u8 ToHexNibble(char c1);
template <size_t Size, bool le = false>
template <std::size_t Size, bool le = false>
std::array<u8, Size> HexStringToArray(std::string_view str) {
std::array<u8, Size> out{};
if constexpr (le) {
for (size_t i = 2 * Size - 2; i <= 2 * Size; i -= 2)
for (std::size_t i = 2 * Size - 2; i <= 2 * Size; i -= 2)
out[i / 2] = (ToHexNibble(str[i]) << 4) | ToHexNibble(str[i + 1]);
} else {
for (size_t i = 0; i < 2 * Size; i += 2)
for (std::size_t i = 0; i < 2 * Size; i += 2)
out[i / 2] = (ToHexNibble(str[i]) << 4) | ToHexNibble(str[i + 1]);
}
return out;
}
template <size_t Size>
template <std::size_t Size>
std::string HexArrayToString(std::array<u8, Size> array, bool upper = true) {
std::string out;
for (u8 c : array)
@ -35,7 +35,7 @@ std::string HexArrayToString(std::array<u8, Size> array, bool upper = true) {
return out;
}
std::array<u8, 0x10> operator"" _array16(const char* str, size_t len);
std::array<u8, 0x20> operator"" _array32(const char* str, size_t len);
std::array<u8, 0x10> operator"" _array16(const char* str, std::size_t len);
std::array<u8, 0x20> operator"" _array32(const char* str, std::size_t len);
} // namespace Common

View file

@ -135,7 +135,7 @@ FileBackend::FileBackend(const std::string& filename)
void FileBackend::Write(const Entry& entry) {
// prevent logs from going over the maximum size (in case its spamming and the user doesn't
// know)
constexpr size_t MAX_BYTES_WRITTEN = 50 * 1024L * 1024L;
constexpr std::size_t MAX_BYTES_WRITTEN = 50 * 1024L * 1024L;
if (!file.IsOpen() || bytes_written > MAX_BYTES_WRITTEN) {
return;
}

View file

@ -100,7 +100,7 @@ public:
private:
FileUtil::IOFile file;
size_t bytes_written;
std::size_t bytes_written;
};
void AddBackend(std::unique_ptr<Backend> backend);

View file

@ -71,7 +71,7 @@ void Filter::ResetAll(Level level) {
}
void Filter::SetClassLevel(Class log_class, Level level) {
class_levels[static_cast<size_t>(log_class)] = level;
class_levels[static_cast<std::size_t>(log_class)] = level;
}
void Filter::ParseFilterString(std::string_view filter_view) {
@ -93,7 +93,8 @@ void Filter::ParseFilterString(std::string_view filter_view) {
}
bool Filter::CheckMessage(Class log_class, Level level) const {
return static_cast<u8>(level) >= static_cast<u8>(class_levels[static_cast<size_t>(log_class)]);
return static_cast<u8>(level) >=
static_cast<u8>(class_levels[static_cast<std::size_t>(log_class)]);
}
bool Filter::IsDebug() const {

View file

@ -49,6 +49,6 @@ public:
bool IsDebug() const;
private:
std::array<Level, static_cast<size_t>(Class::Count)> class_levels;
std::array<Level, static_cast<std::size_t>(Class::Count)> class_levels;
};
} // namespace Log

View file

@ -25,7 +25,7 @@
// This is purposely not a full wrapper for virtualalloc/mmap, but it
// provides exactly the primitive operations that Dolphin needs.
void* AllocateExecutableMemory(size_t size, bool low) {
void* AllocateExecutableMemory(std::size_t size, bool low) {
#if defined(_WIN32)
void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
@ -74,7 +74,7 @@ void* AllocateExecutableMemory(size_t size, bool low) {
return ptr;
}
void* AllocateMemoryPages(size_t size) {
void* AllocateMemoryPages(std::size_t size) {
#ifdef _WIN32
void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_READWRITE);
#else
@ -90,7 +90,7 @@ void* AllocateMemoryPages(size_t size) {
return ptr;
}
void* AllocateAlignedMemory(size_t size, size_t alignment) {
void* AllocateAlignedMemory(std::size_t size, std::size_t alignment) {
#ifdef _WIN32
void* ptr = _aligned_malloc(size, alignment);
#else
@ -109,7 +109,7 @@ void* AllocateAlignedMemory(size_t size, size_t alignment) {
return ptr;
}
void FreeMemoryPages(void* ptr, size_t size) {
void FreeMemoryPages(void* ptr, std::size_t size) {
if (ptr) {
#ifdef _WIN32
if (!VirtualFree(ptr, 0, MEM_RELEASE))
@ -130,7 +130,7 @@ void FreeAlignedMemory(void* ptr) {
}
}
void WriteProtectMemory(void* ptr, size_t size, bool allowExecute) {
void WriteProtectMemory(void* ptr, std::size_t size, bool allowExecute) {
#ifdef _WIN32
DWORD oldValue;
if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READ : PAGE_READONLY, &oldValue))
@ -140,7 +140,7 @@ void WriteProtectMemory(void* ptr, size_t size, bool allowExecute) {
#endif
}
void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute) {
void UnWriteProtectMemory(void* ptr, std::size_t size, bool allowExecute) {
#ifdef _WIN32
DWORD oldValue;
if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE,

View file

@ -7,13 +7,13 @@
#include <cstddef>
#include <string>
void* AllocateExecutableMemory(size_t size, bool low = true);
void* AllocateMemoryPages(size_t size);
void FreeMemoryPages(void* ptr, size_t size);
void* AllocateAlignedMemory(size_t size, size_t alignment);
void* AllocateExecutableMemory(std::size_t size, bool low = true);
void* AllocateMemoryPages(std::size_t size);
void FreeMemoryPages(void* ptr, std::size_t size);
void* AllocateAlignedMemory(std::size_t size, std::size_t alignment);
void FreeAlignedMemory(void* ptr);
void WriteProtectMemory(void* ptr, size_t size, bool executable = false);
void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute = false);
void WriteProtectMemory(void* ptr, std::size_t size, bool executable = false);
void UnWriteProtectMemory(void* ptr, std::size_t size, bool allowExecute = false);
std::string MemUsage();
inline int GetPageSize() {

View file

@ -16,7 +16,7 @@
// Call directly after the command or use the error num.
// This function might change the error code.
std::string GetLastErrorMsg() {
static const size_t buff_size = 255;
static const std::size_t buff_size = 255;
char err_str[buff_size];
#ifdef _WIN32

View file

@ -19,31 +19,31 @@ namespace Common {
/// @tparam T Element type
/// @tparam capacity Number of slots in ring buffer
/// @tparam granularity Slot size in terms of number of elements
template <typename T, size_t capacity, size_t granularity = 1>
template <typename T, std::size_t capacity, std::size_t granularity = 1>
class RingBuffer {
/// A "slot" is made of `granularity` elements of `T`.
static constexpr size_t slot_size = granularity * sizeof(T);
static constexpr std::size_t slot_size = granularity * sizeof(T);
// T must be safely memcpy-able and have a trivial default constructor.
static_assert(std::is_trivial_v<T>);
// Ensure capacity is sensible.
static_assert(capacity < std::numeric_limits<size_t>::max() / 2 / granularity);
static_assert(capacity < std::numeric_limits<std::size_t>::max() / 2 / granularity);
static_assert((capacity & (capacity - 1)) == 0, "capacity must be a power of two");
// Ensure lock-free.
static_assert(std::atomic<size_t>::is_always_lock_free);
static_assert(std::atomic<std::size_t>::is_always_lock_free);
public:
/// Pushes slots into the ring buffer
/// @param new_slots Pointer to the slots to push
/// @param slot_count Number of slots to push
/// @returns The number of slots actually pushed
size_t Push(const void* new_slots, size_t slot_count) {
const size_t write_index = m_write_index.load();
const size_t slots_free = capacity + m_read_index.load() - write_index;
const size_t push_count = std::min(slot_count, slots_free);
std::size_t Push(const void* new_slots, std::size_t slot_count) {
const std::size_t write_index = m_write_index.load();
const std::size_t slots_free = capacity + m_read_index.load() - write_index;
const std::size_t push_count = std::min(slot_count, slots_free);
const size_t pos = write_index % capacity;
const size_t first_copy = std::min(capacity - pos, push_count);
const size_t second_copy = push_count - first_copy;
const std::size_t pos = write_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, push_count);
const std::size_t second_copy = push_count - first_copy;
const char* in = static_cast<const char*>(new_slots);
std::memcpy(m_data.data() + pos * granularity, in, first_copy * slot_size);
@ -55,7 +55,7 @@ public:
return push_count;
}
size_t Push(const std::vector<T>& input) {
std::size_t Push(const std::vector<T>& input) {
return Push(input.data(), input.size());
}
@ -63,14 +63,14 @@ public:
/// @param output Where to store the popped slots
/// @param max_slots Maximum number of slots to pop
/// @returns The number of slots actually popped
size_t Pop(void* output, size_t max_slots = ~size_t(0)) {
const size_t read_index = m_read_index.load();
const size_t slots_filled = m_write_index.load() - read_index;
const size_t pop_count = std::min(slots_filled, max_slots);
std::size_t Pop(void* output, std::size_t max_slots = ~std::size_t(0)) {
const std::size_t read_index = m_read_index.load();
const std::size_t slots_filled = m_write_index.load() - read_index;
const std::size_t pop_count = std::min(slots_filled, max_slots);
const size_t pos = read_index % capacity;
const size_t first_copy = std::min(capacity - pos, pop_count);
const size_t second_copy = pop_count - first_copy;
const std::size_t pos = read_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, pop_count);
const std::size_t second_copy = pop_count - first_copy;
char* out = static_cast<char*>(output);
std::memcpy(out, m_data.data() + pos * granularity, first_copy * slot_size);
@ -82,28 +82,28 @@ public:
return pop_count;
}
std::vector<T> Pop(size_t max_slots = ~size_t(0)) {
std::vector<T> Pop(std::size_t max_slots = ~std::size_t(0)) {
std::vector<T> out(std::min(max_slots, capacity) * granularity);
const size_t count = Pop(out.data(), out.size() / granularity);
const std::size_t count = Pop(out.data(), out.size() / granularity);
out.resize(count * granularity);
return out;
}
/// @returns Number of slots used
size_t Size() const {
std::size_t Size() const {
return m_write_index.load() - m_read_index.load();
}
/// @returns Maximum size of ring buffer
constexpr size_t Capacity() const {
constexpr std::size_t Capacity() const {
return capacity;
}
private:
// It is important to align the below variables for performance reasons:
// Having them on the same cache-line would result in false-sharing between them.
alignas(128) std::atomic<size_t> m_read_index{0};
alignas(128) std::atomic<size_t> m_write_index{0};
alignas(128) std::atomic<std::size_t> m_read_index{0};
alignas(128) std::atomic<std::size_t> m_write_index{0};
std::array<T, granularity * capacity> m_data;
};

View file

@ -37,7 +37,7 @@ std::string ToUpper(std::string str) {
}
// For Debugging. Read out an u8 array.
std::string ArrayToString(const u8* data, size_t size, int line_len, bool spaces) {
std::string ArrayToString(const u8* data, std::size_t size, int line_len, bool spaces) {
std::ostringstream oss;
oss << std::setfill('0') << std::hex;
@ -60,7 +60,7 @@ std::string StringFromBuffer(const std::vector<u8>& data) {
// Turns " hej " into "hej". Also handles tabs.
std::string StripSpaces(const std::string& str) {
const size_t s = str.find_first_not_of(" \t\r\n");
const std::size_t s = str.find_first_not_of(" \t\r\n");
if (str.npos != s)
return str.substr(s, str.find_last_not_of(" \t\r\n") - s + 1);
@ -121,10 +121,10 @@ bool SplitPath(const std::string& full_path, std::string* _pPath, std::string* _
if (full_path.empty())
return false;
size_t dir_end = full_path.find_last_of("/"
std::size_t dir_end = full_path.find_last_of("/"
// windows needs the : included for something like just "C:" to be considered a directory
#ifdef _WIN32
"\\:"
"\\:"
#endif
);
if (std::string::npos == dir_end)
@ -132,7 +132,7 @@ bool SplitPath(const std::string& full_path, std::string* _pPath, std::string* _
else
dir_end += 1;
size_t fname_end = full_path.rfind('.');
std::size_t fname_end = full_path.rfind('.');
if (fname_end < dir_end || std::string::npos == fname_end)
fname_end = full_path.size();
@ -172,7 +172,7 @@ void SplitString(const std::string& str, const char delim, std::vector<std::stri
}
std::string TabsToSpaces(int tab_size, std::string in) {
size_t i = 0;
std::size_t i = 0;
while ((i = in.find('\t')) != std::string::npos) {
in.replace(i, 1, tab_size, ' ');
@ -182,7 +182,7 @@ std::string TabsToSpaces(int tab_size, std::string in) {
}
std::string ReplaceAll(std::string result, const std::string& src, const std::string& dest) {
size_t pos = 0;
std::size_t pos = 0;
if (src == dest)
return result;
@ -280,22 +280,22 @@ static std::string CodeToUTF8(const char* fromcode, const std::basic_string<T>&
return {};
}
const size_t in_bytes = sizeof(T) * input.size();
const std::size_t in_bytes = sizeof(T) * input.size();
// Multiply by 4, which is the max number of bytes to encode a codepoint
const size_t out_buffer_size = 4 * in_bytes;
const std::size_t out_buffer_size = 4 * in_bytes;
std::string out_buffer(out_buffer_size, '\0');
auto src_buffer = &input[0];
size_t src_bytes = in_bytes;
std::size_t src_bytes = in_bytes;
auto dst_buffer = &out_buffer[0];
size_t dst_bytes = out_buffer.size();
std::size_t dst_bytes = out_buffer.size();
while (0 != src_bytes) {
size_t const iconv_result =
std::size_t const iconv_result =
iconv(conv_desc, (char**)(&src_buffer), &src_bytes, &dst_buffer, &dst_bytes);
if (static_cast<size_t>(-1) == iconv_result) {
if (static_cast<std::size_t>(-1) == iconv_result) {
if (EILSEQ == errno || EINVAL == errno) {
// Try to skip the bad character
if (0 != src_bytes) {
@ -326,22 +326,22 @@ std::u16string UTF8ToUTF16(const std::string& input) {
return {};
}
const size_t in_bytes = sizeof(char) * input.size();
const std::size_t in_bytes = sizeof(char) * input.size();
// Multiply by 4, which is the max number of bytes to encode a codepoint
const size_t out_buffer_size = 4 * sizeof(char16_t) * in_bytes;
const std::size_t out_buffer_size = 4 * sizeof(char16_t) * in_bytes;
std::u16string out_buffer(out_buffer_size, char16_t{});
char* src_buffer = const_cast<char*>(&input[0]);
size_t src_bytes = in_bytes;
std::size_t src_bytes = in_bytes;
char* dst_buffer = (char*)(&out_buffer[0]);
size_t dst_bytes = out_buffer.size();
std::size_t dst_bytes = out_buffer.size();
while (0 != src_bytes) {
size_t const iconv_result =
std::size_t const iconv_result =
iconv(conv_desc, &src_buffer, &src_bytes, &dst_buffer, &dst_bytes);
if (static_cast<size_t>(-1) == iconv_result) {
if (static_cast<std::size_t>(-1) == iconv_result) {
if (EILSEQ == errno || EINVAL == errno) {
// Try to skip the bad character
if (0 != src_bytes) {
@ -381,8 +381,8 @@ std::string SHIFTJISToUTF8(const std::string& input) {
#endif
std::string StringFromFixedZeroTerminatedBuffer(const char* buffer, size_t max_len) {
size_t len = 0;
std::string StringFromFixedZeroTerminatedBuffer(const char* buffer, std::size_t max_len) {
std::size_t len = 0;
while (len < max_len && buffer[len] != '\0')
++len;

