Merge pull request #3098 from ReinUsesLisp/shader-invalidations

gl_shader_cache: Miscellaneous changes to shaders
This commit is contained in:
bunnei 2019-11-24 19:36:30 -05:00 committed by GitHub
commit b03242067d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
31 changed files with 743 additions and 745 deletions

View file

@ -22,6 +22,7 @@ add_library(video_core STATIC
engines/maxwell_dma.h engines/maxwell_dma.h
engines/shader_bytecode.h engines/shader_bytecode.h
engines/shader_header.h engines/shader_header.h
engines/shader_type.h
gpu.cpp gpu.cpp
gpu.h gpu.h
gpu_asynch.cpp gpu_asynch.cpp

View file

@ -8,19 +8,11 @@
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h" #include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_type.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
namespace Tegra::Engines { namespace Tegra::Engines {
enum class ShaderType : u32 {
Vertex = 0,
TesselationControl = 1,
TesselationEval = 2,
Geometry = 3,
Fragment = 4,
Compute = 5,
};
struct SamplerDescriptor { struct SamplerDescriptor {
union { union {
BitField<0, 20, Tegra::Shader::TextureType> texture_type; BitField<0, 20, Tegra::Shader::TextureType> texture_type;

View file

@ -8,6 +8,7 @@
#include "core/core.h" #include "core/core.h"
#include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h" #include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"

View file

@ -12,6 +12,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/const_buffer_engine_interface.h" #include "video_core/engines/const_buffer_engine_interface.h"
#include "video_core/engines/engine_upload.h" #include "video_core/engines/engine_upload.h"
#include "video_core/engines/shader_type.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -140,7 +141,7 @@ public:
INSERT_PADDING_WORDS(0x3); INSERT_PADDING_WORDS(0x3);
BitField<0, 16, u32> shared_alloc; BitField<0, 18, u32> shared_alloc;
BitField<16, 16, u32> block_dim_x; BitField<16, 16, u32> block_dim_x;
union { union {
@ -178,7 +179,12 @@ public:
BitField<24, 5, u32> gpr_alloc; BitField<24, 5, u32> gpr_alloc;
}; };
INSERT_PADDING_WORDS(0x11); union {
BitField<0, 20, u32> local_crs_alloc;
BitField<24, 5, u32> sass_version;
};
INSERT_PADDING_WORDS(0x10);
} launch_description{}; } launch_description{};
struct { struct {

View file

@ -9,6 +9,7 @@
#include "core/core_timing.h" #include "core/core_timing.h"
#include "video_core/debug_utils/debug_utils.h" #include "video_core/debug_utils/debug_utils.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h" #include "video_core/rasterizer_interface.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -368,24 +369,24 @@ void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
StartCBData(method); StartCBData(method);
break; break;
} }
case MAXWELL3D_REG_INDEX(cb_bind[0].raw_config): { case MAXWELL3D_REG_INDEX(cb_bind[0]): {
ProcessCBBind(Regs::ShaderStage::Vertex); ProcessCBBind(0);
break; break;
} }
case MAXWELL3D_REG_INDEX(cb_bind[1].raw_config): { case MAXWELL3D_REG_INDEX(cb_bind[1]): {
ProcessCBBind(Regs::ShaderStage::TesselationControl); ProcessCBBind(1);
break; break;
} }
case MAXWELL3D_REG_INDEX(cb_bind[2].raw_config): { case MAXWELL3D_REG_INDEX(cb_bind[2]): {
ProcessCBBind(Regs::ShaderStage::TesselationEval); ProcessCBBind(2);
break; break;
} }
case MAXWELL3D_REG_INDEX(cb_bind[3].raw_config): { case MAXWELL3D_REG_INDEX(cb_bind[3]): {
ProcessCBBind(Regs::ShaderStage::Geometry); ProcessCBBind(3);
break; break;
} }
case MAXWELL3D_REG_INDEX(cb_bind[4].raw_config): { case MAXWELL3D_REG_INDEX(cb_bind[4]): {
ProcessCBBind(Regs::ShaderStage::Fragment); ProcessCBBind(4);
break; break;
} }
case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): { case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): {
@ -687,10 +688,10 @@ void Maxwell3D::DrawArrays() {
} }
} }
void Maxwell3D::ProcessCBBind(Regs::ShaderStage stage) { void Maxwell3D::ProcessCBBind(std::size_t stage_index) {
// Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage. // Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage.
auto& shader = state.shader_stages[static_cast<std::size_t>(stage)]; auto& shader = state.shader_stages[stage_index];
auto& bind_data = regs.cb_bind[static_cast<std::size_t>(stage)]; auto& bind_data = regs.cb_bind[stage_index];
ASSERT(bind_data.index < Regs::MaxConstBuffers); ASSERT(bind_data.index < Regs::MaxConstBuffers);
auto& buffer = shader.const_buffers[bind_data.index]; auto& buffer = shader.const_buffers[bind_data.index];
@ -757,9 +758,9 @@ Texture::FullTextureInfo Maxwell3D::GetTextureInfo(Texture::TextureHandle tex_ha
return Texture::FullTextureInfo{GetTICEntry(tex_handle.tic_id), GetTSCEntry(tex_handle.tsc_id)}; return Texture::FullTextureInfo{GetTICEntry(tex_handle.tic_id), GetTSCEntry(tex_handle.tsc_id)};
} }
Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage, Texture::FullTextureInfo Maxwell3D::GetStageTexture(ShaderType stage, std::size_t offset) const {
std::size_t offset) const { const auto stage_index = static_cast<std::size_t>(stage);
const auto& shader = state.shader_stages[static_cast<std::size_t>(stage)]; const auto& shader = state.shader_stages[stage_index];
const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index]; const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index];
ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0);

