diff --git a/src/common/page_table.cpp b/src/common/page_table.cpp index 8eba1c3f1..69b7abc54 100644 --- a/src/common/page_table.cpp +++ b/src/common/page_table.cpp @@ -16,6 +16,7 @@ void PageTable::Resize(std::size_t address_space_width_in_bits) { pointers.resize(num_page_table_entries); attributes.resize(num_page_table_entries); + backing_addr.resize(num_page_table_entries); // The default is a 39-bit address space, which causes an initial 1GB allocation size. If the // vector size is subsequently decreased (via resize), the vector might not automatically @@ -24,6 +25,7 @@ void PageTable::Resize(std::size_t address_space_width_in_bits) { pointers.shrink_to_fit(); attributes.shrink_to_fit(); + backing_addr.shrink_to_fit(); } } // namespace Common diff --git a/src/common/page_table.h b/src/common/page_table.h index 8339f2890..8b8ff0bb8 100644 --- a/src/common/page_table.h +++ b/src/common/page_table.h @@ -21,6 +21,8 @@ enum class PageType : u8 { RasterizerCachedMemory, /// Page is mapped to a I/O region. Writing and reading to this page is handled by functions. Special, + /// Page is allocated for use. + Allocated, }; struct SpecialRegion { @@ -66,7 +68,7 @@ struct PageTable { * Contains MMIO handlers that back memory regions whose entries in the `attribute` vector is * of type `Special`. */ - boost::icl::interval_map> special_regions; + boost::icl::interval_map> special_regions; /** * Vector of fine grained page attributes. If it is set to any value other than `Memory`, then @@ -74,6 +76,8 @@ struct PageTable { */ std::vector attributes; + std::vector backing_addr; + const std::size_t page_size_in_bits{}; }; diff --git a/src/core/hle/service/nvdrv/devices/nvhost_as_gpu.cpp b/src/core/hle/service/nvdrv/devices/nvhost_as_gpu.cpp index b7964d66e..af62d33d2 100644 --- a/src/core/hle/service/nvdrv/devices/nvhost_as_gpu.cpp +++ b/src/core/hle/service/nvdrv/devices/nvhost_as_gpu.cpp @@ -173,16 +173,8 @@ u32 nvhost_as_gpu::UnmapBuffer(const std::vector& input, std::vector& ou return 0; } - auto& system_instance = Core::System::GetInstance(); - - // Remove this memory region from the rasterizer cache. - auto& gpu = system_instance.GPU(); - auto cpu_addr = gpu.MemoryManager().GpuToCpuAddress(params.offset); - ASSERT(cpu_addr); - gpu.FlushAndInvalidateRegion(ToCacheAddr(Memory::GetPointer(*cpu_addr)), itr->second.size); - - params.offset = gpu.MemoryManager().UnmapBuffer(params.offset, itr->second.size); - + params.offset = Core::System::GetInstance().GPU().MemoryManager().UnmapBuffer(params.offset, + itr->second.size); buffer_mappings.erase(itr->second.offset); std::memcpy(output.data(), ¶ms, output.size()); diff --git a/src/video_core/dma_pusher.h b/src/video_core/dma_pusher.h index 27a36348c..6ab06518f 100644 --- a/src/video_core/dma_pusher.h +++ b/src/video_core/dma_pusher.h @@ -9,7 +9,6 @@ #include "common/bit_field.h" #include "common/common_types.h" -#include "video_core/memory_manager.h" namespace Tegra { diff --git a/src/video_core/engines/kepler_memory.cpp b/src/video_core/engines/kepler_memory.cpp index 0931b9626..e259bf46b 100644 --- a/src/video_core/engines/kepler_memory.cpp +++ b/src/video_core/engines/kepler_memory.cpp @@ -46,7 +46,7 @@ void KeplerMemory::ProcessData(u32 data) { // contain a dirty surface that will have to be written back to memory. const GPUVAddr address{regs.dest.Address() + state.write_offset * sizeof(u32)}; rasterizer.InvalidateRegion(ToCacheAddr(memory_manager.GetPointer(address)), sizeof(u32)); - memory_manager.Write32(address, data); + memory_manager.Write(address, data); system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite(); diff --git a/src/video_core/engines/maxwell_3d.cpp b/src/video_core/engines/maxwell_3d.cpp index c5d5be4ef..defcfbd3f 100644 --- a/src/video_core/engines/maxwell_3d.cpp +++ b/src/video_core/engines/maxwell_3d.cpp @@ -307,7 +307,7 @@ void Maxwell3D::ProcessQueryGet() { // Write the current query sequence to the sequence address. // TODO(Subv): Find out what happens if you use a long query type but mark it as a short // query. - memory_manager.Write32(sequence_address, sequence); + memory_manager.Write(sequence_address, sequence); } else { // Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast // GPU, this command may actually take a while to complete in