View file

@ -19,7 +19,7 @@ std::string ToLower(std::string str);
/// Make a string uppercase
std::string ToUpper(std::string str);
std::string ArrayToString(const u8* data, size_t size, int line_len = 20, bool spaces = true);
std::string ArrayToString(const u8* data, std::size_t size, int line_len = 20, bool spaces = true);
std::string StringFromBuffer(const std::vector<u8>& data);
@ -118,7 +118,7 @@ bool ComparePartialString(InIt begin, InIt end, const char* other) {
* Creates a std::string from a fixed-size NUL-terminated char buffer. If the buffer isn't
* NUL-terminated then the string ends at max_len characters.
*/
std::string StringFromFixedZeroTerminatedBuffer(const char* buffer, size_t max_len);
std::string StringFromFixedZeroTerminatedBuffer(const char* buffer, std::size_t max_len);
/**
* Attempts to trim an arbitrary prefix from `path`, leaving only the part starting at `root`. It's

View file

@ -60,12 +60,12 @@ private:
class Barrier {
public:
explicit Barrier(size_t count_) : count(count_), waiting(0), generation(0) {}
explicit Barrier(std::size_t count_) : count(count_), waiting(0), generation(0) {}
/// Blocks until all "count" threads have called Sync()
void Sync() {
std::unique_lock<std::mutex> lk(mutex);
const size_t current_generation = generation;
const std::size_t current_generation = generation;
if (++waiting == count) {
generation++;
@ -80,9 +80,9 @@ public:
private:
std::condition_variable condvar;
std::mutex mutex;
const size_t count;
size_t waiting;
size_t generation; // Incremented once each time the barrier is used
const std::size_t count;
std::size_t waiting;
std::size_t generation; // Incremented once each time the barrier is used
};
void SleepCurrentThread(int ms);

View file

@ -97,7 +97,7 @@ const BitSet32 ABI_ALL_CALLEE_SAVED = BuildRegSet({
Xbyak::util::xmm15,
});
constexpr size_t ABI_SHADOW_SPACE = 0x20;
constexpr std::size_t ABI_SHADOW_SPACE = 0x20;
#else
@ -147,22 +147,23 @@ const BitSet32 ABI_ALL_CALLEE_SAVED = BuildRegSet({
Xbyak::util::r15,
});
constexpr size_t ABI_SHADOW_SPACE = 0;
constexpr std::size_t ABI_SHADOW_SPACE = 0;
#endif
inline void ABI_CalculateFrameSize(BitSet32 regs, size_t rsp_alignment, size_t needed_frame_size,
s32* out_subtraction, s32* out_xmm_offset) {
inline void ABI_CalculateFrameSize(BitSet32 regs, std::size_t rsp_alignment,
std::size_t needed_frame_size, s32* out_subtraction,
s32* out_xmm_offset) {
int count = (regs & ABI_ALL_GPRS).Count();
rsp_alignment -= count * 8;
size_t subtraction = 0;
std::size_t subtraction = 0;
int xmm_count = (regs & ABI_ALL_XMMS).Count();
if (xmm_count) {
// If we have any XMMs to save, we must align the stack here.
subtraction = rsp_alignment & 0xF;
}
subtraction += 0x10 * xmm_count;
size_t xmm_base_subtraction = subtraction;
std::size_t xmm_base_subtraction = subtraction;
subtraction += needed_frame_size;
subtraction += ABI_SHADOW_SPACE;
// Final alignment.
@ -173,8 +174,9 @@ inline void ABI_CalculateFrameSize(BitSet32 regs, size_t rsp_alignment, size_t n
*out_xmm_offset = (s32)(subtraction - xmm_base_subtraction);
}
inline size_t ABI_PushRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet32 regs,
size_t rsp_alignment, size_t needed_frame_size = 0) {
inline std::size_t ABI_PushRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet32 regs,
std::size_t rsp_alignment,
std::size_t needed_frame_size = 0) {
s32 subtraction, xmm_offset;
ABI_CalculateFrameSize(regs, rsp_alignment, needed_frame_size, &subtraction, &xmm_offset);
@ -195,7 +197,8 @@ inline size_t ABI_PushRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet
}
inline void ABI_PopRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet32 regs,
size_t rsp_alignment, size_t needed_frame_size = 0) {
std::size_t rsp_alignment,
std::size_t needed_frame_size = 0) {
s32 subtraction, xmm_offset;
ABI_CalculateFrameSize(regs, rsp_alignment, needed_frame_size, &subtraction, &xmm_offset);

View file

@ -34,7 +34,7 @@ inline bool IsWithin2G(const Xbyak::CodeGenerator& code, uintptr_t target) {
template <typename T>
inline void CallFarFunction(Xbyak::CodeGenerator& code, const T f) {
static_assert(std::is_pointer_v<T>, "Argument must be a (function) pointer.");
size_t addr = reinterpret_cast<size_t>(f);
std::size_t addr = reinterpret_cast<std::size_t>(f);
if (IsWithin2G(code, addr)) {
code.call(f);
} else {

View file

@ -31,11 +31,11 @@ public:
virtual void Step() = 0;
/// Maps a backing memory region for the CPU
virtual void MapBackingMemory(VAddr address, size_t size, u8* memory,
virtual void MapBackingMemory(VAddr address, std::size_t size, u8* memory,
Kernel::VMAPermission perms) = 0;
/// Unmaps a region of memory that was previously mapped using MapBackingMemory
virtual void UnmapMemory(VAddr address, size_t size) = 0;
virtual void UnmapMemory(VAddr address, std::size_t size) = 0;
/// Clear all instruction cache
virtual void ClearInstructionCache() = 0;

View file

@ -58,7 +58,7 @@ public:
Memory::Write64(vaddr + 8, value[1]);
}
void InterpreterFallback(u64 pc, size_t num_instructions) override {
void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
LOG_INFO(Core_ARM, "Unicorn fallback @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryReadCode(pc));
@ -81,7 +81,7 @@ public:
return;
default:
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:X})",
static_cast<size_t>(exception), pc);
static_cast<std::size_t>(exception), pc);
}
}
@ -110,7 +110,7 @@ public:
}
ARM_Dynarmic& parent;
size_t num_interpreted_instructions = 0;
std::size_t num_interpreted_instructions = 0;
u64 tpidrro_el0 = 0;
u64 tpidr_el0 = 0;
};
@ -157,7 +157,8 @@ void ARM_Dynarmic::Step() {
cb->InterpreterFallback(jit->GetPC(), 1);
}
ARM_Dynarmic::ARM_Dynarmic(std::shared_ptr<ExclusiveMonitor> exclusive_monitor, size_t core_index)
ARM_Dynarmic::ARM_Dynarmic(std::shared_ptr<ExclusiveMonitor> exclusive_monitor,
std::size_t core_index)
: cb(std::make_unique<ARM_Dynarmic_Callbacks>(*this)), core_index{core_index},
exclusive_monitor{std::dynamic_pointer_cast<DynarmicExclusiveMonitor>(exclusive_monitor)} {
ThreadContext ctx;
@ -168,12 +169,12 @@ ARM_Dynarmic::ARM_Dynarmic(std::shared_ptr<ExclusiveMonitor> exclusive_monitor,
ARM_Dynarmic::~ARM_Dynarmic() = default;
void ARM_Dynarmic::MapBackingMemory(u64 address, size_t size, u8* memory,
void ARM_Dynarmic::MapBackingMemory(u64 address, std::size_t size, u8* memory,
Kernel::VMAPermission perms) {
inner_unicorn.MapBackingMemory(address, size, memory, perms);
}
void ARM_Dynarmic::UnmapMemory(u64 address, size_t size) {
void ARM_Dynarmic::UnmapMemory(u64 address, std::size_t size) {
inner_unicorn.UnmapMemory(address, size);
}
@ -269,10 +270,10 @@ void ARM_Dynarmic::PageTableChanged() {
current_page_table = Memory::GetCurrentPageTable();
}
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(size_t core_count) : monitor(core_count) {}
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(std::size_t core_count) : monitor(core_count) {}
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;
void DynarmicExclusiveMonitor::SetExclusive(size_t core_index, VAddr addr) {
void DynarmicExclusiveMonitor::SetExclusive(std::size_t core_index, VAddr addr) {
// Size doesn't actually matter.
monitor.Mark(core_index, addr, 16);
}
@ -281,27 +282,27 @@ void DynarmicExclusiveMonitor::ClearExclusive() {
monitor.Clear();
}
bool DynarmicExclusiveMonitor::ExclusiveWrite8(size_t core_index, VAddr vaddr, u8 value) {
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 1,
[&] { Memory::Write8(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite16(size_t core_index, VAddr vaddr, u16 value) {
bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 2,
[&] { Memory::Write16(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite32(size_t core_index, VAddr vaddr, u32 value) {
bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 4,
[&] { Memory::Write32(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite64(size_t core_index, VAddr vaddr, u64 value) {
bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 8,
[&] { Memory::Write64(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite128(size_t core_index, VAddr vaddr, u128 value) {
bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 16, [&] {
Memory::Write64(vaddr, value[0]);
Memory::Write64(vaddr, value[1]);

View file

@ -19,12 +19,12 @@ class DynarmicExclusiveMonitor;
class ARM_Dynarmic final : public ARM_Interface {
public:
ARM_Dynarmic(std::shared_ptr<ExclusiveMonitor> exclusive_monitor, size_t core_index);
ARM_Dynarmic(std::shared_ptr<ExclusiveMonitor> exclusive_monitor, std::size_t core_index);
~ARM_Dynarmic();
void MapBackingMemory(VAddr address, size_t size, u8* memory,
void MapBackingMemory(VAddr address, std::size_t size, u8* memory,
Kernel::VMAPermission perms) override;
void UnmapMemory(u64 address, size_t size) override;
void UnmapMemory(u64 address, std::size_t size) override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;
@ -59,7 +59,7 @@ private:
std::unique_ptr<Dynarmic::A64::Jit> jit;
ARM_Unicorn inner_unicorn;
size_t core_index;
std::size_t core_index;
std::shared_ptr<DynarmicExclusiveMonitor> exclusive_monitor;
Memory::PageTable* current_page_table = nullptr;
@ -67,17 +67,17 @@ private:
class DynarmicExclusiveMonitor final : public ExclusiveMonitor {
public:
explicit DynarmicExclusiveMonitor(size_t core_count);
explicit DynarmicExclusiveMonitor(std::size_t core_count);
~DynarmicExclusiveMonitor();
void SetExclusive(size_t core_index, VAddr addr) override;
void SetExclusive(std::size_t core_index, VAddr addr) override;
void ClearExclusive() override;
bool ExclusiveWrite8(size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(size_t core_index, VAddr vaddr, u16 value) override;
bool ExclusiveWrite32(size_t core_index, VAddr vaddr, u32 value) override;
bool ExclusiveWrite64(size_t core_index, VAddr vaddr, u64 value) override;
bool ExclusiveWrite128(size_t core_index, VAddr vaddr, u128 value) override;
bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override;
bool ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) override;
bool ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) override;
bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) override;
private:
friend class ARM_Dynarmic;

View file

@ -12,14 +12,14 @@ class ExclusiveMonitor {
public:
virtual ~ExclusiveMonitor();
virtual void SetExclusive(size_t core_index, VAddr addr) = 0;
virtual void SetExclusive(std::size_t core_index, VAddr addr) = 0;
virtual void ClearExclusive() = 0;
virtual bool ExclusiveWrite8(size_t core_index, VAddr vaddr, u8 value) = 0;
virtual bool ExclusiveWrite16(size_t core_index, VAddr vaddr, u16 value) = 0;
virtual bool ExclusiveWrite32(size_t core_index, VAddr vaddr, u32 value) = 0;
virtual bool ExclusiveWrite64(size_t core_index, VAddr vaddr, u64 value) = 0;
virtual bool ExclusiveWrite128(size_t core_index, VAddr vaddr, u128 value) = 0;
virtual bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) = 0;
virtual bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) = 0;
virtual bool ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) = 0;
virtual bool ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) = 0;
virtual bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) = 0;
};
} // namespace Core