View file

@ -18,6 +18,7 @@
#include "video_core/engines/const_buffer_engine_interface.h" #include "video_core/engines/const_buffer_engine_interface.h"
#include "video_core/engines/const_buffer_info.h" #include "video_core/engines/const_buffer_info.h"
#include "video_core/engines/engine_upload.h" #include "video_core/engines/engine_upload.h"
#include "video_core/engines/shader_type.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
#include "video_core/macro_interpreter.h" #include "video_core/macro_interpreter.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -62,7 +63,6 @@ public:
static constexpr std::size_t NumVertexArrays = 32; static constexpr std::size_t NumVertexArrays = 32;
static constexpr std::size_t NumVertexAttributes = 32; static constexpr std::size_t NumVertexAttributes = 32;
static constexpr std::size_t NumVaryings = 31; static constexpr std::size_t NumVaryings = 31;
static constexpr std::size_t NumTextureSamplers = 32;
static constexpr std::size_t NumImages = 8; // TODO(Rodrigo): Investigate this number static constexpr std::size_t NumImages = 8; // TODO(Rodrigo): Investigate this number
static constexpr std::size_t NumClipDistances = 8; static constexpr std::size_t NumClipDistances = 8;
static constexpr std::size_t MaxShaderProgram = 6; static constexpr std::size_t MaxShaderProgram = 6;
@ -130,14 +130,6 @@ public:
Fragment = 5, Fragment = 5,
}; };
enum class ShaderStage : u32 {
Vertex = 0,
TesselationControl = 1,
TesselationEval = 2,
Geometry = 3,
Fragment = 4,
};
struct VertexAttribute { struct VertexAttribute {
enum class Size : u32 { enum class Size : u32 {
Invalid = 0x0, Invalid = 0x0,
@ -1254,7 +1246,7 @@ public:
Texture::FullTextureInfo GetTextureInfo(Texture::TextureHandle tex_handle) const; Texture::FullTextureInfo GetTextureInfo(Texture::TextureHandle tex_handle) const;
/// Returns the texture information for a specific texture in a specific shader stage. /// Returns the texture information for a specific texture in a specific shader stage.
Texture::FullTextureInfo GetStageTexture(Regs::ShaderStage stage, std::size_t offset) const; Texture::FullTextureInfo GetStageTexture(ShaderType stage, std::size_t offset) const;
u32 AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const override; u32 AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const override;
@ -1376,7 +1368,7 @@ private:
void FinishCBData(); void FinishCBData();
/// Handles a write to the CB_BIND register. /// Handles a write to the CB_BIND register.
void ProcessCBBind(Regs::ShaderStage stage); void ProcessCBBind(std::size_t stage_index);
/// Handles a write to the VERTEX_END_GL register, triggering a draw. /// Handles a write to the VERTEX_END_GL register, triggering a draw.
void DrawArrays(); void DrawArrays();

View file

@ -0,0 +1,21 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace Tegra::Engines {
enum class ShaderType : u32 {
Vertex = 0,
TesselationControl = 1,
TesselationEval = 2,
Geometry = 3,
Fragment = 4,
Compute = 5,
};
static constexpr std::size_t MaxShaderTypes = 6;
} // namespace Tegra::Engines