real hardware due to GPU @@ -395,7 +395,7 @@ void Maxwell3D::ProcessCBData(u32 value) { u8* ptr{memory_manager.GetPointer(address)}; rasterizer.InvalidateRegion(ToCacheAddr(ptr), sizeof(u32)); - memory_manager.Write32(address, value); + memory_manager.Write(address, value); dirty_flags.OnMemoryWrite(); @@ -447,7 +447,7 @@ std::vector Maxwell3D::GetStageTextures(Regs::ShaderSt for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset; current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) { - const Texture::TextureHandle tex_handle{memory_manager.Read32(current_texture)}; + const Texture::TextureHandle tex_handle{memory_manager.Read(current_texture)}; Texture::FullTextureInfo tex_info{}; // TODO(Subv): Use the shader to determine which textures are actually accessed. @@ -482,7 +482,7 @@ Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage, ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size); - const Texture::TextureHandle tex_handle{memory_manager.Read32(tex_info_address)}; + const Texture::TextureHandle tex_handle{memory_manager.Read(tex_info_address)}; Texture::FullTextureInfo tex_info{}; tex_info.index = static_cast(offset); diff --git a/src/video_core/gpu.cpp b/src/video_core/gpu.cpp index 66c690494..267a03f2d 100644 --- a/src/video_core/gpu.cpp +++ b/src/video_core/gpu.cpp @@ -12,6 +12,7 @@ #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_dma.h" #include "video_core/gpu.h" +#include "video_core/memory_manager.h" #include "video_core/renderer_base.h" namespace Tegra { @@ -287,7 +288,7 @@ void GPU::ProcessSemaphoreTriggerMethod() { block.timestamp = Core::System::GetInstance().CoreTiming().GetTicks(); memory_manager->WriteBlock(regs.smaphore_address.SmaphoreAddress(), &block, sizeof(block)); } else { - const u32 word{memory_manager->Read32(regs.smaphore_address.SmaphoreAddress())}; + const u32 word{memory_manager->Read(regs.smaphore_address.SmaphoreAddress())}; if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) || (op == GpuSemaphoreOperation::AcquireGequal && static_cast(word - regs.semaphore_sequence) > 0) || @@ -314,11 +315,11 @@ void GPU::ProcessSemaphoreTriggerMethod() { } void GPU::ProcessSemaphoreRelease() { - memory_manager->Write32(regs.smaphore_address.SmaphoreAddress(), regs.semaphore_release); + memory_manager->Write(regs.smaphore_address.SmaphoreAddress(), regs.semaphore_release); } void GPU::ProcessSemaphoreAcquire() { - const u32 word = memory_manager->Read32(regs.smaphore_address.SmaphoreAddress()); + const u32 word = memory_manager->Read(regs.smaphore_address.SmaphoreAddress()); const auto value = regs.semaphore_acquire; if (word != value) { regs.acquire_active = true; diff --git a/src/video_core/gpu.h b/src/video_core/gpu.h index a14b95c30..c1830ac8d 100644 --- a/src/video_core/gpu.h +++ b/src/video_core/gpu.h @@ -9,7 +9,6 @@ #include "common/common_types.h" #include "core/hle/service/nvflinger/buffer_queue.h" #include "video_core/dma_pusher.h" -#include "video_core/memory_manager.h" using CacheAddr = std::uintptr_t; inline CacheAddr ToCacheAddr(const void* host_ptr) { @@ -124,6 +123,8 @@ enum class EngineID { MAXWELL_DMA_COPY_A = 0xB0B5, }; +class MemoryManager; + class GPU { public: explicit GPU(Core::System& system, VideoCore::RendererBase& renderer); @@ -244,9 +245,8 @@ protected: private: std::unique_ptr memory_manager; - /// Mapping of command subchannels to their bound engine ids. + /// Mapping of command subchannels to their bound engine ids std::array bound_engines = {}; - /// 3D engine std::unique_ptr maxwell_3d; /// 2D engine diff --git a/src/video_core/memory_manager.cpp b/src/video_core/memory_manager.cpp index 8e8f36f28..4c7faa067 100644 --- a/src/video_core/memory_manager.cpp +++ b/src/video_core/memory_manager.cpp @@ -5,198 +5,164 @@ #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" +#include "core/core.h" #include "core/memory.h" +#include "video_core/gpu.h" #include "video_core/memory_manager.h" +#include "video_core/rasterizer_interface.h" +#include "video_core/renderer_base.h" namespace Tegra { MemoryManager::MemoryManager() { - // Mark the first page as reserved, so that 0 is not a valid GPUVAddr. Otherwise, games might - // try to use 0 as a valid address, which is also used to mean nullptr. This fixes a bug with - // Undertale using 0 for a