View file

@ -90,12 +90,12 @@ ARM_Unicorn::~ARM_Unicorn() {
CHECKED(uc_close(uc));
}
void ARM_Unicorn::MapBackingMemory(VAddr address, size_t size, u8* memory,
void ARM_Unicorn::MapBackingMemory(VAddr address, std::size_t size, u8* memory,
Kernel::VMAPermission perms) {
CHECKED(uc_mem_map_ptr(uc, address, size, static_cast<u32>(perms), memory));
}
void ARM_Unicorn::UnmapMemory(VAddr address, size_t size) {
void ARM_Unicorn::UnmapMemory(VAddr address, std::size_t size) {
CHECKED(uc_mem_unmap(uc, address, size));
}

View file

@ -15,9 +15,9 @@ class ARM_Unicorn final : public ARM_Interface {
public:
ARM_Unicorn();
~ARM_Unicorn();
void MapBackingMemory(VAddr address, size_t size, u8* memory,
void MapBackingMemory(VAddr address, std::size_t size, u8* memory,
Kernel::VMAPermission perms) override;
void UnmapMemory(VAddr address, size_t size) override;
void UnmapMemory(VAddr address, std::size_t size) override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;

View file

@ -140,7 +140,7 @@ struct System::Impl {
cpu_barrier = std::make_shared<CpuBarrier>();
cpu_exclusive_monitor = Cpu::MakeExclusiveMonitor(cpu_cores.size());
for (size_t index = 0; index < cpu_cores.size(); ++index) {
for (std::size_t index = 0; index < cpu_cores.size(); ++index) {
cpu_cores[index] = std::make_shared<Cpu>(cpu_exclusive_monitor, cpu_barrier, index);
}
@ -161,7 +161,7 @@ struct System::Impl {
// CPU core 0 is run on the main thread
thread_to_cpu[std::this_thread::get_id()] = cpu_cores[0];
if (Settings::values.use_multi_core) {
for (size_t index = 0; index < cpu_core_threads.size(); ++index) {
for (std::size_t index = 0; index < cpu_core_threads.size(); ++index) {
cpu_core_threads[index] =
std::make_unique<std::thread>(RunCpuCore, cpu_cores[index + 1]);
thread_to_cpu[cpu_core_threads[index]->get_id()] = cpu_cores[index + 1];
@ -285,7 +285,7 @@ struct System::Impl {
std::shared_ptr<CpuBarrier> cpu_barrier;
std::array<std::shared_ptr<Cpu>, NUM_CPU_CORES> cpu_cores;
std::array<std::unique_ptr<std::thread>, NUM_CPU_CORES - 1> cpu_core_threads;
size_t active_core{}; ///< Active core, only used in single thread mode
std::size_t active_core{}; ///< Active core, only used in single thread mode
/// Service manager
std::shared_ptr<Service::SM::ServiceManager> service_manager;
@ -348,7 +348,7 @@ ARM_Interface& System::CurrentArmInterface() {
return CurrentCpuCore().ArmInterface();
}
size_t System::CurrentCoreIndex() {
std::size_t System::CurrentCoreIndex() {
return CurrentCpuCore().CoreIndex();
}
@ -356,7 +356,7 @@ Kernel::Scheduler& System::CurrentScheduler() {
return *CurrentCpuCore().Scheduler();
}
const std::shared_ptr<Kernel::Scheduler>& System::Scheduler(size_t core_index) {
const std::shared_ptr<Kernel::Scheduler>& System::Scheduler(std::size_t core_index) {
ASSERT(core_index < NUM_CPU_CORES);
return impl->cpu_cores[core_index]->Scheduler();
}
@ -369,12 +369,12 @@ const Kernel::SharedPtr<Kernel::Process>& System::CurrentProcess() const {
return impl->kernel.CurrentProcess();
}
ARM_Interface& System::ArmInterface(size_t core_index) {
ARM_Interface& System::ArmInterface(std::size_t core_index) {
ASSERT(core_index < NUM_CPU_CORES);
return impl->cpu_cores[core_index]->ArmInterface();
}
Cpu& System::CpuCore(size_t core_index) {
Cpu& System::CpuCore(std::size_t core_index) {
ASSERT(core_index < NUM_CPU_CORES);
return *impl->cpu_cores[core_index];
}

View file

@ -145,16 +145,16 @@ public:
ARM_Interface& CurrentArmInterface();
/// Gets the index of the currently running CPU core
size_t CurrentCoreIndex();
std::size_t CurrentCoreIndex();
/// Gets the scheduler for the CPU core that is currently running
Kernel::Scheduler& CurrentScheduler();
/// Gets an ARM interface to the CPU core with the specified index
ARM_Interface& ArmInterface(size_t core_index);
ARM_Interface& ArmInterface(std::size_t core_index);
/// Gets a CPU interface to the CPU core with the specified index
Cpu& CpuCore(size_t core_index);
Cpu& CpuCore(std::size_t core_index);
/// Gets the exclusive monitor
ExclusiveMonitor& Monitor();
@ -172,7 +172,7 @@ public:
const VideoCore::RendererBase& Renderer() const;
/// Gets the scheduler for the CPU core with the specified index
const std::shared_ptr<Kernel::Scheduler>& Scheduler(size_t core_index);
const std::shared_ptr<Kernel::Scheduler>& Scheduler(std::size_t core_index);
/// Provides a reference to the current process
Kernel::SharedPtr<Kernel::Process>& CurrentProcess();

View file

@ -49,7 +49,7 @@ bool CpuBarrier::Rendezvous() {
}
Cpu::Cpu(std::shared_ptr<ExclusiveMonitor> exclusive_monitor,
std::shared_ptr<CpuBarrier> cpu_barrier, size_t core_index)
std::shared_ptr<CpuBarrier> cpu_barrier, std::size_t core_index)
: cpu_barrier{std::move(cpu_barrier)}, core_index{core_index} {
if (Settings::values.use_cpu_jit) {
@ -66,7 +66,7 @@ Cpu::Cpu(std::shared_ptr<ExclusiveMonitor> exclusive_monitor,
scheduler = std::make_shared<Kernel::Scheduler>(arm_interface.get());
}
std::shared_ptr<ExclusiveMonitor> Cpu::MakeExclusiveMonitor(size_t num_cores) {
std::shared_ptr<ExclusiveMonitor> Cpu::MakeExclusiveMonitor(std::size_t num_cores) {
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
return std::make_shared<DynarmicExclusiveMonitor>(num_cores);

View file

@ -42,7 +42,7 @@ private:
class Cpu {
public:
Cpu(std::shared_ptr<ExclusiveMonitor> exclusive_monitor,
std::shared_ptr<CpuBarrier> cpu_barrier, size_t core_index);
std::shared_ptr<CpuBarrier> cpu_barrier, std::size_t core_index);
void RunLoop(bool tight_loop = true);
@ -66,11 +66,11 @@ public:
return core_index == 0;
}
size_t CoreIndex() const {
std::size_t CoreIndex() const {
return core_index;
}
static std::shared_ptr<ExclusiveMonitor> MakeExclusiveMonitor(size_t num_cores);
static std::shared_ptr<ExclusiveMonitor> MakeExclusiveMonitor(std::size_t num_cores);
private:
void Reschedule();
@ -80,7 +80,7 @@ private:
std::shared_ptr<Kernel::Scheduler> scheduler;
std::atomic<bool> reschedule_pending = false;
size_t core_index;
std::size_t core_index;
};
} // namespace Core

View file

@ -10,9 +10,9 @@
namespace Core::Crypto {
namespace {
std::vector<u8> CalculateNintendoTweak(size_t sector_id) {
std::vector<u8> CalculateNintendoTweak(std::size_t sector_id) {
std::vector<u8> out(0x10);
for (size_t i = 0xF; i <= 0xF; --i) {
for (std::size_t i = 0xF; i <= 0xF; --i) {
out[i] = sector_id & 0xFF;
sector_id >>= 8;
}
@ -20,11 +20,14 @@ std::vector<u8> CalculateNintendoTweak(size_t sector_id) {
}
} // Anonymous namespace
static_assert(static_cast<size_t>(Mode::CTR) == static_cast<size_t>(MBEDTLS_CIPHER_AES_128_CTR),
static_assert(static_cast<std::size_t>(Mode::CTR) ==
static_cast<std::size_t>(MBEDTLS_CIPHER_AES_128_CTR),
"CTR has incorrect value.");
static_assert(static_cast<size_t>(Mode::ECB) == static_cast<size_t>(MBEDTLS_CIPHER_AES_128_ECB),
static_assert(static_cast<std::size_t>(Mode::ECB) ==
static_cast<std::size_t>(MBEDTLS_CIPHER_AES_128_ECB),
"ECB has incorrect value.");
static_assert(static_cast<size_t>(Mode::XTS) == static_cast<size_t>(MBEDTLS_CIPHER_AES_128_XTS),
static_assert(static_cast<std::size_t>(Mode::XTS) ==
static_cast<std::size_t>(MBEDTLS_CIPHER_AES_128_XTS),
"XTS has incorrect value.");
// Structure to hide mbedtls types from header file
@ -33,7 +36,7 @@ struct CipherContext {
mbedtls_cipher_context_t decryption_context;
};
template <typename Key, size_t KeySize>
template <typename Key, std::size_t KeySize>
Crypto::AESCipher<Key, KeySize>::AESCipher(Key key, Mode mode)
: ctx(std::make_unique<CipherContext>()) {
mbedtls_cipher_init(&ctx->encryption_context);
@ -54,26 +57,26 @@ Crypto::AESCipher<Key, KeySize>::AESCipher(Key key, Mode mode)
//"Failed to set key on mbedtls ciphers.");
}
template <typename Key, size_t KeySize>
template <typename Key, std::size_t KeySize>
AESCipher<Key, KeySize>::~AESCipher() {
mbedtls_cipher_free(&ctx->encryption_context);
mbedtls_cipher_free(&ctx->decryption_context);
}
template <typename Key, size_t KeySize>
template <typename Key, std::size_t KeySize>
void AESCipher<Key, KeySize>::SetIV(std::vector<u8> iv) {
ASSERT_MSG((mbedtls_cipher_set_iv(&ctx->encryption_context, iv.data(), iv.size()) ||
mbedtls_cipher_set_iv(&ctx->decryption_context, iv.data(), iv.size())) == 0,
"Failed to set IV on mbedtls ciphers.");
}
template <typename Key, size_t KeySize>
void AESCipher<Key, KeySize>::Transcode(const u8* src, size_t size, u8* dest, Op op) const {
template <typename Key, std::size_t KeySize>
void AESCipher<Key, KeySize>::Transcode(const u8* src, std::size_t size, u8* dest, Op op) const {
auto* const context = op == Op::Encrypt ? &ctx->encryption_context : &ctx->decryption_context;
mbedtls_cipher_reset(context);
size_t written = 0;
std::size_t written = 0;
if (mbedtls_cipher_get_cipher_mode(context) == MBEDTLS_MODE_XTS) {
mbedtls_cipher_update(context, src, size, dest, &written);
if (written != size) {
@ -90,8 +93,8 @@ void AESCipher<Key, KeySize>::Transcode(const u8* src, size_t size, u8* dest, Op
return;
}
for (size_t offset = 0; offset < size; offset += block_size) {
auto length = std::min<size_t>(block_size, size - offset);
for (std::size_t offset = 0; offset < size; offset += block_size) {
auto length = std::min<std::size_t>(block_size, size - offset);
mbedtls_cipher_update(context, src + offset, length, dest + offset, &written);
if (written != length) {
if (length < block_size) {
@ -110,12 +113,12 @@ void AESCipher<Key, KeySize>::Transcode(const u8* src, size_t size, u8* dest, Op
mbedtls_cipher_finish(context, nullptr, nullptr);
}
template <typename Key, size_t KeySize>
void AESCipher<Key, KeySize>::XTSTranscode(const u8* src, size_t size, u8* dest, size_t sector_id,
size_t sector_size, Op op) {
template <typename Key, std::size_t KeySize>
void AESCipher<Key, KeySize>::XTSTranscode(const u8* src, std::size_t size, u8* dest,
std::size_t sector_id, std::size_t sector_size, Op op) {
ASSERT_MSG(size % sector_size == 0, "XTS decryption size must be a multiple of sector size.");
for (size_t i = 0; i < size; i += sector_size) {
for (std::size_t i = 0; i < size; i += sector_size) {
SetIV(CalculateNintendoTweak(sector_id++));
Transcode<u8, u8>(src + i, sector_size, dest + i, op);
}

View file

@ -25,7 +25,7 @@ enum class Op {
Decrypt,
};
template <typename Key, size_t KeySize = sizeof(Key)>
template <typename Key, std::size_t KeySize = sizeof(Key)>
class AESCipher {
static_assert(std::is_same_v<Key, std::array<u8, KeySize>>, "Key must be std::array of u8.");
static_assert(KeySize == 0x10 || KeySize == 0x20, "KeySize must be 128 or 256.");
@ -38,25 +38,25 @@ public:
void SetIV(std::vector<u8> iv);
template <typename Source, typename Dest>
void Transcode(const Source* src, size_t size, Dest* dest, Op op) const {
void Transcode(const Source* src, std::size_t size, Dest* dest, Op op) const {
static_assert(std::is_trivially_copyable_v<Source> && std::is_trivially_copyable_v<Dest>,
"Transcode source and destination types must be trivially copyable.");
Transcode(reinterpret_cast<const u8*>(src), size, reinterpret_cast<u8*>(dest), op);
}
void Transcode(const u8* src, size_t size, u8* dest, Op op) const;
void Transcode(const u8* src, std::size_t size, u8* dest, Op op) const;
template <typename Source, typename Dest>
void XTSTranscode(const Source* src, size_t size, Dest* dest, size_t sector_id,
size_t sector_size, Op op) {
void XTSTranscode(const Source* src, std::size_t size, Dest* dest, std::size_t sector_id,
std::size_t sector_size, Op op) {
static_assert(std::is_trivially_copyable_v<Source> && std::is_trivially_copyable_v<Dest>,
"XTSTranscode source and destination types must be trivially copyable.");
XTSTranscode(reinterpret_cast<const u8*>(src), size, reinterpret_cast<u8*>(dest), sector_id,
sector_size, op);
}
void XTSTranscode(const u8* src, size_t size, u8* dest, size_t sector_id, size_t sector_size,
Op op);
void XTSTranscode(const u8* src, std::size_t size, u8* dest, std::size_t sector_id,
std::size_t sector_size, Op op);
private:
std::unique_ptr<CipherContext> ctx;