View file

@ -5,7 +5,9 @@
#include <algorithm> #include <algorithm>
#include <array> #include <array>
#include <cstddef> #include <cstddef>
#include <optional>
#include <vector> #include <vector>
#include <glad/glad.h> #include <glad/glad.h>
#include "common/logging/log.h" #include "common/logging/log.h"
@ -17,6 +19,30 @@ namespace OpenGL {
namespace { namespace {
// One uniform block is reserved for emulation purposes
constexpr u32 ReservedUniformBlocks = 1;
constexpr u32 NumStages = 5;
constexpr std::array LimitUBOs = {GL_MAX_VERTEX_UNIFORM_BLOCKS, GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS,
GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS,
GL_MAX_GEOMETRY_UNIFORM_BLOCKS, GL_MAX_FRAGMENT_UNIFORM_BLOCKS};
constexpr std::array LimitSSBOs = {
GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS, GL_MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS,
GL_MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS, GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS,
GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS};
constexpr std::array LimitSamplers = {
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS,
GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS, GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS,
GL_MAX_TEXTURE_IMAGE_UNITS};
constexpr std::array LimitImages = {GL_MAX_VERTEX_IMAGE_UNIFORMS,
GL_MAX_TESS_CONTROL_IMAGE_UNIFORMS,
GL_MAX_TESS_EVALUATION_IMAGE_UNIFORMS,
GL_MAX_GEOMETRY_IMAGE_UNIFORMS, GL_MAX_FRAGMENT_IMAGE_UNIFORMS};
template <typename T> template <typename T>
T GetInteger(GLenum pname) { T GetInteger(GLenum pname) {
GLint temporary; GLint temporary;
@ -48,13 +74,70 @@ bool HasExtension(const std::vector<std::string_view>& images, std::string_view
return std::find(images.begin(), images.end(), extension) != images.end(); return std::find(images.begin(), images.end(), extension) != images.end();
} }
u32 Extract(u32& base, u32& num, u32 amount, std::optional<GLenum> limit = {}) {
ASSERT(num >= amount);
if (limit) {
amount = std::min(amount, GetInteger<u32>(*limit));
}
num -= amount;
return std::exchange(base, base + amount);
}
std::array<Device::BaseBindings, Tegra::Engines::MaxShaderTypes> BuildBaseBindings() noexcept {
std::array<Device::BaseBindings, Tegra::Engines::MaxShaderTypes> bindings;
static std::array<std::size_t, 5> stage_swizzle = {0, 1, 2, 3, 4};
const u32 total_ubos = GetInteger<u32>(GL_MAX_UNIFORM_BUFFER_BINDINGS);
const u32 total_ssbos = GetInteger<u32>(GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS);
const u32 total_samplers = GetInteger<u32>(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS);
u32 num_ubos = total_ubos - ReservedUniformBlocks;
u32 num_ssbos = total_ssbos;
u32 num_samplers = total_samplers;
u32 base_ubo = ReservedUniformBlocks;
u32 base_ssbo = 0;
u32 base_samplers = 0;
for (std::size_t i = 0; i < NumStages; ++i) {
const std::size_t stage = stage_swizzle[i];
bindings[stage] = {
Extract(base_ubo, num_ubos, total_ubos / NumStages, LimitUBOs[stage]),
Extract(base_ssbo, num_ssbos, total_ssbos / NumStages, LimitSSBOs[stage]),
Extract(base_samplers, num_samplers, total_samplers / NumStages, LimitSamplers[stage])};
}
u32 num_images = GetInteger<u32>(GL_MAX_IMAGE_UNITS);
u32 base_images = 0;
// Reserve more image bindings on fragment and vertex stages.
bindings[4].image =
Extract(base_images, num_images, num_images / NumStages + 2, LimitImages[4]);
bindings[0].image =
Extract(base_images, num_images, num_images / NumStages + 1, LimitImages[0]);
// Reserve the other image bindings.
const u32 total_extracted_images = num_images / (NumStages - 2);
for (std::size_t i = 2; i < NumStages; ++i) {
const std::size_t stage = stage_swizzle[i];
bindings[stage].image =
Extract(base_images, num_images, total_extracted_images, LimitImages[stage]);
}
// Compute doesn't care about any of this.
bindings[5] = {0, 0, 0, 0};
return bindings;
}
} // Anonymous namespace } // Anonymous namespace
Device::Device() { Device::Device() : base_bindings{BuildBaseBindings()} {
const std::string_view vendor = reinterpret_cast<const char*>(glGetString(GL_VENDOR)); const std::string_view vendor = reinterpret_cast<const char*>(glGetString(GL_VENDOR));
const std::vector extensions = GetExtensions(); const std::vector extensions = GetExtensions();
const bool is_nvidia = vendor == "NVIDIA Corporation"; const bool is_nvidia = vendor == "NVIDIA Corporation";
const bool is_intel = vendor == "Intel";
uniform_buffer_alignment = GetInteger<std::size_t>(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT); uniform_buffer_alignment = GetInteger<std::size_t>(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT);
shader_storage_alignment = GetInteger<std::size_t>(GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT); shader_storage_alignment = GetInteger<std::size_t>(GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT);
@ -68,6 +151,7 @@ Device::Device() {
has_variable_aoffi = TestVariableAoffi(); has_variable_aoffi = TestVariableAoffi();
has_component_indexing_bug = TestComponentIndexingBug(); has_component_indexing_bug = TestComponentIndexingBug();
has_precise_bug = TestPreciseBug(); has_precise_bug = TestPreciseBug();
has_broken_compute = is_intel;
has_fast_buffer_sub_data = is_nvidia; has_fast_buffer_sub_data = is_nvidia;
LOG_INFO(Render_OpenGL, "Renderer_VariableAOFFI: {}", has_variable_aoffi); LOG_INFO(Render_OpenGL, "Renderer_VariableAOFFI: {}", has_variable_aoffi);
@ -85,6 +169,7 @@ Device::Device(std::nullptr_t) {
has_image_load_formatted = true; has_image_load_formatted = true;
has_variable_aoffi = true; has_variable_aoffi = true;
has_component_indexing_bug = false; has_component_indexing_bug = false;
has_broken_compute = false;
has_precise_bug = false; has_precise_bug = false;
} }