render target. - PageSlot(0) = static_cast(PageStatus::Reserved); + std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr); + std::fill(page_table.attributes.begin(), page_table.attributes.end(), + Common::PageType::Unmapped); + page_table.Resize(address_space_width); + + // Initialize the map with a single free region covering the entire managed space. + VirtualMemoryArea initial_vma; + initial_vma.size = address_space_end; + vma_map.emplace(initial_vma.base, initial_vma); + + UpdatePageTableForVMA(initial_vma); } GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) { - const std::optional gpu_addr{FindFreeBlock(0, size, align, PageStatus::Unmapped)}; - - ASSERT_MSG(gpu_addr, "unable to find available GPU memory"); - - for (u64 offset{}; offset < size; offset += PAGE_SIZE) { - VAddr& slot{PageSlot(*gpu_addr + offset)}; - - ASSERT(slot == static_cast(PageStatus::Unmapped)); - - slot = static_cast(PageStatus::Allocated); - } - - return *gpu_addr; -} - -GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) { - for (u64 offset{}; offset < size; offset += PAGE_SIZE) { - VAddr& slot{PageSlot(gpu_addr + offset)}; - - ASSERT(slot == static_cast(PageStatus::Unmapped)); - - slot = static_cast(PageStatus::Allocated); - } - + const GPUVAddr gpu_addr{ + FindFreeRegion(address_space_base, size, align, VirtualMemoryArea::Type::Unmapped)}; + AllocateMemory(gpu_addr, 0, size); return gpu_addr; } -GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) { - const std::optional gpu_addr{FindFreeBlock(0, size, PAGE_SIZE, PageStatus::Unmapped)}; - - ASSERT_MSG(gpu_addr, "unable to find available GPU memory"); - - for (u64 offset{}; offset < size; offset += PAGE_SIZE) { - VAddr& slot{PageSlot(*gpu_addr + offset)}; - - ASSERT(slot == static_cast(PageStatus::Unmapped)); - - slot = cpu_addr + offset; - } - - const MappedRegion region{cpu_addr, *gpu_addr, size}; - mapped_regions.push_back(region); - - return *gpu_addr; +GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) { + AllocateMemory(gpu_addr, 0, size); + return gpu_addr; } -GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) { - ASSERT((gpu_addr & PAGE_MASK) == 0); +GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) { + const GPUVAddr gpu_addr{ + FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)}; + MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask), + cpu_addr); + return gpu_addr; +} - if (PageSlot(gpu_addr) != static_cast(PageStatus::Allocated)) { - // Page has been already mapped. In this case, we must find a new area of memory to use that - // is different than the specified one. Super Mario Odyssey hits this scenario when changing - // areas, but we do not want to overwrite the old pages. - // TODO(bunnei): We need to write a hardware test to confirm this behavior. +GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size) { + ASSERT((gpu_addr & page_mask) == 0); - LOG_ERROR(HW_GPU, "attempting to map addr 0x{:016X}, which is not available!", gpu_addr); - - const std::optional new_gpu_addr{ - FindFreeBlock(gpu_addr, size, PAGE_SIZE, PageStatus::Allocated)}; - - ASSERT_MSG(new_gpu_addr, "unable to find available GPU memory"); - - gpu_addr = *new_gpu_addr; - } - - for (u64 offset{}; offset < size; offset += PAGE_SIZE) { - VAddr& slot{PageSlot(gpu_addr + offset)}; - - ASSERT(slot == static_cast(PageStatus::Allocated)); - - slot = cpu_addr + offset; - } - - const MappedRegion region{cpu_addr, gpu_addr, size}; - mapped_regions.push_back(region); + MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask), + cpu_addr); return gpu_addr; } GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) { - ASSERT((gpu_addr & PAGE_MASK) == 0); + ASSERT((gpu_addr & page_mask) == 0); - for (u64 offset{}; offset < size; offset += PAGE_SIZE) { - VAddr& slot{PageSlot(gpu_addr + offset)}; + const CacheAddr cache_addr{ToCacheAddr(GetPointer(gpu_addr))}; + Core::System::GetInstance().Renderer().Rasterizer().FlushAndInvalidateRegion(cache_addr, size); - ASSERT(slot != static_cast(PageStatus::Allocated) && - slot != static_cast(PageStatus::Unmapped)); + UnmapRange(gpu_addr, ((size + page_mask) & ~page_mask)); - slot = static_cast(PageStatus::Unmapped); - } - - // Delete the region mappings that are contained within the unmapped region - mapped_regions.erase(std::remove_if(mapped_regions.begin(), mapped_regions.end(), - [&](const MappedRegion& region) { - return region.gpu_addr <= gpu_addr && - region.gpu_addr + region.size < gpu_addr + size; - }), - mapped_regions.end()); return gpu_addr; } -GPUVAddr MemoryManager::GetRegionEnd(GPUVAddr region_start) const { - for (const auto& region : mapped_regions) { - const GPUVAddr region_end{region.gpu_addr + region.size}; - if (region_start >= region.gpu_addr && region_start < region_end) { - return region_end; - } - } - return {}; -} +GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size, u64 align, + VirtualMemoryArea::Type vma_type) { -std::optional MemoryManager::FindFreeBlock(GPUVAddr region_start, u64 size, u64 align, - PageStatus status) { - GPUVAddr gpu_addr{region_start}; - u64 free_space{}; - align = (align + PAGE_MASK) & ~PAGE_MASK; + align = (align + page_mask) & ~page_mask; - while (gpu_addr + free_space < MAX_ADDRESS) { - if (PageSlot(gpu_addr + free_space) == static_cast(status)) { - free_space += PAGE_SIZE; - if (free_space >= size) { - return gpu_addr; - } - } else { - gpu_addr += free_space + PAGE_SIZE; - free_space = 0; - gpu_addr = Common::AlignUp(gpu_addr, align); - } - } + // Find the first Free VMA. + const GPUVAddr base = region_start; + const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) { + if (vma.second.type != vma_type) + return false; - return {}; -} + const VAddr vma_end = vma.second.base + vma.second.size; + return vma_end > base && vma_end >= base + size; + }); -std::optional MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) { - const VAddr base_addr{PageSlot(gpu_addr)}; - - if (base_addr == static_cast(PageStatus::Allocated) || - base_addr == static_cast(PageStatus::Unmapped) || - base_addr == static_cast(PageStatus::Reserved)) { + if (vma_handle == vma_map.end()) { return {}; } - return base_addr + (gpu_addr & PAGE_MASK); + return std::max(base, vma_handle->second.base); } -u8 MemoryManager::Read8(GPUVAddr addr) { - return Memory::Read8(*GpuToCpuAddress(addr)); +std::optional MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) { + VAddr cpu_addr = page_table.backing_addr[gpu_addr >> page_bits]; + if (cpu_addr) { + return cpu_addr + (gpu_addr & page_mask); + } + + return {}; } -u16 MemoryManager::Read16(GPUVAddr addr) { - return Memory::Read16(*GpuToCpuAddress(addr)); +template +T MemoryManager::Read(GPUVAddr vaddr) { + const u8* page_pointer = page_table.pointers[vaddr >> page_bits]; + if (page_pointer) { + // NOTE: Avoid adding any extra logic to this fast-path block + T value; + std::memcpy(&value, &page_pointer[vaddr & page_mask], sizeof(T)); + return value; + } + + Common::PageType type = page_table.attributes[vaddr >> page_bits]; + switch (type) { + case Common::PageType::Unmapped: + LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr); + return 0; + case Common::PageType::Memory: + ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); + break; + default: + UNREACHABLE(); + } + return {}; } -u32 MemoryManager::Read32(GPUVAddr addr) { - return Memory::Read32(*GpuToCpuAddress(addr)); +template +void MemoryManager::Write(GPUVAddr vaddr, T data) { + u8* page_pointer = page_table.pointers[vaddr >> page_bits]; + if (page_pointer) { + // NOTE: Avoid adding any extra logic to this fast-path block + std::memcpy(&page_pointer[vaddr & page_mask], &data, sizeof(T)); + return; + } + + Common::PageType type = page_table.attributes[vaddr >> page_bits]; + switch (type) { + case Common::PageType::Unmapped: + LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, + static_cast(data), vaddr); + return; + case Common::PageType::Memory: + ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); + break; + default: + UNREACHABLE(); + } } -u64 MemoryManager::Read64(GPUVAddr addr) { - return Memory::Read64(*GpuToCpuAddress(addr)); -} - -void MemoryManager::Write8(GPUVAddr addr, u8 data) { - Memory::Write8(*GpuToCpuAddress(addr), data); -} - -void MemoryManager::Write16(GPUVAddr addr, u16 data) { - Memory::Write16(*GpuToCpuAddress(addr), data); -} - -void MemoryManager::Write32(GPUVAddr addr, u32 data) { - Memory::Write32(*GpuToCpuAddress(addr), data); -} - -void MemoryManager::Write64(GPUVAddr addr, u64 data) { - Memory::Write64(*GpuToCpuAddress(addr), data); -} +template u8 MemoryManager::Read(GPUVAddr