View file

@ -8,11 +8,12 @@
namespace Core::Crypto {
CTREncryptionLayer::CTREncryptionLayer(FileSys::VirtualFile base_, Key128 key_, size_t base_offset)
CTREncryptionLayer::CTREncryptionLayer(FileSys::VirtualFile base_, Key128 key_,
std::size_t base_offset)
: EncryptionLayer(std::move(base_)), base_offset(base_offset), cipher(key_, Mode::CTR),
iv(16, 0) {}
size_t CTREncryptionLayer::Read(u8* data, size_t length, size_t offset) const {
std::size_t CTREncryptionLayer::Read(u8* data, std::size_t length, std::size_t offset) const {
if (length == 0)
return 0;
@ -28,7 +29,7 @@ size_t CTREncryptionLayer::Read(u8* data, size_t length, size_t offset) const {
std::vector<u8> block = base->ReadBytes(0x10, offset - sector_offset);
UpdateIV(base_offset + offset - sector_offset);
cipher.Transcode(block.data(), block.size(), block.data(), Op::Decrypt);
size_t read = 0x10 - sector_offset;
std::size_t read = 0x10 - sector_offset;
if (length + sector_offset < 0x10) {
std::memcpy(data, block.data() + sector_offset, std::min<u64>(length, read));
@ -43,9 +44,9 @@ void CTREncryptionLayer::SetIV(const std::vector<u8>& iv_) {
iv.assign(iv_.cbegin(), iv_.cbegin() + length);
}
void CTREncryptionLayer::UpdateIV(size_t offset) const {
void CTREncryptionLayer::UpdateIV(std::size_t offset) const {
offset >>= 4;
for (size_t i = 0; i < 8; ++i) {
for (std::size_t i = 0; i < 8; ++i) {
iv[16 - i - 1] = offset & 0xFF;
offset >>= 8;
}

View file

@ -14,20 +14,20 @@ namespace Core::Crypto {
// Sits on top of a VirtualFile and provides CTR-mode AES decription.
class CTREncryptionLayer : public EncryptionLayer {
public:
CTREncryptionLayer(FileSys::VirtualFile base, Key128 key, size_t base_offset);
CTREncryptionLayer(FileSys::VirtualFile base, Key128 key, std::size_t base_offset);
size_t Read(u8* data, size_t length, size_t offset) const override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
void SetIV(const std::vector<u8>& iv);
private:
size_t base_offset;
std::size_t base_offset;
// Must be mutable as operations modify cipher contexts.
mutable AESCipher<Key128> cipher;
mutable std::vector<u8> iv;
void UpdateIV(size_t offset) const;
void UpdateIV(std::size_t offset) const;
};
} // namespace Core::Crypto

View file

@ -12,11 +12,11 @@ std::string EncryptionLayer::GetName() const {
return base->GetName();
}
size_t EncryptionLayer::GetSize() const {
std::size_t EncryptionLayer::GetSize() const {
return base->GetSize();
}
bool EncryptionLayer::Resize(size_t new_size) {
bool EncryptionLayer::Resize(std::size_t new_size) {
return false;
}
@ -32,7 +32,7 @@ bool EncryptionLayer::IsReadable() const {
return true;
}
size_t EncryptionLayer::Write(const u8* data, size_t length, size_t offset) {
std::size_t EncryptionLayer::Write(const u8* data, std::size_t length, std::size_t offset) {
return 0;
}

View file

@ -15,15 +15,15 @@ class EncryptionLayer : public FileSys::VfsFile {
public:
explicit EncryptionLayer(FileSys::VirtualFile base);
size_t Read(u8* data, size_t length, size_t offset) const override = 0;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override = 0;
std::string GetName() const override;
size_t GetSize() const override;
bool Resize(size_t new_size) override;
std::size_t GetSize() const override;
bool Resize(std::size_t new_size) override;
std::shared_ptr<FileSys::VfsDirectory> GetContainingDirectory() const override;
bool IsWritable() const override;
bool IsReadable() const override;
size_t Write(const u8* data, size_t length, size_t offset) override;
std::size_t Write(const u8* data, std::size_t length, std::size_t offset) override;
bool Rename(std::string_view name) override;
protected:

View file

@ -54,7 +54,7 @@ boost::optional<Key128> DeriveSDSeed() {
return boost::none;
std::array<u8, 0x10> buffer{};
size_t offset = 0;
std::size_t offset = 0;
for (; offset + 0x10 < save_43.GetSize(); ++offset) {
save_43.Seek(offset, SEEK_SET);
save_43.ReadBytes(buffer.data(), buffer.size());
@ -105,7 +105,7 @@ Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, const KeyManag
// Combine sources and seed
for (auto& source : sd_key_sources) {
for (size_t i = 0; i < source.size(); ++i)
for (std::size_t i = 0; i < source.size(); ++i)
source[i] ^= sd_seed[i & 0xF];
}
@ -207,7 +207,7 @@ Key256 KeyManager::GetKey(S256KeyType id, u64 field1, u64 field2) const {
return s256_keys.at({id, field1, field2});
}
template <size_t Size>
template <std::size_t Size>
void KeyManager::WriteKeyToFile(bool title_key, std::string_view keyname,
const std::array<u8, Size>& key) {
const std::string yuzu_keys_dir = FileUtil::GetUserPath(FileUtil::UserPath::KeysDir);

View file

@ -108,7 +108,7 @@ private:
void LoadFromFile(const std::string& filename, bool is_title_keys);
void AttemptLoadKeyFile(const std::string& dir1, const std::string& dir2,
const std::string& filename, bool title);
template <size_t Size>
template <std::size_t Size>
void WriteKeyToFile(bool title_key, std::string_view keyname, const std::array<u8, Size>& key);
static const boost::container::flat_map<std::string, KeyIndex<S128KeyType>> s128_file_id;

View file

@ -14,7 +14,7 @@ constexpr u64 XTS_SECTOR_SIZE = 0x4000;
XTSEncryptionLayer::XTSEncryptionLayer(FileSys::VirtualFile base_, Key256 key_)
: EncryptionLayer(std::move(base_)), cipher(key_, Mode::XTS) {}
size_t XTSEncryptionLayer::Read(u8* data, size_t length, size_t offset) const {
std::size_t XTSEncryptionLayer::Read(u8* data, std::size_t length, std::size_t offset) const {
if (length == 0)
return 0;
@ -46,7 +46,7 @@ size_t XTSEncryptionLayer::Read(u8* data, size_t length, size_t offset) const {
block.resize(XTS_SECTOR_SIZE);
cipher.XTSTranscode(block.data(), block.size(), block.data(),
(offset - sector_offset) / XTS_SECTOR_SIZE, XTS_SECTOR_SIZE, Op::Decrypt);
const size_t read = XTS_SECTOR_SIZE - sector_offset;
const std::size_t read = XTS_SECTOR_SIZE - sector_offset;
if (length + sector_offset < XTS_SECTOR_SIZE) {
std::memcpy(data, block.data() + sector_offset, std::min<u64>(length, read));

View file

@ -15,7 +15,7 @@ class XTSEncryptionLayer : public EncryptionLayer {
public:
XTSEncryptionLayer(FileSys::VirtualFile base, Key256 key);
size_t Read(u8* data, size_t length, size_t offset) const override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
private:
// Must be mutable as operations modify cipher contexts.

View file

@ -41,13 +41,14 @@ XCI::XCI(VirtualFile file_) : file(std::move(file_)), partitions(0x4) {
for (XCIPartition partition :
{XCIPartition::Update, XCIPartition::Normal, XCIPartition::Secure, XCIPartition::Logo}) {
auto raw = main_hfs.GetFile(partition_names[static_cast<size_t>(partition)]);
auto raw = main_hfs.GetFile(partition_names[static_cast<std::size_t>(partition)]);
if (raw != nullptr)
partitions[static_cast<size_t>(partition)] = std::make_shared<PartitionFilesystem>(raw);
partitions[static_cast<std::size_t>(partition)] =
std::make_shared<PartitionFilesystem>(raw);
}
secure_partition = std::make_shared<NSP>(
main_hfs.GetFile(partition_names[static_cast<size_t>(XCIPartition::Secure)]));
main_hfs.GetFile(partition_names[static_cast<std::size_t>(XCIPartition::Secure)]));
const auto secure_ncas = secure_partition->GetNCAsCollapsed();
std::copy(secure_ncas.begin(), secure_ncas.end(), std::back_inserter(ncas));
@ -92,7 +93,7 @@ Loader::ResultStatus XCI::GetProgramNCAStatus() const {
}
VirtualDir XCI::GetPartition(XCIPartition partition) const {
return partitions[static_cast<size_t>(partition)];
return partitions[static_cast<std::size_t>(partition)];
}
std::shared_ptr<NSP> XCI::GetSecurePartitionNSP() const {
@ -168,11 +169,11 @@ bool XCI::ReplaceFileWithSubdirectory(VirtualFile file, VirtualDir dir) {
}
Loader::ResultStatus XCI::AddNCAFromPartition(XCIPartition part) {
if (partitions[static_cast<size_t>(part)] == nullptr) {
if (partitions[static_cast<std::size_t>(part)] == nullptr) {
return Loader::ResultStatus::ErrorXCIMissingPartition;
}
for (const VirtualFile& file : partitions[static_cast<size_t>(part)]->GetFiles()) {
for (const VirtualFile& file : partitions[static_cast<std::size_t>(part)]->GetFiles()) {
if (file->GetExtension() != "nca")
continue;
auto nca = std::make_shared<NCA>(file);
@ -187,7 +188,7 @@ Loader::ResultStatus XCI::AddNCAFromPartition(XCIPartition part) {
} else {
const u16 error_id = static_cast<u16>(nca->GetStatus());
LOG_CRITICAL(Loader, "Could not load NCA {}/{}, failed with error code {:04X} ({})",
partition_names[static_cast<size_t>(part)], nca->GetName(), error_id,
partition_names[static_cast<std::size_t>(part)], nca->GetName(), error_id,
nca->GetStatus());
}
}

View file

@ -298,11 +298,11 @@ NCA::NCA(VirtualFile file_, VirtualFile bktr_base_romfs_, u64 bktr_base_ivfc_off
auto section = sections[i];
if (section.raw.header.filesystem_type == NCASectionFilesystemType::ROMFS) {
const size_t base_offset =
const std::size_t base_offset =
header.section_tables[i].media_offset * MEDIA_OFFSET_MULTIPLIER;
ivfc_offset = section.romfs.ivfc.levels[IVFC_MAX_LEVEL - 1].offset;
const size_t romfs_offset = base_offset + ivfc_offset;
const size_t romfs_size = section.romfs.ivfc.levels[IVFC_MAX_LEVEL - 1].size;
const std::size_t romfs_offset = base_offset + ivfc_offset;
const std::size_t romfs_size = section.romfs.ivfc.levels[IVFC_MAX_LEVEL - 1].size;
auto raw = std::make_shared<OffsetVfsFile>(file, romfs_size, romfs_offset);
auto dec = Decrypt(section, raw, romfs_offset);

View file

@ -25,7 +25,7 @@ enum EntryType : u8 {
struct Entry {
Entry(std::string_view view, EntryType entry_type, u64 entry_size)
: type{entry_type}, file_size{entry_size} {
const size_t copy_size = view.copy(filename, std::size(filename) - 1);
const std::size_t copy_size = view.copy(filename, std::size(filename) - 1);
filename[copy_size] = '\0';
}

View file

@ -11,11 +11,11 @@
namespace FileSys {
bool operator>=(TitleType lhs, TitleType rhs) {
return static_cast<size_t>(lhs) >= static_cast<size_t>(rhs);
return static_cast<std::size_t>(lhs) >= static_cast<std::size_t>(rhs);
}
bool operator<=(TitleType lhs, TitleType rhs) {
return static_cast<size_t>(lhs) <= static_cast<size_t>(rhs);
return static_cast<std::size_t>(lhs) <= static_cast<std::size_t>(rhs);
}
CNMT::CNMT(VirtualFile file) {