View file

@ -6,14 +6,32 @@
#include <cstddef> #include <cstddef>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/shader_type.h"
namespace OpenGL { namespace OpenGL {
class Device { static constexpr u32 EmulationUniformBlockBinding = 0;
class Device final {
public: public:
struct BaseBindings final {
u32 uniform_buffer{};
u32 shader_storage_buffer{};
u32 sampler{};
u32 image{};
};
explicit Device(); explicit Device();
explicit Device(std::nullptr_t); explicit Device(std::nullptr_t);
const BaseBindings& GetBaseBindings(std::size_t stage_index) const noexcept {
return base_bindings[stage_index];
}
const BaseBindings& GetBaseBindings(Tegra::Engines::ShaderType shader_type) const noexcept {
return GetBaseBindings(static_cast<std::size_t>(shader_type));
}
std::size_t GetUniformBufferAlignment() const { std::size_t GetUniformBufferAlignment() const {
return uniform_buffer_alignment; return uniform_buffer_alignment;
} }
@ -58,6 +76,10 @@ public:
return has_precise_bug; return has_precise_bug;
} }
bool HasBrokenCompute() const {
return has_broken_compute;
}
bool HasFastBufferSubData() const { bool HasFastBufferSubData() const {
return has_fast_buffer_sub_data; return has_fast_buffer_sub_data;
} }
@ -67,6 +89,7 @@ private:
static bool TestComponentIndexingBug(); static bool TestComponentIndexingBug();
static bool TestPreciseBug(); static bool TestPreciseBug();
std::array<BaseBindings, Tegra::Engines::MaxShaderTypes> base_bindings;
std::size_t uniform_buffer_alignment{}; std::size_t uniform_buffer_alignment{};
std::size_t shader_storage_alignment{}; std::size_t shader_storage_alignment{};
u32 max_vertex_attributes{}; u32 max_vertex_attributes{};
@ -78,6 +101,7 @@ private:
bool has_variable_aoffi{}; bool has_variable_aoffi{};
bool has_component_indexing_bug{}; bool has_component_indexing_bug{};
bool has_precise_bug{}; bool has_precise_bug{};
bool has_broken_compute{};
bool has_fast_buffer_sub_data{}; bool has_fast_buffer_sub_data{};
}; };