addr); +template u16 MemoryManager::Read(GPUVAddr addr); +template u32 MemoryManager::Read(GPUVAddr addr); +template u64 MemoryManager::Read(GPUVAddr addr); +template void MemoryManager::Write(GPUVAddr addr, u8 data); +template void MemoryManager::Write(GPUVAddr addr, u16 data); +template void MemoryManager::Write(GPUVAddr addr, u32 data); +template void MemoryManager::Write(GPUVAddr addr, u64 data); u8* MemoryManager::GetPointer(GPUVAddr addr) { - return Memory::GetPointer(*GpuToCpuAddress(addr)); + u8* page_pointer = page_table.pointers[addr >> page_bits]; + if (page_pointer) { + return page_pointer + (addr & page_mask); + } + + LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr); + return {}; } void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size) { @@ -210,13 +176,251 @@ void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t std::memcpy(GetPointer(dest_addr), GetPointer(src_addr), size); } -VAddr& MemoryManager::PageSlot(GPUVAddr gpu_addr) { - auto& block{page_table[(gpu_addr >> (PAGE_BITS + PAGE_TABLE_BITS)) & PAGE_TABLE_MASK]}; - if (!block) { - block = std::make_unique(); - block->fill(static_cast(PageStatus::Unmapped)); +void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type, + VAddr backing_addr) { + LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size, + (base + size) * page_size); + + VAddr end = base + size; + ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", + base + page_table.pointers.size()); + + std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type); + + if (memory == nullptr) { + std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory); + std::fill(page_table.backing_addr.begin() + base, page_table.backing_addr.begin() + end, + backing_addr); + } else { + while (base != end) { + page_table.pointers[base] = memory; + page_table.backing_addr[base] = backing_addr; + + base += 1; + memory += page_size; + backing_addr += page_size; + } + } +} + +void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) { + ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size); + ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base); + MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr); +} + +void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) { + ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size); + ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base); + MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped); +} + +bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { + ASSERT(base + size == next.base); + if (type != next.type) { + return {}; + } + if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) { + return {}; + } + if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) { + return {}; + } + return true; +} + +MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const { + if (target >= address_space_end) { + return vma_map.end(); + } else { + return std::prev(vma_map.upper_bound(target)); + } +} + +MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset, + u64 size) { + + // This is the appropriately sized VMA that will turn into our allocation. + VMAIter vma_handle = CarveVMA(target, size); + VirtualMemoryArea& final_vma = vma_handle->second; + ASSERT(final_vma.size == size); + + final_vma.type = VirtualMemoryArea::Type::Allocated; + final_vma.offset = offset; + UpdatePageTableForVMA(final_vma); + + return MergeAdjacent(vma_handle); +} + +MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size, + VAddr backing_addr) { + // This is the appropriately sized VMA that will turn into our allocation. + VMAIter vma_handle = CarveVMA(target, size); + VirtualMemoryArea& final_vma = vma_handle->second; + ASSERT(final_vma.size == size); + + final_vma.type = VirtualMemoryArea::Type::Mapped; + final_vma.backing_memory = memory; + final_vma.backing_addr = backing_addr; + UpdatePageTableForVMA(final_vma); + + return MergeAdjacent(vma_handle); +} + +MemoryManager::VMAIter MemoryManager::Unmap(VMAIter vma_handle) { + VirtualMemoryArea& vma = vma_handle->second; + vma.type = VirtualMemoryArea::Type::Allocated; + vma.offset = 0; + vma.backing_memory = nullptr; + + UpdatePageTableForVMA(vma); + + return MergeAdjacent(vma_handle); +} + +void MemoryManager::UnmapRange(GPUVAddr target, u64 size) { + VMAIter vma = CarveVMARange(target, size); + const