View file

@ -22,11 +22,11 @@ BKTR::BKTR(VirtualFile base_romfs_, VirtualFile bktr_romfs_, RelocationBlock rel
base_romfs(std::move(base_romfs_)), bktr_romfs(std::move(bktr_romfs_)),
encrypted(is_encrypted_), key(key_), base_offset(base_offset_), ivfc_offset(ivfc_offset_),
section_ctr(section_ctr_) {
for (size_t i = 0; i < relocation.number_buckets - 1; ++i) {
for (std::size_t i = 0; i < relocation.number_buckets - 1; ++i) {
relocation_buckets[i].entries.push_back({relocation.base_offsets[i + 1], 0, 0});
}
for (size_t i = 0; i < subsection.number_buckets - 1; ++i) {
for (std::size_t i = 0; i < subsection.number_buckets - 1; ++i) {
subsection_buckets[i].entries.push_back({subsection_buckets[i + 1].entries[0].address_patch,
{0},
subsection_buckets[i + 1].entries[0].ctr});
@ -37,7 +37,7 @@ BKTR::BKTR(VirtualFile base_romfs_, VirtualFile bktr_romfs_, RelocationBlock rel
BKTR::~BKTR() = default;
size_t BKTR::Read(u8* data, size_t length, size_t offset) const {
std::size_t BKTR::Read(u8* data, std::size_t length, std::size_t offset) const {
// Read out of bounds.
if (offset >= relocation.size)
return 0;
@ -69,14 +69,14 @@ size_t BKTR::Read(u8* data, size_t length, size_t offset) const {
std::vector<u8> iv(16);
auto subsection_ctr = subsection.ctr;
auto offset_iv = section_offset + base_offset;
for (size_t i = 0; i < section_ctr.size(); ++i)
for (std::size_t i = 0; i < section_ctr.size(); ++i)
iv[i] = section_ctr[0x8 - i - 1];
offset_iv >>= 4;
for (size_t i = 0; i < sizeof(u64); ++i) {
for (std::size_t i = 0; i < sizeof(u64); ++i) {
iv[0xF - i] = static_cast<u8>(offset_iv & 0xFF);
offset_iv >>= 8;
}
for (size_t i = 0; i < sizeof(u32); ++i) {
for (std::size_t i = 0; i < sizeof(u32); ++i) {
iv[0x7 - i] = static_cast<u8>(subsection_ctr & 0xFF);
subsection_ctr >>= 8;
}
@ -110,8 +110,8 @@ size_t BKTR::Read(u8* data, size_t length, size_t offset) const {
}
template <bool Subsection, typename BlockType, typename BucketType>
std::pair<size_t, size_t> BKTR::SearchBucketEntry(u64 offset, BlockType block,
BucketType buckets) const {
std::pair<std::size_t, std::size_t> BKTR::SearchBucketEntry(u64 offset, BlockType block,
BucketType buckets) const {
if constexpr (Subsection) {
const auto last_bucket = buckets[block.number_buckets - 1];
if (offset >= last_bucket.entries[last_bucket.number_entries].address_patch)
@ -120,18 +120,18 @@ std::pair<size_t, size_t> BKTR::SearchBucketEntry(u64 offset, BlockType block,
ASSERT_MSG(offset <= block.size, "Offset is out of bounds in BKTR relocation block.");
}
size_t bucket_id = std::count_if(block.base_offsets.begin() + 1,
block.base_offsets.begin() + block.number_buckets,
[&offset](u64 base_offset) { return base_offset <= offset; });
std::size_t bucket_id = std::count_if(
block.base_offsets.begin() + 1, block.base_offsets.begin() + block.number_buckets,
[&offset](u64 base_offset) { return base_offset <= offset; });
const auto bucket = buckets[bucket_id];
if (bucket.number_entries == 1)
return {bucket_id, 0};
size_t low = 0;
size_t mid = 0;
size_t high = bucket.number_entries - 1;
std::size_t low = 0;
std::size_t mid = 0;
std::size_t high = bucket.number_entries - 1;
while (low <= high) {
mid = (low + high) / 2;
if (bucket.entries[mid].address_patch > offset) {
@ -179,11 +179,11 @@ std::string BKTR::GetName() const {
return base_romfs->GetName();
}
size_t BKTR::GetSize() const {
std::size_t BKTR::GetSize() const {
return relocation.size;
}
bool BKTR::Resize(size_t new_size) {
bool BKTR::Resize(std::size_t new_size) {
return false;
}
@ -199,7 +199,7 @@ bool BKTR::IsReadable() const {
return true;
}
size_t BKTR::Write(const u8* data, size_t length, size_t offset) {
std::size_t BKTR::Write(const u8* data, std::size_t length, std::size_t offset) {
return 0;
}

View file

@ -98,13 +98,13 @@ public:
Core::Crypto::Key128 key, u64 base_offset, u64 ivfc_offset, std::array<u8, 8> section_ctr);
~BKTR() override;
size_t Read(u8* data, size_t length, size_t offset) const override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
std::string GetName() const override;
size_t GetSize() const override;
std::size_t GetSize() const override;
bool Resize(size_t new_size) override;
bool Resize(std::size_t new_size) override;
std::shared_ptr<VfsDirectory> GetContainingDirectory() const override;
@ -112,14 +112,14 @@ public:
bool IsReadable() const override;
size_t Write(const u8* data, size_t length, size_t offset) override;
std::size_t Write(const u8* data, std::size_t length, std::size_t offset) override;
bool Rename(std::string_view name) override;
private:
template <bool Subsection, typename BlockType, typename BucketType>
std::pair<size_t, size_t> SearchBucketEntry(u64 offset, BlockType block,
BucketType buckets) const;
std::pair<std::size_t, std::size_t> SearchBucketEntry(u64 offset, BlockType block,
BucketType buckets) const;
RelocationEntry GetRelocationEntry(u64 offset) const;
RelocationEntry GetNextRelocationEntry(u64 offset) const;

View file

@ -42,21 +42,21 @@ PartitionFilesystem::PartitionFilesystem(std::shared_ptr<VfsFile> file) {
is_hfs = pfs_header.magic == Common::MakeMagic('H', 'F', 'S', '0');
size_t entry_size = is_hfs ? sizeof(HFSEntry) : sizeof(PFSEntry);
size_t metadata_size =
std::size_t entry_size = is_hfs ? sizeof(HFSEntry) : sizeof(PFSEntry);
std::size_t metadata_size =
sizeof(Header) + (pfs_header.num_entries * entry_size) + pfs_header.strtab_size;
// Actually read in now...
std::vector<u8> file_data = file->ReadBytes(metadata_size);
const size_t total_size = file_data.size();
const std::size_t total_size = file_data.size();
if (total_size != metadata_size) {
status = Loader::ResultStatus::ErrorIncorrectPFSFileSize;
return;
}
size_t entries_offset = sizeof(Header);
size_t strtab_offset = entries_offset + (pfs_header.num_entries * entry_size);
std::size_t entries_offset = sizeof(Header);
std::size_t strtab_offset = entries_offset + (pfs_header.num_entries * entry_size);
content_offset = strtab_offset + pfs_header.strtab_size;
for (u16 i = 0; i < pfs_header.num_entries; i++) {
FSEntry entry;

View file

@ -79,7 +79,7 @@ private:
Header pfs_header{};
bool is_hfs = false;
size_t content_offset = 0;
std::size_t content_offset = 0;
std::vector<VirtualFile> pfs_files;
std::vector<VirtualDir> pfs_dirs;

View file

@ -21,7 +21,7 @@ constexpr u64 SINGLE_BYTE_MODULUS = 0x100;
std::string FormatTitleVersion(u32 version, TitleVersionFormat format) {
std::array<u8, sizeof(u32)> bytes{};
bytes[0] = version % SINGLE_BYTE_MODULUS;
for (size_t i = 1; i < bytes.size(); ++i) {
for (std::size_t i = 1; i < bytes.size(); ++i) {
version /= SINGLE_BYTE_MODULUS;
bytes[i] = version % SINGLE_BYTE_MODULUS;
}
@ -36,7 +36,7 @@ constexpr std::array<const char*, 1> PATCH_TYPE_NAMES{
};
std::string FormatPatchTypeName(PatchType type) {
return PATCH_TYPE_NAMES.at(static_cast<size_t>(type));
return PATCH_TYPE_NAMES.at(static_cast<std::size_t>(type));
}
PatchManager::PatchManager(u64 title_id) : title_id(title_id) {}

View file

@ -13,7 +13,7 @@
namespace FileSys {
Loader::ResultStatus ProgramMetadata::Load(VirtualFile file) {
size_t total_size = static_cast<size_t>(file->GetSize());
std::size_t total_size = static_cast<std::size_t>(file->GetSize());
if (total_size < sizeof(Header))
return Loader::ResultStatus::ErrorBadNPDMHeader;

View file

@ -62,11 +62,11 @@ static std::string GetCNMTName(TitleType type, u64 title_id) {
"" ///< Currently unknown 'DeltaTitle'
};
auto index = static_cast<size_t>(type);
auto index = static_cast<std::size_t>(type);
// If the index is after the jump in TitleType, subtract it out.
if (index >= static_cast<size_t>(TitleType::Application)) {
index -= static_cast<size_t>(TitleType::Application) -
static_cast<size_t>(TitleType::FirmwarePackageB);
if (index >= static_cast<std::size_t>(TitleType::Application)) {
index -= static_cast<std::size_t>(TitleType::Application) -
static_cast<std::size_t>(TitleType::FirmwarePackageB);
}
return fmt::format("{}_{:016x}.cnmt", TITLE_TYPE_NAMES[index], title_id);
}
@ -105,7 +105,7 @@ VirtualFile RegisteredCache::OpenFileOrDirectoryConcat(const VirtualDir& dir,
} else {
std::vector<VirtualFile> concat;
// Since the files are a two-digit hex number, max is FF.
for (size_t i = 0; i < 0x100; ++i) {
for (std::size_t i = 0; i < 0x100; ++i) {
auto next = nca_dir->GetFile(fmt::format("{:02X}", i));
if (next != nullptr) {
concat.push_back(std::move(next));

View file

@ -49,7 +49,7 @@ struct FileEntry {
static_assert(sizeof(FileEntry) == 0x20, "FileEntry has incorrect size.");
template <typename Entry>
static std::pair<Entry, std::string> GetEntry(const VirtualFile& file, size_t offset) {
static std::pair<Entry, std::string> GetEntry(const VirtualFile& file, std::size_t offset) {
Entry entry{};
if (file->ReadObject(&entry, offset) != sizeof(Entry))
return {};
@ -59,8 +59,8 @@ static std::pair<Entry, std::string> GetEntry(const VirtualFile& file, size_t of
return {entry, string};
}
void ProcessFile(VirtualFile file, size_t file_offset, size_t data_offset, u32 this_file_offset,
std::shared_ptr<VectorVfsDirectory> parent) {
void ProcessFile(VirtualFile file, std::size_t file_offset, std::size_t data_offset,
u32 this_file_offset, std::shared_ptr<VectorVfsDirectory> parent) {
while (true) {
auto entry = GetEntry<FileEntry>(file, file_offset + this_file_offset);
@ -74,8 +74,9 @@ void ProcessFile(VirtualFile file, size_t file_offset, size_t data_offset, u32 t
}
}
void ProcessDirectory(VirtualFile file, size_t dir_offset, size_t file_offset, size_t data_offset,
u32 this_dir_offset, std::shared_ptr<VectorVfsDirectory> parent) {
void ProcessDirectory(VirtualFile file, std::size_t dir_offset, std::size_t file_offset,
std::size_t data_offset, u32 this_dir_offset,
std::shared_ptr<VectorVfsDirectory> parent) {
while (true) {
auto entry = GetEntry<DirectoryEntry>(file, dir_offset + this_dir_offset);
auto current = std::make_shared<VectorVfsDirectory>(

View file

@ -167,18 +167,18 @@ std::string VfsFile::GetExtension() const {
VfsDirectory::~VfsDirectory() = default;
boost::optional<u8> VfsFile::ReadByte(size_t offset) const {
boost::optional<u8> VfsFile::ReadByte(std::size_t offset) const {
u8 out{};
size_t size = Read(&out, 1, offset);
std::size_t size = Read(&out, 1, offset);
if (size == 1)
return out;
return boost::none;
}
std::vector<u8> VfsFile::ReadBytes(size_t size, size_t offset) const {
std::vector<u8> VfsFile::ReadBytes(std::size_t size, std::size_t offset) const {
std::vector<u8> out(size);
size_t read_size = Read(out.data(), size, offset);
std::size_t read_size = Read(out.data(), size, offset);
out.resize(read_size);
return out;
}
@ -187,11 +187,11 @@ std::vector<u8> VfsFile::ReadAllBytes() const {
return ReadBytes(GetSize());
}
bool VfsFile::WriteByte(u8 data, size_t offset) {
bool VfsFile::WriteByte(u8 data, std::size_t offset) {
return Write(&data, 1, offset) == 1;
}
size_t VfsFile::WriteBytes(const std::vector<u8>& data, size_t offset) {
std::size_t VfsFile::WriteBytes(const std::vector<u8>& data, std::size_t offset) {
return Write(data.data(), data.size(), offset);
}
@ -215,7 +215,7 @@ std::shared_ptr<VfsFile> VfsDirectory::GetFileRelative(std::string_view path) co
}
auto dir = GetSubdirectory(vec[0]);
for (size_t component = 1; component < vec.size() - 1; ++component) {
for (std::size_t component = 1; component < vec.size() - 1; ++component) {
if (dir == nullptr) {
return nullptr;
}
@ -249,7 +249,7 @@ std::shared_ptr<VfsDirectory> VfsDirectory::GetDirectoryRelative(std::string_vie
}
auto dir = GetSubdirectory(vec[0]);
for (size_t component = 1; component < vec.size(); ++component) {
for (std::size_t component = 1; component < vec.size(); ++component) {
if (dir == nullptr) {
return nullptr;
}
@ -286,7 +286,7 @@ bool VfsDirectory::IsRoot() const {
return GetParentDirectory() == nullptr;
}
size_t VfsDirectory::GetSize() const {
std::size_t VfsDirectory::GetSize() const {
const auto& files = GetFiles();
const auto sum_sizes = [](const auto& range) {
return std::accumulate(range.begin(), range.end(), 0ULL,
@ -434,13 +434,13 @@ bool ReadOnlyVfsDirectory::Rename(std::string_view name) {
return false;
}
bool DeepEquals(const VirtualFile& file1, const VirtualFile& file2, size_t block_size) {
bool DeepEquals(const VirtualFile& file1, const VirtualFile& file2, std::size_t block_size) {
if (file1->GetSize() != file2->GetSize())
return false;
std::vector<u8> f1_v(block_size);
std::vector<u8> f2_v(block_size);
for (size_t i = 0; i < file1->GetSize(); i += block_size) {
for (std::size_t i = 0; i < file1->GetSize(); i += block_size) {
auto f1_vs = file1->Read(f1_v.data(), block_size, i);
auto f2_vs = file2->Read(f2_v.data(), block_size, i);