View file

@ -22,6 +22,7 @@
#include "core/settings.h" #include "core/settings.h"
#include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_cache.h" #include "video_core/renderer_opengl/gl_shader_cache.h"
@ -49,7 +50,24 @@ MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100)); MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100)); MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100));
static std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer, namespace {
template <typename Engine, typename Entry>
Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry,
Tegra::Engines::ShaderType shader_type) {
if (entry.IsBindless()) {
const Tegra::Texture::TextureHandle tex_handle =
engine.AccessConstBuffer32(shader_type, entry.GetBuffer(), entry.GetOffset());
return engine.GetTextureInfo(tex_handle);
}
if constexpr (std::is_same_v<Engine, Tegra::Engines::Maxwell3D>) {
return engine.GetStageTexture(shader_type, entry.GetOffset());
} else {
return engine.GetTexture(entry.GetOffset());
}
}
std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry) { const GLShader::ConstBufferEntry& entry) {
if (!entry.IsIndirect()) { if (!entry.IsIndirect()) {
return entry.GetSize(); return entry.GetSize();
@ -64,6 +82,8 @@ static std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buf
return buffer.size; return buffer.size;
} }
} // Anonymous namespace
RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window, RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window,
ScreenInfo& info) ScreenInfo& info)
: texture_cache{system, *this, device}, shader_cache{*this, system, emu_window, device}, : texture_cache{system, *this, device}, shader_cache{*this, system, emu_window, device},
@ -238,12 +258,11 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
MICROPROFILE_SCOPE(OpenGL_Shader); MICROPROFILE_SCOPE(OpenGL_Shader);
auto& gpu = system.GPU().Maxwell3D(); auto& gpu = system.GPU().Maxwell3D();
BaseBindings base_bindings;
std::array<bool, Maxwell::NumClipDistances> clip_distances{}; std::array<bool, Maxwell::NumClipDistances> clip_distances{};
for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) { for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
const auto& shader_config = gpu.regs.shader_config[index]; const auto& shader_config = gpu.regs.shader_config[index];
const Maxwell::ShaderProgram program{static_cast<Maxwell::ShaderProgram>(index)}; const auto program{static_cast<Maxwell::ShaderProgram>(index)};
// Skip stages that are not enabled // Skip stages that are not enabled
if (!gpu.regs.IsShaderConfigEnabled(index)) { if (!gpu.regs.IsShaderConfigEnabled(index)) {
@ -257,24 +276,17 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
continue; continue;
} }
GLShader::MaxwellUniformData ubo{};
ubo.SetFromRegs(gpu);
const auto [buffer, offset] =
buffer_cache.UploadHostMemory(&ubo, sizeof(ubo), device.GetUniformBufferAlignment());
// Bind the emulation info buffer
bind_ubo_pushbuffer.Push(buffer, offset, static_cast<GLsizeiptr>(sizeof(ubo)));
Shader shader{shader_cache.GetStageProgram(program)}; Shader shader{shader_cache.GetStageProgram(program)};
// Stage indices are 0 - 5 // Stage indices are 0 - 5
const auto stage = static_cast<Maxwell::ShaderStage>(index == 0 ? 0 : index - 1); const std::size_t stage = index == 0 ? 0 : index - 1;
SetupDrawConstBuffers(stage, shader); SetupDrawConstBuffers(stage, shader);
SetupDrawGlobalMemory(stage, shader); SetupDrawGlobalMemory(stage, shader);
const auto texture_buffer_usage{SetupDrawTextures(stage, shader, base_bindings)}; SetupDrawTextures(stage, shader);
SetupDrawImages(stage, shader);
const ProgramVariant variant{base_bindings, primitive_mode, texture_buffer_usage}; const ProgramVariant variant(primitive_mode);
const auto [program_handle, next_bindings] = shader->GetProgramHandle(variant); const auto program_handle = shader->GetHandle(variant);
switch (program) { switch (program) {
case Maxwell::ShaderProgram::VertexA: case Maxwell::ShaderProgram::VertexA:
@ -303,10 +315,8 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
// When VertexA is enabled, we have dual vertex shaders // When VertexA is enabled, we have dual vertex shaders
if (program == Maxwell::ShaderProgram::VertexA) { if (program == Maxwell::ShaderProgram::VertexA) {
// VertexB was combined with VertexA, so we skip the VertexB iteration // VertexB was combined with VertexA, so we skip the VertexB iteration
index++; ++index;
} }
base_bindings = next_bindings;
} }
SyncClipEnabled(clip_distances); SyncClipEnabled(clip_distances);
@ -591,8 +601,16 @@ void RasterizerOpenGL::DrawPrelude() {
index_buffer_offset = SetupIndexBuffer(); index_buffer_offset = SetupIndexBuffer();
// Prepare packed bindings. // Prepare packed bindings.
bind_ubo_pushbuffer.Setup(0); bind_ubo_pushbuffer.Setup();
bind_ssbo_pushbuffer.Setup(0); bind_ssbo_pushbuffer.Setup();
// Setup emulation uniform buffer.
GLShader::MaxwellUniformData ubo;
ubo.SetFromRegs(gpu);
const auto [buffer, offset] =
buffer_cache.UploadHostMemory(&ubo, sizeof(ubo), device.GetUniformBufferAlignment());
bind_ubo_pushbuffer.Push(EmulationUniformBlockBinding, buffer, offset,
static_cast<GLsizeiptr>(sizeof(ubo)));
// Setup shaders and their used resources. // Setup shaders and their used resources.
texture_cache.GuardSamplers(true); texture_cache.GuardSamplers(true);
@ -725,19 +743,21 @@ bool RasterizerOpenGL::DrawMultiBatch(bool is_indexed) {
} }
void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) { void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
if (!GLAD_GL_ARB_compute_variable_group_size) { if (device.HasBrokenCompute()) {
LOG_ERROR(Render_OpenGL, "Compute is currently not supported on this device due to the "
"lack of GL_ARB_compute_variable_group_size");
return; return;
} }
buffer_cache.Acquire();
auto kernel = shader_cache.GetComputeKernel(code_addr); auto kernel = shader_cache.GetComputeKernel(code_addr);
ProgramVariant variant; SetupComputeTextures(kernel);
variant.texture_buffer_usage = SetupComputeTextures(kernel);
SetupComputeImages(kernel); SetupComputeImages(kernel);
const auto [program, next_bindings] = kernel->GetProgramHandle(variant); const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
state.draw.shader_program = program; const ProgramVariant variant(launch_desc.block_dim_x, launch_desc.block_dim_y,
launch_desc.block_dim_z, launch_desc.shared_alloc,
launch_desc.local_pos_alloc);
state.draw.shader_program = kernel->GetHandle(variant);
state.draw.program_pipeline = 0; state.draw.program_pipeline = 0;