VAddr target_end = target + size; + + const VMAIter end = vma_map.end(); + // The comparison against the end of the range must be done using addresses since VMAs can be + // merged during this process, causing invalidation of the iterators. + while (vma != end && vma->second.base < target_end) { + vma = std::next(Unmap(vma)); + } + + ASSERT(FindVMA(target)->second.size >= size); +} + +MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) { + // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given + // non-const access to its container. + return vma_map.erase(iter, iter); // Erases an empty range of elements +} + +MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) { + ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}", + size); + ASSERT_MSG((base & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}", + base); + + VMAIter vma_handle = StripIterConstness(FindVMA(base)); + if (vma_handle == vma_map.end()) { + // Target address is outside the range managed by the kernel + return {}; + } + + const VirtualMemoryArea& vma = vma_handle->second; + if (vma.type == VirtualMemoryArea::Type::Mapped) { + // Region is already allocated + return {}; + } + + const VAddr start_in_vma = base - vma.base; + const VAddr end_in_vma = start_in_vma + size; + + if (end_in_vma < vma.size) { + // Split VMA at the end of the allocated region + SplitVMA(vma_handle, end_in_vma); + } + if (start_in_vma != 0) { + // Split VMA at the start of the allocated region + vma_handle = SplitVMA(vma_handle, start_in_vma); + } + + return vma_handle; +} + +MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) { + ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}", + size); + ASSERT_MSG((target & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}", + target); + + const VAddr target_end = target + size; + ASSERT(target_end >= target); + ASSERT(size > 0); + + VMAIter begin_vma = StripIterConstness(FindVMA(target)); + const VMAIter i_end = vma_map.lower_bound(target_end); + if (std::any_of(begin_vma, i_end, [](const auto& entry) { + return entry.second.type == VirtualMemoryArea::Type::Unmapped; + })) { + return {}; + } + + if (target != begin_vma->second.base) { + begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); + } + + VMAIter end_vma = StripIterConstness(FindVMA(target_end)); + if (end_vma != vma_map.end() && target_end != end_vma->second.base) { + end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); + } + + return begin_vma; +} + +MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) { + VirtualMemoryArea& old_vma = vma_handle->second; + VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA + + // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably + // a bug. This restriction might be removed later. + ASSERT(offset_in_vma < old_vma.size); + ASSERT(offset_in_vma > 0); + + old_vma.size = offset_in_vma; + new_vma.base += offset_in_vma; + new_vma.size -= offset_in_vma; + + switch (new_vma.type) { + case VirtualMemoryArea::Type::Unmapped: + break; + case VirtualMemoryArea::Type::Allocated: + new_vma.offset += offset_in_vma; + break; + case VirtualMemoryArea::Type::Mapped: + new_vma.backing_memory += offset_in_vma; + break; + } + + ASSERT(old_vma.CanBeMergedWith(new_vma)); + + return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma); +} + +MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) { + const VMAIter next_vma = std::next(iter); + if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { + iter->second.size += next_vma->second.size; + vma_map.erase(next_vma); + } + + if (iter != vma_map.begin()) { + VMAIter prev_vma = std::prev(iter); + if (prev_vma->second.CanBeMergedWith(iter->second)) { + prev_vma->second.size += iter->second.size; + vma_map.erase(iter); + iter = prev_vma; + } + } + + return iter; +} + +void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { + switch (vma.type) { + case VirtualMemoryArea::Type::Unmapped: + UnmapRegion(vma.base, vma.size); + break; + case VirtualMemoryArea::Type::Allocated: + MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr); + break; + case VirtualMemoryArea::Type::Mapped: + MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr); + break; } - return (*block)[(gpu_addr >> PAGE_BITS) & PAGE_BLOCK_MASK]; } } // namespace Tegra diff --git