View file

@ -92,9 +92,9 @@ public:
// Retrieves the extension of the file name.
virtual std::string GetExtension() const;
// Retrieves the size of the file.
virtual size_t GetSize() const = 0;
virtual std::size_t GetSize() const = 0;
// Resizes the file to new_size. Returns whether or not the operation was successful.
virtual bool Resize(size_t new_size) = 0;
virtual bool Resize(std::size_t new_size) = 0;
// Gets a pointer to the directory containing this file, returning nullptr if there is none.
virtual std::shared_ptr<VfsDirectory> GetContainingDirectory() const = 0;
@ -105,15 +105,15 @@ public:
// The primary method of reading from the file. Reads length bytes into data starting at offset
// into file. Returns number of bytes successfully read.
virtual size_t Read(u8* data, size_t length, size_t offset = 0) const = 0;
virtual std::size_t Read(u8* data, std::size_t length, std::size_t offset = 0) const = 0;
// The primary method of writing to the file. Writes length bytes from data starting at offset
// into file. Returns number of bytes successfully written.
virtual size_t Write(const u8* data, size_t length, size_t offset = 0) = 0;
virtual std::size_t Write(const u8* data, std::size_t length, std::size_t offset = 0) = 0;
// Reads exactly one byte at the offset provided, returning boost::none on error.
virtual boost::optional<u8> ReadByte(size_t offset = 0) const;
virtual boost::optional<u8> ReadByte(std::size_t offset = 0) const;
// Reads size bytes starting at offset in file into a vector.
virtual std::vector<u8> ReadBytes(size_t size, size_t offset = 0) const;
virtual std::vector<u8> ReadBytes(std::size_t size, std::size_t offset = 0) const;
// Reads all the bytes from the file into a vector. Equivalent to 'file->Read(file->GetSize(),
// 0)'
virtual std::vector<u8> ReadAllBytes() const;
@ -121,7 +121,7 @@ public:
// Reads an array of type T, size number_elements starting at offset.
// Returns the number of bytes (sizeof(T)*number_elements) read successfully.
template <typename T>
size_t ReadArray(T* data, size_t number_elements, size_t offset = 0) const {
std::size_t ReadArray(T* data, std::size_t number_elements, std::size_t offset = 0) const {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Read(reinterpret_cast<u8*>(data), number_elements * sizeof(T), offset);
@ -130,7 +130,7 @@ public:
// Reads size bytes into the memory starting at data starting at offset into the file.
// Returns the number of bytes read successfully.
template <typename T>
size_t ReadBytes(T* data, size_t size, size_t offset = 0) const {
std::size_t ReadBytes(T* data, std::size_t size, std::size_t offset = 0) const {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Read(reinterpret_cast<u8*>(data), size, offset);
}
@ -138,22 +138,22 @@ public:
// Reads one object of type T starting at offset in file.
// Returns the number of bytes read successfully (sizeof(T)).
template <typename T>
size_t ReadObject(T* data, size_t offset = 0) const {
std::size_t ReadObject(T* data, std::size_t offset = 0) const {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Read(reinterpret_cast<u8*>(data), sizeof(T), offset);
}
// Writes exactly one byte to offset in file and retuns whether or not the byte was written
// successfully.
virtual bool WriteByte(u8 data, size_t offset = 0);
virtual bool WriteByte(u8 data, std::size_t offset = 0);
// Writes a vector of bytes to offset in file and returns the number of bytes successfully
// written.
virtual size_t WriteBytes(const std::vector<u8>& data, size_t offset = 0);
virtual std::size_t WriteBytes(const std::vector<u8>& data, std::size_t offset = 0);
// Writes an array of type T, size number_elements to offset in file.
// Returns the number of bytes (sizeof(T)*number_elements) written successfully.
template <typename T>
size_t WriteArray(const T* data, size_t number_elements, size_t offset = 0) {
std::size_t WriteArray(const T* data, std::size_t number_elements, std::size_t offset = 0) {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Write(data, number_elements * sizeof(T), offset);
}
@ -161,7 +161,7 @@ public:
// Writes size bytes starting at memory location data to offset in file.
// Returns the number of bytes written successfully.
template <typename T>
size_t WriteBytes(const T* data, size_t size, size_t offset = 0) {
std::size_t WriteBytes(const T* data, std::size_t size, std::size_t offset = 0) {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Write(reinterpret_cast<const u8*>(data), size, offset);
}
@ -169,7 +169,7 @@ public:
// Writes one object of type T to offset in file.
// Returns the number of bytes written successfully (sizeof(T)).
template <typename T>
size_t WriteObject(const T& data, size_t offset = 0) {
std::size_t WriteObject(const T& data, std::size_t offset = 0) {
static_assert(std::is_trivially_copyable_v<T>, "Data type must be trivially copyable.");
return Write(&data, sizeof(T), offset);
}
@ -221,7 +221,7 @@ public:
// Returns the name of the directory.
virtual std::string GetName() const = 0;
// Returns the total size of all files and subdirectories in this directory.
virtual size_t GetSize() const;
virtual std::size_t GetSize() const;
// Returns the parent directory of this directory. Returns nullptr if this directory is root or
// has no parent.
virtual std::shared_ptr<VfsDirectory> GetParentDirectory() const = 0;
@ -311,7 +311,7 @@ public:
};
// Compare the two files, byte-for-byte, in increments specificed by block_size
bool DeepEquals(const VirtualFile& file1, const VirtualFile& file2, size_t block_size = 0x200);
bool DeepEquals(const VirtualFile& file1, const VirtualFile& file2, std::size_t block_size = 0x200);
// A method that copies the raw data between two different implementations of VirtualFile. If you
// are using the same implementation, it is probably better to use the Copy method in the parent

View file

@ -20,7 +20,7 @@ VirtualFile ConcatenateFiles(std::vector<VirtualFile> files, std::string name) {
ConcatenatedVfsFile::ConcatenatedVfsFile(std::vector<VirtualFile> files_, std::string name)
: name(std::move(name)) {
size_t next_offset = 0;
std::size_t next_offset = 0;
for (const auto& file : files_) {
files[next_offset] = file;
next_offset += file->GetSize();
@ -35,13 +35,13 @@ std::string ConcatenatedVfsFile::GetName() const {
return files.begin()->second->GetName();
}
size_t ConcatenatedVfsFile::GetSize() const {
std::size_t ConcatenatedVfsFile::GetSize() const {
if (files.empty())
return 0;
return files.rbegin()->first + files.rbegin()->second->GetSize();
}
bool ConcatenatedVfsFile::Resize(size_t new_size) {
bool ConcatenatedVfsFile::Resize(std::size_t new_size) {
return false;
}
@ -59,7 +59,7 @@ bool ConcatenatedVfsFile::IsReadable() const {
return true;
}
size_t ConcatenatedVfsFile::Read(u8* data, size_t length, size_t offset) const {
std::size_t ConcatenatedVfsFile::Read(u8* data, std::size_t length, std::size_t offset) const {
auto entry = files.end();
for (auto iter = files.begin(); iter != files.end(); ++iter) {
if (iter->first > offset) {
@ -84,7 +84,7 @@ size_t ConcatenatedVfsFile::Read(u8* data, size_t length, size_t offset) const {
return entry->second->Read(data, length, offset - entry->first);
}
size_t ConcatenatedVfsFile::Write(const u8* data, size_t length, size_t offset) {
std::size_t ConcatenatedVfsFile::Write(const u8* data, std::size_t length, std::size_t offset) {
return 0;
}

View file

@ -23,13 +23,13 @@ class ConcatenatedVfsFile : public VfsFile {
public:
std::string GetName() const override;
size_t GetSize() const override;
bool Resize(size_t new_size) override;
std::size_t GetSize() const override;
bool Resize(std::size_t new_size) override;
std::shared_ptr<VfsDirectory> GetContainingDirectory() const override;
bool IsWritable() const override;
bool IsReadable() const override;
size_t Read(u8* data, size_t length, size_t offset) const override;
size_t Write(const u8* data, size_t length, size_t offset) override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
std::size_t Write(const u8* data, std::size_t length, std::size_t offset) override;
bool Rename(std::string_view name) override;
private:

View file

@ -9,7 +9,7 @@
namespace FileSys {
OffsetVfsFile::OffsetVfsFile(std::shared_ptr<VfsFile> file_, size_t size_, size_t offset_,
OffsetVfsFile::OffsetVfsFile(std::shared_ptr<VfsFile> file_, std::size_t size_, std::size_t offset_,
std::string name_, VirtualDir parent_)
: file(file_), offset(offset_), size(size_), name(std::move(name_)),
parent(parent_ == nullptr ? file->GetContainingDirectory() : std::move(parent_)) {}
@ -18,11 +18,11 @@ std::string OffsetVfsFile::GetName() const {
return name.empty() ? file->GetName() : name;
}
size_t OffsetVfsFile::GetSize() const {
std::size_t OffsetVfsFile::GetSize() const {
return size;
}
bool OffsetVfsFile::Resize(size_t new_size) {
bool OffsetVfsFile::Resize(std::size_t new_size) {
if (offset + new_size < file->GetSize()) {
size = new_size;
} else {
@ -47,22 +47,22 @@ bool OffsetVfsFile::IsReadable() const {
return file->IsReadable();
}
size_t OffsetVfsFile::Read(u8* data, size_t length, size_t r_offset) const {
std::size_t OffsetVfsFile::Read(u8* data, std::size_t length, std::size_t r_offset) const {
return file->Read(data, TrimToFit(length, r_offset), offset + r_offset);
}
size_t OffsetVfsFile::Write(const u8* data, size_t length, size_t r_offset) {
std::size_t OffsetVfsFile::Write(const u8* data, std::size_t length, std::size_t r_offset) {
return file->Write(data, TrimToFit(length, r_offset), offset + r_offset);
}
boost::optional<u8> OffsetVfsFile::ReadByte(size_t r_offset) const {
boost::optional<u8> OffsetVfsFile::ReadByte(std::size_t r_offset) const {
if (r_offset < size)
return file->ReadByte(offset + r_offset);
return boost::none;
}
std::vector<u8> OffsetVfsFile::ReadBytes(size_t r_size, size_t r_offset) const {
std::vector<u8> OffsetVfsFile::ReadBytes(std::size_t r_size, std::size_t r_offset) const {
return file->ReadBytes(TrimToFit(r_size, r_offset), offset + r_offset);
}
@ -70,14 +70,14 @@ std::vector<u8> OffsetVfsFile::ReadAllBytes() const {
return file->ReadBytes(size, offset);
}
bool OffsetVfsFile::WriteByte(u8 data, size_t r_offset) {
bool OffsetVfsFile::WriteByte(u8 data, std::size_t r_offset) {
if (r_offset < size)
return file->WriteByte(data, offset + r_offset);
return false;
}
size_t OffsetVfsFile::WriteBytes(const std::vector<u8>& data, size_t r_offset) {
std::size_t OffsetVfsFile::WriteBytes(const std::vector<u8>& data, std::size_t r_offset) {
return file->Write(data.data(), TrimToFit(data.size(), r_offset), offset + r_offset);
}
@ -85,12 +85,12 @@ bool OffsetVfsFile::Rename(std::string_view name) {
return file->Rename(name);
}
size_t OffsetVfsFile::GetOffset() const {
std::size_t OffsetVfsFile::GetOffset() const {
return offset;
}
size_t OffsetVfsFile::TrimToFit(size_t r_size, size_t r_offset) const {
return std::clamp(r_size, size_t{0}, size - r_offset);
std::size_t OffsetVfsFile::TrimToFit(std::size_t r_size, std::size_t r_offset) const {
return std::clamp(r_size, std::size_t{0}, size - r_offset);
}
} // namespace FileSys

View file

@ -17,33 +17,33 @@ namespace FileSys {
// the size of this wrapper.
class OffsetVfsFile : public VfsFile {
public:
OffsetVfsFile(std::shared_ptr<VfsFile> file, size_t size, size_t offset = 0,
OffsetVfsFile(std::shared_ptr<VfsFile> file, std::size_t size, std::size_t offset = 0,
std::string new_name = "", VirtualDir new_parent = nullptr);
std::string GetName() const override;
size_t GetSize() const override;
bool Resize(size_t new_size) override;
std::size_t GetSize() const override;
bool Resize(std::size_t new_size) override;
std::shared_ptr<VfsDirectory> GetContainingDirectory() const override;
bool IsWritable() const override;
bool IsReadable() const override;
size_t Read(u8* data, size_t length, size_t offset) const override;
size_t Write(const u8* data, size_t length, size_t offset) override;
boost::optional<u8> ReadByte(size_t offset) const override;
std::vector<u8> ReadBytes(size_t size, size_t offset) const override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
std::size_t Write(const u8* data, std::size_t length, std::size_t offset) override;
boost::optional<u8> ReadByte(std::size_t offset) const override;
std::vector<u8> ReadBytes(std::size_t size, std::size_t offset) const override;
std::vector<u8> ReadAllBytes() const override;
bool WriteByte(u8 data, size_t offset) override;
size_t WriteBytes(const std::vector<u8>& data, size_t offset) override;
bool WriteByte(u8 data, std::size_t offset) override;
std::size_t WriteBytes(const std::vector<u8>& data, std::size_t offset) override;
bool Rename(std::string_view name) override;
size_t GetOffset() const;
std::size_t GetOffset() const;
private:
size_t TrimToFit(size_t r_size, size_t r_offset) const;
std::size_t TrimToFit(std::size_t r_size, std::size_t r_offset) const;
std::shared_ptr<VfsFile> file;
size_t offset;
size_t size;
std::size_t offset;
std::size_t size;
std::string name;
VirtualDir parent;
};