const std::size_t buffer_size = const std::size_t buffer_size =
@ -745,8 +765,8 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment()); (Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
buffer_cache.Map(buffer_size); buffer_cache.Map(buffer_size);
bind_ubo_pushbuffer.Setup(0); bind_ubo_pushbuffer.Setup();
bind_ssbo_pushbuffer.Setup(0); bind_ssbo_pushbuffer.Setup();
SetupComputeConstBuffers(kernel); SetupComputeConstBuffers(kernel);
SetupComputeGlobalMemory(kernel); SetupComputeGlobalMemory(kernel);
@ -761,10 +781,7 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
state.ApplyShaderProgram(); state.ApplyShaderProgram();
state.ApplyProgramPipeline(); state.ApplyProgramPipeline();
const auto& launch_desc = system.GPU().KeplerCompute().launch_description; glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
glDispatchComputeGroupSizeARB(launch_desc.grid_dim_x, launch_desc.grid_dim_y,
launch_desc.grid_dim_z, launch_desc.block_dim_x,
launch_desc.block_dim_y, launch_desc.block_dim_z);
} }
void RasterizerOpenGL::FlushAll() {} void RasterizerOpenGL::FlushAll() {}
@ -833,7 +850,7 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
ASSERT_MSG(params.height == config.height, "Framebuffer height is different"); ASSERT_MSG(params.height == config.height, "Framebuffer height is different");
if (params.pixel_format != pixel_format) { if (params.pixel_format != pixel_format) {
LOG_WARNING(Render_OpenGL, "Framebuffer pixel_format is different"); LOG_DEBUG(Render_OpenGL, "Framebuffer pixel_format is different");
} }
screen_info.display_texture = surface->GetTexture(); screen_info.display_texture = surface->GetTexture();
@ -842,20 +859,23 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
return true; return true;
} }
void RasterizerOpenGL::SetupDrawConstBuffers(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage, void RasterizerOpenGL::SetupDrawConstBuffers(std::size_t stage_index, const Shader& shader) {
const Shader& shader) {
MICROPROFILE_SCOPE(OpenGL_UBO); MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& stages = system.GPU().Maxwell3D().state.shader_stages; const auto& stages = system.GPU().Maxwell3D().state.shader_stages;
const auto& shader_stage = stages[static_cast<std::size_t>(stage)]; const auto& shader_stage = stages[stage_index];
u32 binding = device.GetBaseBindings(stage_index).uniform_buffer;
for (const auto& entry : shader->GetShaderEntries().const_buffers) { for (const auto& entry : shader->GetShaderEntries().const_buffers) {
const auto& buffer = shader_stage.const_buffers[entry.GetIndex()]; const auto& buffer = shader_stage.const_buffers[entry.GetIndex()];
SetupConstBuffer(buffer, entry); SetupConstBuffer(binding++, buffer, entry);
} }
} }
void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) { void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) {
MICROPROFILE_SCOPE(OpenGL_UBO); MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& launch_desc = system.GPU().KeplerCompute().launch_description; const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().const_buffers) { for (const auto& entry : kernel->GetShaderEntries().const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()]; const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value(); const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
@ -863,15 +883,16 @@ void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) {
buffer.address = config.Address(); buffer.address = config.Address();
buffer.size = config.size; buffer.size = config.size;
buffer.enabled = mask[entry.GetIndex()]; buffer.enabled = mask[entry.GetIndex()];
SetupConstBuffer(buffer, entry); SetupConstBuffer(binding++, buffer, entry);
} }
} }
void RasterizerOpenGL::SetupConstBuffer(const Tegra::Engines::ConstBufferInfo& buffer, void RasterizerOpenGL::SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry) { const GLShader::ConstBufferEntry& entry) {
if (!buffer.enabled) { if (!buffer.enabled) {
// Set values to zero to unbind buffers // Set values to zero to unbind buffers
bind_ubo_pushbuffer.Push(buffer_cache.GetEmptyBuffer(sizeof(float)), 0, sizeof(float)); bind_ubo_pushbuffer.Push(binding, buffer_cache.GetEmptyBuffer(sizeof(float)), 0,
sizeof(float));
return; return;
} }
@ -882,19 +903,20 @@ void RasterizerOpenGL::SetupConstBuffer(const Tegra::Engines::ConstBufferInfo& b
const auto alignment = device.GetUniformBufferAlignment(); const auto alignment = device.GetUniformBufferAlignment();
const auto [cbuf, offset] = buffer_cache.UploadMemory(buffer.address, size, alignment, false, const auto [cbuf, offset] = buffer_cache.UploadMemory(buffer.address, size, alignment, false,
device.HasFastBufferSubData()); device.HasFastBufferSubData());
bind_ubo_pushbuffer.Push(cbuf, offset, size); bind_ubo_pushbuffer.Push(binding, cbuf, offset, size);
} }
void RasterizerOpenGL::SetupDrawGlobalMemory(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage, void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, const Shader& shader) {
const Shader& shader) {
auto& gpu{system.GPU()}; auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()}; auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.Maxwell3D().state.shader_stages[static_cast<std::size_t>(stage)]}; const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]};
u32 binding = device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : shader->GetShaderEntries().global_memory_entries) { for (const auto& entry : shader->GetShaderEntries().global_memory_entries) {
const auto addr{cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset()}; const auto addr{cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset()};
const auto gpu_addr{memory_manager.Read<u64>(addr)}; const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)}; const auto size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(entry, gpu_addr, size); SetupGlobalMemory(binding++, entry, gpu_addr, size);
} }
} }
@ -902,120 +924,82 @@ void RasterizerOpenGL::SetupComputeGlobalMemory(const Shader& kernel) {
auto& gpu{system.GPU()}; auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()}; auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config}; const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config};
u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().global_memory_entries) { for (const auto& entry : kernel->GetShaderEntries().global_memory_entries) {
const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()}; const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()};