a/src/video_core/memory_manager.h b/src/video_core/memory_manager.h index bb87fa24d..ac1b42936 100644 --- a/src/video_core/memory_manager.h +++ b/src/video_core/memory_manager.h @@ -1,79 +1,147 @@ -// Copyright 2018 yuzu emulator team +// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once -#include -#include +#include #include -#include #include "common/common_types.h" +#include "common/page_table.h" namespace Tegra { +/** + * Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space + * with homogeneous attributes across its extents. In this particular implementation each VMA is + * also backed by a single host memory allocation. + */ +struct VirtualMemoryArea { + enum class Type : u8 { + Unmapped, + Allocated, + Mapped, + }; + + /// Virtual base address of the region. + GPUVAddr base{}; + /// Size of the region. + u64 size{}; + /// Memory area mapping type. + Type type{Type::Unmapped}; + /// CPU memory mapped address corresponding to this memory area. + VAddr backing_addr{}; + /// Offset into the backing_memory the mapping starts from. + std::size_t offset{}; + /// Pointer backing this VMA. + u8* backing_memory{}; + + /// Tests if this area can be merged to the right with `next`. + bool CanBeMergedWith(const VirtualMemoryArea& next) const; +}; + class MemoryManager final { public: MemoryManager(); GPUVAddr AllocateSpace(u64 size, u64 align); GPUVAddr AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align); - GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size); - GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size); + GPUVAddr MapBufferEx(GPUVAddr cpu_addr, u64 size); + GPUVAddr MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size); GPUVAddr UnmapBuffer(GPUVAddr gpu_addr, u64 size); - GPUVAddr GetRegionEnd(GPUVAddr region_start) const; std::optional GpuToCpuAddress(GPUVAddr gpu_addr); - static constexpr u64 PAGE_BITS = 16; - static constexpr u64 PAGE_SIZE = 1 << PAGE_BITS; - static constexpr u64 PAGE_MASK = PAGE_SIZE - 1; + template + T Read(GPUVAddr vaddr); - u8 Read8(GPUVAddr addr); - u16 Read16(GPUVAddr addr); - u32 Read32(GPUVAddr addr); - u64 Read64(GPUVAddr addr); - - void Write8(GPUVAddr addr, u8 data); - void Write16(GPUVAddr addr, u16 data); - void Write32(GPUVAddr addr, u32 data); - void Write64(GPUVAddr addr, u64 data); + template + void Write(GPUVAddr vaddr, T data); u8* GetPointer(GPUVAddr vaddr); void ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size); void WriteBlock(GPUVAddr dest_addr, const void* src_buffer, std::size_t size); - void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size); + void CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t size); private: - enum class PageStatus : u64 { - Unmapped = 0xFFFFFFFFFFFFFFFFULL, - Allocated = 0xFFFFFFFFFFFFFFFEULL, - Reserved = 0xFFFFFFFFFFFFFFFDULL, - }; + using VMAMap = std::map; + using VMAHandle = VMAMap::const_iterator; + using VMAIter = VMAMap::iterator; - std::optional FindFreeBlock(GPUVAddr region_start, u64 size, u64 align, - PageStatus status); - VAddr& PageSlot(GPUVAddr gpu_addr); + void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type, + VAddr backing_addr = 0); + void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr); + void UnmapRegion(GPUVAddr base, u64 size); - static constexpr u64 MAX_ADDRESS{0x10000000000ULL}; - static constexpr u64 PAGE_TABLE_BITS{10}; - static constexpr u64 PAGE_TABLE_SIZE{1 << PAGE_TABLE_BITS}; - static constexpr u64 PAGE_TABLE_MASK{PAGE_TABLE_SIZE - 1}; - static constexpr u64 PAGE_BLOCK_BITS{14}; - static constexpr u64 PAGE_BLOCK_SIZE{1 << PAGE_BLOCK_BITS}; - static constexpr u64 PAGE_BLOCK_MASK{PAGE_BLOCK_SIZE - 1}; + /// Finds the VMA in which the given address is included in, or `vma_map.end()`. + VMAHandle FindVMA(GPUVAddr target) const; - using PageBlock = std::array; - std::array, PAGE_TABLE_SIZE> page_table{}; + VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size); - struct MappedRegion { - VAddr cpu_addr; - GPUVAddr gpu_addr; - u64 size; - }; + /** + * Maps an unmanaged host memory pointer at a given address. + * + * @param target The guest address to start the mapping at. + * @param memory The memory to be mapped. + * @param size Size of the mapping. + * @param state MemoryState tag to attach to the VMA. + */ + VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr); - std::vector mapped_regions; + /// Unmaps a range of addresses, splitting VMAs as necessary. + void UnmapRange(GPUVAddr target, u64 size); + + /// Converts a VMAHandle to a mutable VMAIter. + VMAIter StripIterConstness(const VMAHandle& iter); + + /// Unmaps the given VMA. + VMAIter Unmap(VMAIter vma); + + /** + * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing + * the appropriate error checking. + */ + VMAIter CarveVMA(GPUVAddr base, u64 size); + + /** + * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each + * end of the range. + */ + VMAIter CarveVMARange(GPUVAddr base, u64 size); + + /** + * Splits a VMA in two, at the specified offset. + * @returns the right side of the split, with the original iterator becoming the left side. + */ + VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma); + + /** + * Checks for and merges the specified VMA with adjacent ones if possible. + * @returns the merged VMA or the original if no merging was possible. + */ + VMAIter MergeAdjacent(VMAIter vma); + + /// Updates the pages corresponding to this VMA so they match the VMA's attributes. + void UpdatePageTableForVMA(const VirtualMemoryArea& vma); + + GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size, u64 align, + VirtualMemoryArea::Type vma_type); + +private: + static constexpr u64 page_bits{16}; + static constexpr u64 page_size{1 << page_bits}; + static constexpr u64 page_mask{page_size - 1}; + + /// Address space in bits, this is fairly arbitrary but sufficiently large. + static constexpr u32 address_space_width = 39; + /// Start address for mapping, this is fairly arbitrary but must be non-zero. + static constexpr GPUVAddr address_space_base = 0x100000; + /// End of address space, based on address space in bits. + static constexpr GPUVAddr address_space_end = 1ULL << address_space_width; + + Common::PageTable page_table{page_bits}; + VMAMap vma_map; }; } // namespace Tegra diff --git a/src/video_core/rasterizer_interface.h b/src/video_core/rasterizer_interface.h index 76e292e87..d7b86df38 100644 --- a/src/video_core/rasterizer_interface.h +++ b/src/video_core/rasterizer_interface.h @@ -9,7 +9,6 @@ #include "common/common_types.h" #include "video_core/engines/fermi_2d.h" #include "video_core/gpu.h" -#include "video_core/memory_manager.h" namespace VideoCore { diff --git a/src/video_core/renderer_opengl/gl_global_cache.cpp b/src/video_core/renderer_opengl/gl_global_cache.cpp index ac030cfc9..0fbfbad55 100644 --- a/src/video_core/renderer_opengl/gl_global_cache.cpp +++ b/src/video_core/renderer_opengl/gl_global_cache.cpp @@ -76,8 +76,8 @@ GlobalRegion GlobalRegionCacheOpenGL::GetGlobalRegion( const auto cbufs{gpu.Maxwell3D().state.shader_stages[static_cast(stage)]}; const auto addr{cbufs.const_buffers[global_region.GetCbufIndex()].address + global_region.GetCbufOffset()}; - const auto actual_addr{memory_manager.Read64(addr)}; - const auto size{memory_manager.Read32(addr + 8)}; + const auto actual_addr{memory_manager.Read(addr)}; + const auto size{memory_manager.Read(addr + 8)}; // Look up global region in the cache based on address const auto& host_ptr{memory_manager.GetPointer(actual_addr)}; diff --git a/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp b/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp index 1133fa1f9..b94446428 100644 --- a/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp +++ b/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp @@ -610,11 +610,11 @@ CachedSurface::CachedSurface(const SurfaceParams& params) // check is necessary to prevent flushing from overwriting unmapped memory. auto& memory_manager{Core::System::GetInstance().GPU().MemoryManager()}; - const u64 max_size{memory_manager.GetRegionEnd(params.gpu_addr) - params.gpu_addr}; - if (cached_size_in_bytes > max_size) { - LOG_ERROR(HW_GPU, "Surface size {} exceeds region size {}", params.size_in_bytes, max_size); - cached_size_in_bytes = max_size; - } + // const u64 max_size{memory_manager.GetRegionEnd(params.gpu_addr) - params.gpu_addr}; + // if (cached_size_in_bytes > max_size) { + // LOG_ERROR(HW_GPU, "Surface size {} exceeds region size {}", params.size_in_bytes, + // max_size); cached_size_in_bytes = max_size; + //} cpu_addr = *memory_manager.GpuToCpuAddress(params.gpu_addr); }