View file

@ -227,11 +227,11 @@ std::string RealVfsFile::GetName() const {
return path_components.back();
}
size_t RealVfsFile::GetSize() const {
std::size_t RealVfsFile::GetSize() const {
return backing->GetSize();
}
bool RealVfsFile::Resize(size_t new_size) {
bool RealVfsFile::Resize(std::size_t new_size) {
return backing->Resize(new_size);
}
@ -247,13 +247,13 @@ bool RealVfsFile::IsReadable() const {
return (perms & Mode::ReadWrite) != 0;
}
size_t RealVfsFile::Read(u8* data, size_t length, size_t offset) const {
std::size_t RealVfsFile::Read(u8* data, std::size_t length, std::size_t offset) const {
if (!backing->Seek(offset, SEEK_SET))
return 0;
return backing->ReadBytes(data, length);
}
size_t RealVfsFile::Write(const u8* data, size_t length, size_t offset) {
std::size_t RealVfsFile::Write(const u8* data, std::size_t length, std::size_t offset) {
if (!backing->Seek(offset, SEEK_SET))
return 0;
return backing->WriteBytes(data, length);

View file

@ -48,13 +48,13 @@ public:
~RealVfsFile() override;
std::string GetName() const override;
size_t GetSize() const override;
bool Resize(size_t new_size) override;
std::size_t GetSize() const override;
bool Resize(std::size_t new_size) override;
std::shared_ptr<VfsDirectory> GetContainingDirectory() const override;
bool IsWritable() const override;
bool IsReadable() const override;
size_t Read(u8* data, size_t length, size_t offset) const override;
size_t Write(const u8* data, size_t length, size_t offset) override;
std::size_t Read(u8* data, std::size_t length, std::size_t offset) const override;
std::size_t Write(const u8* data, std::size_t length, std::size_t offset) override;
bool Rename(std::string_view name) override;
private:

View file

@ -25,8 +25,8 @@ namespace FileSys {
constexpr u64 NAX_HEADER_PADDING_SIZE = 0x4000;
template <typename SourceData, typename SourceKey, typename Destination>
static bool CalculateHMAC256(Destination* out, const SourceKey* key, size_t key_length,
const SourceData* data, size_t data_length) {
static bool CalculateHMAC256(Destination* out, const SourceKey* key, std::size_t key_length,
const SourceData* data, std::size_t data_length) {
mbedtls_md_context_t context;
mbedtls_md_init(&context);
@ -91,7 +91,7 @@ Loader::ResultStatus NAX::Parse(std::string_view path) {
const auto enc_keys = header->key_area;
size_t i = 0;
std::size_t i = 0;
for (; i < sd_keys.size(); ++i) {
std::array<Core::Crypto::Key128, 2> nax_keys{};
if (!CalculateHMAC256(nax_keys.data(), sd_keys[i].data(), 0x10, std::string(path).c_str(),
@ -99,7 +99,7 @@ Loader::ResultStatus NAX::Parse(std::string_view path) {
return Loader::ResultStatus::ErrorNAXKeyHMACFailed;
}
for (size_t j = 0; j < nax_keys.size(); ++j) {
for (std::size_t j = 0; j < nax_keys.size(); ++j) {
Core::Crypto::AESCipher<Core::Crypto::Key128> cipher(nax_keys[j],
Core::Crypto::Mode::ECB);
cipher.Transcode(enc_keys[j].data(), 0x10, header->key_area[j].data(),

View file

@ -292,7 +292,7 @@ static u8 NibbleToHex(u8 n) {
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static u32 HexToInt(const u8* src, size_t len) {
static u32 HexToInt(const u8* src, std::size_t len) {
u32 output = 0;
while (len-- > 0) {
output = (output << 4) | HexCharToValue(src[0]);
@ -307,7 +307,7 @@ static u32 HexToInt(const u8* src, size_t len) {
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static u64 HexToLong(const u8* src, size_t len) {
static u64 HexToLong(const u8* src, std::size_t len) {
u64 output = 0;
while (len-- > 0) {
output = (output << 4) | HexCharToValue(src[0]);
@ -323,7 +323,7 @@ static u64 HexToLong(const u8* src, size_t len) {
* @param src Pointer to array of u8 bytes.
* @param len Length of src array.
*/
static void MemToGdbHex(u8* dest, const u8* src, size_t len) {
static void MemToGdbHex(u8* dest, const u8* src, std::size_t len) {
while (len-- > 0) {
u8 tmp = *src++;
*dest++ = NibbleToHex(tmp >> 4);
@ -338,7 +338,7 @@ static void MemToGdbHex(u8* dest, const u8* src, size_t len) {
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static void GdbHexToMem(u8* dest, const u8* src, size_t len) {
static void GdbHexToMem(u8* dest, const u8* src, std::size_t len) {
while (len-- > 0) {
*dest++ = (HexCharToValue(src[0]) << 4) | HexCharToValue(src[1]);
src += 2;
@ -406,7 +406,7 @@ static u64 GdbHexToLong(const u8* src) {
/// Read a byte from the gdb client.
static u8 ReadByte() {
u8 c;
size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
std::size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
if (received_size != 1) {
LOG_ERROR(Debug_GDBStub, "recv failed: {}", received_size);
Shutdown();
@ -416,7 +416,7 @@ static u8 ReadByte() {
}
/// Calculate the checksum of the current command buffer.
static u8 CalculateChecksum(const u8* buffer, size_t length) {
static u8 CalculateChecksum(const u8* buffer, std::size_t length) {
return static_cast<u8>(std::accumulate(buffer, buffer + length, 0, std::plus<u8>()));
}
@ -518,7 +518,7 @@ bool CheckBreakpoint(VAddr addr, BreakpointType type) {
* @param packet Packet to be sent to client.
*/
static void SendPacket(const char packet) {
size_t sent_size = send(gdbserver_socket, &packet, 1, 0);
std::size_t sent_size = send(gdbserver_socket, &packet, 1, 0);
if (sent_size != 1) {
LOG_ERROR(Debug_GDBStub, "send failed");
}

View file

@ -12,7 +12,7 @@
namespace IPC {
/// Size of the command buffer area, in 32-bit words.
constexpr size_t COMMAND_BUFFER_LENGTH = 0x100 / sizeof(u32);
constexpr std::size_t COMMAND_BUFFER_LENGTH = 0x100 / sizeof(u32);
// These errors are commonly returned by invalid IPC translations, so alias them here for
// convenience.

View file

@ -152,8 +152,8 @@ public:
}
void ValidateHeader() {
const size_t num_domain_objects = context->NumDomainObjects();
const size_t num_move_objects = context->NumMoveObjects();
const std::size_t num_domain_objects = context->NumDomainObjects();
const std::size_t num_move_objects = context->NumMoveObjects();
ASSERT_MSG(!num_domain_objects || !num_move_objects,
"cannot move normal handles and domain objects");
ASSERT_MSG((index - datapayload_index) == normal_params_size,
@ -329,10 +329,10 @@ public:
T PopRaw();
template <typename T>
Kernel::SharedPtr<T> GetMoveObject(size_t index);
Kernel::SharedPtr<T> GetMoveObject(std::size_t index);
template <typename T>
Kernel::SharedPtr<T> GetCopyObject(size_t index);
Kernel::SharedPtr<T> GetCopyObject(std::size_t index);
template <class T>
std::shared_ptr<T> PopIpcInterface() {
@ -406,12 +406,12 @@ void RequestParser::Pop(First& first_value, Other&... other_values) {
}
template <typename T>
Kernel::SharedPtr<T> RequestParser::GetMoveObject(size_t index) {
Kernel::SharedPtr<T> RequestParser::GetMoveObject(std::size_t index) {
return context->GetMoveObject<T>(index);
}
template <typename T>
Kernel::SharedPtr<T> RequestParser::GetCopyObject(size_t index) {
Kernel::SharedPtr<T> RequestParser::GetCopyObject(std::size_t index) {
return context->GetCopyObject<T>(index);
}

View file

@ -35,16 +35,17 @@ static ResultCode WaitForAddress(VAddr address, s64 timeout) {
// Gets the threads waiting on an address.
static std::vector<SharedPtr<Thread>> GetThreadsWaitingOnAddress(VAddr address) {
const auto RetrieveWaitingThreads =
[](size_t core_index, std::vector<SharedPtr<Thread>>& waiting_threads, VAddr arb_addr) {
const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
auto& thread_list = scheduler->GetThreadList();
const auto RetrieveWaitingThreads = [](std::size_t core_index,
std::vector<SharedPtr<Thread>>& waiting_threads,
VAddr arb_addr) {
const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
auto& thread_list = scheduler->GetThreadList();
for (auto& thread : thread_list) {
if (thread->arb_wait_address == arb_addr)
waiting_threads.push_back(thread);
}
};
for (auto& thread : thread_list) {
if (thread->arb_wait_address == arb_addr)
waiting_threads.push_back(thread);
}
};
// Retrieve all threads that are waiting for this address.
std::vector<SharedPtr<Thread>> threads;
@ -66,12 +67,12 @@ static std::vector<SharedPtr<Thread>> GetThreadsWaitingOnAddress(VAddr address)
static void WakeThreads(std::vector<SharedPtr<Thread>>& waiting_threads, s32 num_to_wake) {
// Only process up to 'target' threads, unless 'target' is <= 0, in which case process
// them all.
size_t last = waiting_threads.size();
std::size_t last = waiting_threads.size();
if (num_to_wake > 0)
last = num_to_wake;
// Signal the waiting threads.
for (size_t i = 0; i < last; i++) {
for (std::size_t i = 0; i < last; i++) {
ASSERT(waiting_threads[i]->status == ThreadStatus::WaitArb);
waiting_threads[i]->SetWaitSynchronizationResult(RESULT_SUCCESS);
waiting_threads[i]->arb_wait_address = 0;

View file

@ -65,7 +65,7 @@ ResultCode HandleTable::Close(Handle handle) {
}
bool HandleTable::IsValid(Handle handle) const {
size_t slot = GetSlot(handle);
std::size_t slot = GetSlot(handle);
u16 generation = GetGeneration(handle);
return slot < MAX_COUNT && objects[slot] != nullptr && generations[slot] == generation;

View file

@ -93,7 +93,7 @@ private:
* This is the maximum limit of handles allowed per process in CTR-OS. It can be further
* reduced by ExHeader values, but this is not emulated here.
*/
static const size_t MAX_COUNT = 4096;
static const std::size_t MAX_COUNT = 4096;
static u16 GetSlot(Handle handle) {
return handle >> 15;

View file

@ -42,9 +42,9 @@ SharedPtr<Event> HLERequestContext::SleepClientThread(SharedPtr<Thread> thread,
Kernel::SharedPtr<Kernel::Event> event) {
// Put the client thread to sleep until the wait event is signaled or the timeout expires.
thread->wakeup_callback =
[context = *this, callback](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, size_t index) mutable -> bool {
thread->wakeup_callback = [context = *this, callback](
ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, std::size_t index) mutable -> bool {
ASSERT(thread->status == ThreadStatus::WaitHLEEvent);
callback(thread, context, reason);
context.WriteToOutgoingCommandBuffer(*thread);
@ -199,8 +199,8 @@ ResultCode HLERequestContext::PopulateFromIncomingCommandBuffer(u32_le* src_cmdb
}
// The data_size already includes the payload header, the padding and the domain header.
size_t size = data_payload_offset + command_header->data_size -
sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
std::size_t size = data_payload_offset + command_header->data_size -
sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
if (domain_message_header)
size -= sizeof(IPC::DomainMessageHeader) / sizeof(u32);
std::copy_n(src_cmdbuf, size, cmd_buf.begin());
@ -217,8 +217,8 @@ ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(const Thread& thread)
ParseCommandBuffer(cmd_buf.data(), false);
// The data_size already includes the payload header, the padding and the domain header.
size_t size = data_payload_offset + command_header->data_size -
sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
std::size_t size = data_payload_offset + command_header->data_size -
sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
if (domain_message_header)
size -= sizeof(IPC::DomainMessageHeader) / sizeof(u32);
@ -229,7 +229,7 @@ ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(const Thread& thread)
"Handle descriptor bit set but no handles to translate");
// We write the translated handles at a specific offset in the command buffer, this space
// was already reserved when writing the header.
size_t current_offset =
std::size_t current_offset =
(sizeof(IPC::CommandHeader) + sizeof(IPC::HandleDescriptorHeader)) / sizeof(u32);
ASSERT_MSG(!handle_descriptor_header->send_current_pid, "Sending PID is not implemented");
@ -258,7 +258,7 @@ ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(const Thread& thread)
ASSERT(domain_message_header->num_objects == domain_objects.size());
// Write the domain objects to the command buffer, these go after the raw untranslated data.
// TODO(Subv): This completely ignores C buffers.
size_t domain_offset = size - domain_message_header->num_objects;
std::size_t domain_offset = size - domain_message_header->num_objects;
auto& request_handlers = server_session->domain_request_handlers;
for (auto& object : domain_objects) {
@ -291,14 +291,15 @@ std::vector<u8> HLERequestContext::ReadBuffer(int buffer_index) const {
return buffer;
}
size_t HLERequestContext::WriteBuffer(const void* buffer, size_t size, int buffer_index) const {
std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size,
int buffer_index) const {
if (size == 0) {
LOG_WARNING(Core, "skip empty buffer write");
return 0;
}
const bool is_buffer_b{BufferDescriptorB().size() && BufferDescriptorB()[buffer_index].Size()};
const size_t buffer_size{GetWriteBufferSize(buffer_index)};
const std::size_t buffer_size{GetWriteBufferSize(buffer_index)};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
@ -314,13 +315,13 @@ size_t HLERequestContext::WriteBuffer(const void* buffer, size_t size, int buffe
return size;
}
size_t HLERequestContext::GetReadBufferSize(int buffer_index) const {
std::size_t HLERequestContext::GetReadBufferSize(int buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() && BufferDescriptorA()[buffer_index].Size()};
return is_buffer_a ? BufferDescriptorA()[buffer_index].Size()
: BufferDescriptorX()[buffer_index].Size();
}
size_t HLERequestContext::GetWriteBufferSize(int buffer_index) const {
std::size_t HLERequestContext::GetWriteBufferSize(int buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() && BufferDescriptorB()[buffer_index].Size()};
return is_buffer_b ? BufferDescriptorB()[buffer_index].Size()
: BufferDescriptorC()[buffer_index].Size();