const auto gpu_addr{memory_manager.Read<u64>(addr)}; const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)}; const auto size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(entry, gpu_addr, size); SetupGlobalMemory(binding++, entry, gpu_addr, size);
} }
} }
void RasterizerOpenGL::SetupGlobalMemory(const GLShader::GlobalMemoryEntry& entry, void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GLShader::GlobalMemoryEntry& entry,
GPUVAddr gpu_addr, std::size_t size) { GPUVAddr gpu_addr, std::size_t size) {
const auto alignment{device.GetShaderStorageBufferAlignment()}; const auto alignment{device.GetShaderStorageBufferAlignment()};
const auto [ssbo, buffer_offset] = const auto [ssbo, buffer_offset] =
buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.IsWritten()); buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.IsWritten());
bind_ssbo_pushbuffer.Push(ssbo, buffer_offset, static_cast<GLsizeiptr>(size)); bind_ssbo_pushbuffer.Push(binding, ssbo, buffer_offset, static_cast<GLsizeiptr>(size));
} }
TextureBufferUsage RasterizerOpenGL::SetupDrawTextures(Maxwell::ShaderStage stage, void RasterizerOpenGL::SetupDrawTextures(std::size_t stage_index, const Shader& shader) {
const Shader& shader,
BaseBindings base_bindings) {
MICROPROFILE_SCOPE(OpenGL_Texture); MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& gpu = system.GPU(); const auto& maxwell3d = system.GPU().Maxwell3D();
const auto& maxwell3d = gpu.Maxwell3D(); u32 binding = device.GetBaseBindings(stage_index).sampler;
const auto& entries = shader->GetShaderEntries().samplers; for (const auto& entry : shader->GetShaderEntries().samplers) {
const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage_index);
ASSERT_MSG(base_bindings.sampler + entries.size() <= std::size(state.textures), const auto texture = GetTextureInfo(maxwell3d, entry, shader_type);
"Exceeded the number of active textures."); SetupTexture(binding++, texture, entry);
TextureBufferUsage texture_buffer_usage{0};
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& entry = entries[bindpoint];
const auto texture = [&] {
if (!entry.IsBindless()) {
return maxwell3d.GetStageTexture(stage, entry.GetOffset());
} }
const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage);
const Tegra::Texture::TextureHandle tex_handle =
maxwell3d.AccessConstBuffer32(shader_type, entry.GetBuffer(), entry.GetOffset());
return maxwell3d.GetTextureInfo(tex_handle);
}();
if (SetupTexture(base_bindings.sampler + bindpoint, texture, entry)) {
texture_buffer_usage.set(bindpoint);
}
}
return texture_buffer_usage;
} }
TextureBufferUsage RasterizerOpenGL::SetupComputeTextures(const Shader& kernel) { void RasterizerOpenGL::SetupComputeTextures(const Shader& kernel) {
MICROPROFILE_SCOPE(OpenGL_Texture); MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& compute = system.GPU().KeplerCompute(); const auto& compute = system.GPU().KeplerCompute();
const auto& entries = kernel->GetShaderEntries().samplers; u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().samplers) {
ASSERT_MSG(entries.size() <= std::size(state.textures), const auto texture = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute);
"Exceeded the number of active textures."); SetupTexture(binding++, texture, entry);
TextureBufferUsage texture_buffer_usage{0};
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& entry = entries[bindpoint];
const auto texture = [&] {
if (!entry.IsBindless()) {
return compute.GetTexture(entry.GetOffset());
} }
const Tegra::Texture::TextureHandle tex_handle = compute.AccessConstBuffer32(
Tegra::Engines::ShaderType::Compute, entry.GetBuffer(), entry.GetOffset());
return compute.GetTextureInfo(tex_handle);
}();
if (SetupTexture(bindpoint, texture, entry)) {
texture_buffer_usage.set(bindpoint);
}
}
return texture_buffer_usage;
} }
bool RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture, void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture,
const GLShader::SamplerEntry& entry) { const GLShader::SamplerEntry& entry) {
state.samplers[binding] = sampler_cache.GetSampler(texture.tsc);
const auto view = texture_cache.GetTextureSurface(texture.tic, entry); const auto view = texture_cache.GetTextureSurface(texture.tic, entry);
if (!view) { if (!view) {
// Can occur when texture addr is null or its memory is unmapped/invalid // Can occur when texture addr is null or its memory is unmapped/invalid
state.samplers[binding] = 0;
state.textures[binding] = 0; state.textures[binding] = 0;
return false; return;
} }
state.textures[binding] = view->GetTexture(); state.textures[binding] = view->GetTexture();
if (view->GetSurfaceParams().IsBuffer()) { if (view->GetSurfaceParams().IsBuffer()) {
return true; return;
} }
state.samplers[binding] = sampler_cache.GetSampler(texture.tsc);
// Apply swizzle to textures that are not buffers. // Apply swizzle to textures that are not buffers.
view->ApplySwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source, view->ApplySwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source,
texture.tic.w_source); texture.tic.w_source);
return false; }
void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, const Shader& shader) {
const auto& maxwell3d = system.GPU().Maxwell3D();
u32 binding = device.GetBaseBindings(stage_index).image;
for (const auto& entry : shader->GetShaderEntries().images) {
const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage_index);
const auto tic = GetTextureInfo(maxwell3d, entry, shader_type).tic;
SetupImage(binding++, tic, entry);
}
} }
void RasterizerOpenGL::SetupComputeImages(const Shader& shader) { void RasterizerOpenGL::SetupComputeImages(const Shader& shader) {
const auto& compute = system.GPU().KeplerCompute(); const auto& compute = system.GPU().KeplerCompute();
const auto& entries = shader->GetShaderEntries().images; u32 binding = 0;
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) { for (const auto& entry : shader->GetShaderEntries().images) {
const auto& entry = entries[bindpoint]; const auto tic = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute).tic;
const auto tic = [&] { SetupImage(binding++, tic, entry);
if (!entry.IsBindless()) {
return compute.GetTexture(entry.GetOffset()).tic;
}
const Tegra::Texture::TextureHandle tex_handle = compute.AccessConstBuffer32(
Tegra::Engines::ShaderType::Compute, entry.GetBuffer(), entry.GetOffset());
return compute.GetTextureInfo(tex_handle).tic;
}();
SetupImage(bindpoint, tic, entry);
} }
} }