View file

@ -170,7 +170,7 @@ public:
std::vector<u8> ReadBuffer(int buffer_index = 0) const;
/// Helper function to write a buffer using the appropriate buffer descriptor
size_t WriteBuffer(const void* buffer, size_t size, int buffer_index = 0) const;
std::size_t WriteBuffer(const void* buffer, std::size_t size, int buffer_index = 0) const;
/* Helper function to write a buffer using the appropriate buffer descriptor
*
@ -182,7 +182,7 @@ public:
*/
template <typename ContiguousContainer,
typename = std::enable_if_t<!std::is_pointer_v<ContiguousContainer>>>
size_t WriteBuffer(const ContiguousContainer& container, int buffer_index = 0) const {
std::size_t WriteBuffer(const ContiguousContainer& container, int buffer_index = 0) const {
using ContiguousType = typename ContiguousContainer::value_type;
static_assert(std::is_trivially_copyable_v<ContiguousType>,
@ -193,19 +193,19 @@ public:
}
/// Helper function to get the size of the input buffer
size_t GetReadBufferSize(int buffer_index = 0) const;
std::size_t GetReadBufferSize(int buffer_index = 0) const;
/// Helper function to get the size of the output buffer
size_t GetWriteBufferSize(int buffer_index = 0) const;
std::size_t GetWriteBufferSize(int buffer_index = 0) const;
template <typename T>
SharedPtr<T> GetCopyObject(size_t index) {
SharedPtr<T> GetCopyObject(std::size_t index) {
ASSERT(index < copy_objects.size());
return DynamicObjectCast<T>(copy_objects[index]);
}
template <typename T>
SharedPtr<T> GetMoveObject(size_t index) {
SharedPtr<T> GetMoveObject(std::size_t index) {
ASSERT(index < move_objects.size());
return DynamicObjectCast<T>(move_objects[index]);
}
@ -223,7 +223,7 @@ public:
}
template <typename T>
std::shared_ptr<T> GetDomainRequestHandler(size_t index) const {
std::shared_ptr<T> GetDomainRequestHandler(std::size_t index) const {
return std::static_pointer_cast<T>(domain_request_handlers[index]);
}
@ -240,15 +240,15 @@ public:
domain_objects.clear();
}
size_t NumMoveObjects() const {
std::size_t NumMoveObjects() const {
return move_objects.size();
}
size_t NumCopyObjects() const {
std::size_t NumCopyObjects() const {
return copy_objects.size();
}
size_t NumDomainObjects() const {
std::size_t NumDomainObjects() const {
return domain_objects.size();
}

View file

@ -40,8 +40,8 @@ SharedPtr<Process> Process::Create(KernelCore& kernel, std::string&& name) {
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
for (size_t i = 0; i < len; ++i) {
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
for (std::size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
@ -211,7 +211,7 @@ ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
"Shared memory exceeds bounds of mapped block");
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
size_t backing_block_offset = vma->second.offset + vma_offset;
std::size_t backing_block_offset = vma->second.offset + vma_offset;
CASCADE_RESULT(auto new_vma,
vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size,

View file

@ -59,7 +59,7 @@ class ResourceLimit;
struct CodeSet final : public Object {
struct Segment {
size_t offset = 0;
std::size_t offset = 0;
VAddr addr = 0;
u32 size = 0;
};
@ -164,7 +164,7 @@ public:
* Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
* to this process.
*/
void ParseKernelCaps(const u32* kernel_caps, size_t len);
void ParseKernelCaps(const u32* kernel_caps, std::size_t len);
/**
* Applies address space changes and launches the process main thread.

View file

@ -119,7 +119,7 @@ public:
/// Backing memory for this shared memory block.
std::shared_ptr<std::vector<u8>> backing_block;
/// Offset into the backing block for this shared memory.
size_t backing_block_offset;
std::size_t backing_block_offset;
/// Size of the memory block. Page-aligned.
u64 size;
/// Permission restrictions applied to the process which created the block.

View file

@ -146,7 +146,7 @@ static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
/// Default thread wakeup callback for WaitSynchronization
static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, size_t index) {
SharedPtr<WaitObject> object, std::size_t index) {
ASSERT(thread->status == ThreadStatus::WaitSynchAny);
if (reason == ThreadWakeupReason::Timeout) {
@ -647,16 +647,17 @@ static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target
LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
auto RetrieveWaitingThreads =
[](size_t core_index, std::vector<SharedPtr<Thread>>& waiting_threads, VAddr condvar_addr) {
const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
auto& thread_list = scheduler->GetThreadList();
auto RetrieveWaitingThreads = [](std::size_t core_index,
std::vector<SharedPtr<Thread>>& waiting_threads,
VAddr condvar_addr) {
const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
auto& thread_list = scheduler->GetThreadList();
for (auto& thread : thread_list) {
if (thread->condvar_wait_address == condvar_addr)
waiting_threads.push_back(thread);
}
};
for (auto& thread : thread_list) {
if (thread->condvar_wait_address == condvar_addr)
waiting_threads.push_back(thread);
}
};
// Retrieve a list of all threads that are waiting for this condition variable.
std::vector<SharedPtr<Thread>> waiting_threads;
@ -672,7 +673,7 @@ static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target
// Only process up to 'target' threads, unless 'target' is -1, in which case process
// them all.
size_t last = waiting_threads.size();
std::size_t last = waiting_threads.size();
if (target != -1)
last = target;
@ -680,12 +681,12 @@ static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target
if (last > waiting_threads.size())
return RESULT_SUCCESS;
for (size_t index = 0; index < last; ++index) {
for (std::size_t index = 0; index < last; ++index) {
auto& thread = waiting_threads[index];
ASSERT(thread->condvar_wait_address == condition_variable_addr);
size_t current_core = Core::System::GetInstance().CurrentCoreIndex();
std::size_t current_core = Core::System::GetInstance().CurrentCoreIndex();
auto& monitor = Core::System::GetInstance().Monitor();

View file

@ -275,7 +275,7 @@ ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
const size_t offset = thread->tls_memory->size();
const std::size_t offset = thread->tls_memory->size();
thread->tls_memory->insert(thread->tls_memory->end(), Memory::PAGE_SIZE, 0);
auto& vm_manager = owner_process->vm_manager;

View file

@ -254,7 +254,7 @@ public:
Handle callback_handle;
using WakeupCallback = bool(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, size_t index);
SharedPtr<WaitObject> object, std::size_t index);
// Callback that will be invoked when the thread is resumed from a waiting state. If the thread
// was waiting via WaitSynchronizationN then the object will be the last object that became
// available. In case of a timeout, the object will be nullptr.

View file

@ -86,7 +86,7 @@ VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block,
size_t offset, u64 size,
std::size_t offset, u64 size,
MemoryState state) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());

View file

@ -81,7 +81,7 @@ struct VirtualMemoryArea {
/// Memory block backing this VMA.
std::shared_ptr<std::vector<u8>> backing_block = nullptr;
/// Offset into the backing_memory the mapping starts from.
size_t offset = 0;
std::size_t offset = 0;
// Settings for type = BackingMemory
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
@ -147,7 +147,7 @@ public:
* @param state MemoryState tag to attach to the VMA.
*/
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
size_t offset, u64 size, MemoryState state);
std::size_t offset, u64 size, MemoryState state);
/**
* Maps an unmanaged host memory pointer at a given address.

View file

@ -81,7 +81,7 @@ void WaitObject::WakeupWaitingThread(SharedPtr<Thread> thread) {
}
}
size_t index = thread->GetWaitObjectIndex(this);
std::size_t index = thread->GetWaitObjectIndex(this);
for (auto& object : thread->wait_objects)
object->RemoveWaitingThread(thread.get());

View file

@ -33,7 +33,7 @@ ProfileManager::~ProfileManager() = default;
/// After a users creation it needs to be "registered" to the system. AddToProfiles handles the
/// internal management of the users profiles
boost::optional<size_t> ProfileManager::AddToProfiles(const ProfileInfo& user) {
boost::optional<std::size_t> ProfileManager::AddToProfiles(const ProfileInfo& user) {
if (user_count >= MAX_USERS) {
return boost::none;
}
@ -42,7 +42,7 @@ boost::optional<size_t> ProfileManager::AddToProfiles(const ProfileInfo& user) {
}
/// Deletes a specific profile based on it's profile index
bool ProfileManager::RemoveProfileAtIndex(size_t index) {
bool ProfileManager::RemoveProfileAtIndex(std::size_t index) {
if (index >= MAX_USERS || index >= user_count) {
return false;
}
@ -101,7 +101,7 @@ ResultCode ProfileManager::CreateNewUser(UUID uuid, const std::string& username)
}
/// Returns a users profile index based on their user id.
boost::optional<size_t> ProfileManager::GetUserIndex(const UUID& uuid) const {
boost::optional<std::size_t> ProfileManager::GetUserIndex(const UUID& uuid) const {
if (!uuid) {
return boost::none;
}
@ -110,16 +110,17 @@ boost::optional<size_t> ProfileManager::GetUserIndex(const UUID& uuid) const {
if (iter == profiles.end()) {
return boost::none;
}
return static_cast<size_t>(std::distance(profiles.begin(), iter));
return static_cast<std::size_t>(std::distance(profiles.begin(), iter));
}
/// Returns a users profile index based on their profile
boost::optional<size_t> ProfileManager::GetUserIndex(const ProfileInfo& user) const {
boost::optional<std::size_t> ProfileManager::GetUserIndex(const ProfileInfo& user) const {
return GetUserIndex(user.user_uuid);
}
/// Returns the data structure used by the switch when GetProfileBase is called on acc:*
bool ProfileManager::GetProfileBase(boost::optional<size_t> index, ProfileBase& profile) const {
bool ProfileManager::GetProfileBase(boost::optional<std::size_t> index,
ProfileBase& profile) const {
if (index == boost::none || index >= MAX_USERS) {
return false;
}
@ -143,14 +144,16 @@ bool ProfileManager::GetProfileBase(const ProfileInfo& user, ProfileBase& profil
/// Returns the current user count on the system. We keep a variable which tracks the count so we
/// don't have to loop the internal profile array every call.
size_t ProfileManager::GetUserCount() const {
std::size_t ProfileManager::GetUserCount() const {
return user_count;
}
/// Lists the current "opened" users on the system. Users are typically not open until they sign
/// into something or pick a profile. As of right now users should all be open until qlaunch is
/// booting
size_t ProfileManager::GetOpenUserCount() const {
std::size_t ProfileManager::GetOpenUserCount() const {
return std::count_if(profiles.begin(), profiles.end(),
[](const ProfileInfo& p) { return p.is_open; });
}
@ -206,7 +209,7 @@ UUID ProfileManager::GetLastOpenedUser() const {
}
/// Return the users profile base and the unknown arbitary data.
bool ProfileManager::GetProfileBaseAndData(boost::optional<size_t> index, ProfileBase& profile,
bool ProfileManager::GetProfileBaseAndData(boost::optional<std::size_t> index, ProfileBase& profile,
ProfileData& data) const {
if (GetProfileBase(index, profile)) {
data = profiles[index.get()].data;

View file

@ -12,8 +12,8 @@
#include "core/hle/result.h"
namespace Service::Account {
constexpr size_t MAX_USERS = 8;
constexpr size_t MAX_DATA = 128;
constexpr std::size_t MAX_USERS = 8;
constexpr std::size_t MAX_DATA = 128;
constexpr u128 INVALID_UUID{{0, 0}};
struct UUID {
@ -87,18 +87,18 @@ public:
ResultCode AddUser(const ProfileInfo& user);
ResultCode CreateNewUser(UUID uuid, const ProfileUsername& username);
ResultCode CreateNewUser(UUID uuid, const std::string& username);
boost::optional<size_t> GetUserIndex(const UUID& uuid) const;
boost::optional<size_t> GetUserIndex(const ProfileInfo& user) const;
bool GetProfileBase(boost::optional<size_t> index, ProfileBase& profile) const;
boost::optional<std::size_t> GetUserIndex(const UUID& uuid) const;
boost::optional<std::size_t> GetUserIndex(const ProfileInfo& user) const;
bool GetProfileBase(boost::optional<std::size_t> index, ProfileBase& profile) const;
bool GetProfileBase(UUID uuid, ProfileBase& profile) const;
bool GetProfileBase(const ProfileInfo& user, ProfileBase& profile) const;
bool GetProfileBaseAndData(boost::optional<size_t> index, ProfileBase& profile,
bool GetProfileBaseAndData(boost::optional<std::size_t> index, ProfileBase& profile,
ProfileData& data) const;
bool GetProfileBaseAndData(UUID uuid, ProfileBase& profile, ProfileData& data) const;
bool GetProfileBaseAndData(const ProfileInfo& user, ProfileBase& profile,
ProfileData& data) const;
size_t GetUserCount() const;
size_t GetOpenUserCount() const;
std::size_t GetUserCount() const;
std::size_t GetOpenUserCount() const;
bool UserExists(UUID uuid) const;
void OpenUser(UUID uuid);
void CloseUser(UUID uuid);
@ -110,9 +110,9 @@ public:
private:
std::array<ProfileInfo, MAX_USERS> profiles{};
size_t user_count = 0;
boost::optional<size_t> AddToProfiles(const ProfileInfo& profile);
bool RemoveProfileAtIndex(size_t index);
std::size_t user_count = 0;
boost::optional<std::size_t> AddToProfiles(const ProfileInfo& profile);
bool RemoveProfileAtIndex(std::size_t index);
UUID last_opened_user{INVALID_UUID};
};

View file

@ -456,7 +456,7 @@ private:
IPC::RequestParser rp{ctx};
const u64 offset{rp.Pop<u64>()};
const size_t size{ctx.GetWriteBufferSize()};
const std::size_t size{ctx.GetWriteBufferSize()};
ASSERT(offset + size <= buffer.size());

Some files were not shown because too many files have changed in this diff Show more