View file

@ -83,42 +83,41 @@ private:
bool using_depth_fb, bool using_stencil_fb); bool using_depth_fb, bool using_stencil_fb);
/// Configures the current constbuffers to use for the draw command. /// Configures the current constbuffers to use for the draw command.
void SetupDrawConstBuffers(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage, void SetupDrawConstBuffers(std::size_t stage_index, const Shader& shader);
const Shader& shader);
/// Configures the current constbuffers to use for the kernel invocation. /// Configures the current constbuffers to use for the kernel invocation.
void SetupComputeConstBuffers(const Shader& kernel); void SetupComputeConstBuffers(const Shader& kernel);
/// Configures a constant buffer. /// Configures a constant buffer.
void SetupConstBuffer(const Tegra::Engines::ConstBufferInfo& buffer, void SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry); const GLShader::ConstBufferEntry& entry);
/// Configures the current global memory entries to use for the draw command. /// Configures the current global memory entries to use for the draw command.
void SetupDrawGlobalMemory(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage, void SetupDrawGlobalMemory(std::size_t stage_index, const Shader& shader);
const Shader& shader);
/// Configures the current global memory entries to use for the kernel invocation. /// Configures the current global memory entries to use for the kernel invocation.
void SetupComputeGlobalMemory(const Shader& kernel); void SetupComputeGlobalMemory(const Shader& kernel);
/// Configures a constant buffer. /// Configures a constant buffer.
void SetupGlobalMemory(const GLShader::GlobalMemoryEntry& entry, GPUVAddr gpu_addr, void SetupGlobalMemory(u32 binding, const GLShader::GlobalMemoryEntry& entry, GPUVAddr gpu_addr,
std::size_t size); std::size_t size);
/// Syncs all the state, shaders, render targets and textures setting before a draw call. /// Syncs all the state, shaders, render targets and textures setting before a draw call.
void DrawPrelude(); void DrawPrelude();
/// Configures the current textures to use for the draw command. Returns shaders texture buffer /// Configures the current textures to use for the draw command.
/// usage. void SetupDrawTextures(std::size_t stage_index, const Shader& shader);
TextureBufferUsage SetupDrawTextures(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage,
const Shader& shader, BaseBindings base_bindings);
/// Configures the textures used in a compute shader. Returns texture buffer usage. /// Configures the textures used in a compute shader.
TextureBufferUsage SetupComputeTextures(const Shader& kernel); void SetupComputeTextures(const Shader& kernel);
/// Configures a texture. Returns true when the texture is a texture buffer. /// Configures a texture.
bool SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture, void SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture,
const GLShader::SamplerEntry& entry); const GLShader::SamplerEntry& entry);
/// Configures images in a graphics shader.
void SetupDrawImages(std::size_t stage_index, const Shader& shader);
/// Configures images in a compute shader. /// Configures images in a compute shader.
void SetupComputeImages(const Shader& shader); void SetupComputeImages(const Shader& shader);

View file

@ -8,12 +8,15 @@
#include <thread> #include <thread>
#include <unordered_set> #include <unordered_set>
#include <boost/functional/hash.hpp> #include <boost/functional/hash.hpp>
#include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h" #include "common/scope_exit.h"
#include "core/core.h" #include "core/core.h"
#include "core/frontend/emu_window.h" #include "core/frontend/emu_window.h"
#include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_cache.h" #include "video_core/renderer_opengl/gl_shader_cache.h"
@ -82,28 +85,26 @@ std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) {
/// Gets the shader program code from memory for the specified address /// Gets the shader program code from memory for the specified address
ProgramCode GetShaderCode(Tegra::MemoryManager& memory_manager, const GPUVAddr gpu_addr, ProgramCode GetShaderCode(Tegra::MemoryManager& memory_manager, const GPUVAddr gpu_addr,
const u8* host_ptr) { const u8* host_ptr) {
ProgramCode program_code(VideoCommon::Shader::MAX_PROGRAM_LENGTH); ProgramCode code(VideoCommon::Shader::MAX_PROGRAM_LENGTH);
ASSERT_OR_EXECUTE(host_ptr != nullptr, { ASSERT_OR_EXECUTE(host_ptr != nullptr, {
std::fill(program_code.begin(), program_code.end(), 0); std::fill(code.begin(), code.end(), 0);
return program_code; return code;
}); });
memory_manager.ReadBlockUnsafe(gpu_addr, program_code.data(), memory_manager.ReadBlockUnsafe(gpu_addr, code.data(), code.size() * sizeof(u64));
program_code.size() * sizeof(u64)); code.resize(CalculateProgramSize(code));
program_code.resize(CalculateProgramSize(program_code)); return code;
return program_code;
} }
/// Gets the shader type from a Maxwell program type /// Gets the shader type from a Maxwell program type
constexpr GLenum GetShaderType(ProgramType program_type) { constexpr GLenum GetGLShaderType(ShaderType shader_type) {
switch (program_type) { switch (shader_type) {
case ProgramType::VertexA: case ShaderType::Vertex:
case ProgramType::VertexB:
return GL_VERTEX_SHADER; return GL_VERTEX_SHADER;
case ProgramType::Geometry: case ShaderType::Geometry:
return GL_GEOMETRY_SHADER; return GL_GEOMETRY_SHADER;
case ProgramType::Fragment: case ShaderType::Fragment:
return GL_FRAGMENT_SHADER; return GL_FRAGMENT_SHADER;
case ProgramType::Compute: case ShaderType::Compute:
return GL_COMPUTE_SHADER; return GL_COMPUTE_SHADER;
default: default:
return GL_NONE; return GL_NONE;
@ -133,30 +134,11 @@ constexpr std::tuple<const char*, const char*, u32> GetPrimitiveDescription(GLen
} }
} }
ProgramType GetProgramType(Maxwell::ShaderProgram program) {
switch (program) {
case Maxwell::ShaderProgram::VertexA:
return ProgramType::VertexA;
case Maxwell::ShaderProgram::VertexB:
return ProgramType::VertexB;
case Maxwell::ShaderProgram::TesselationControl:
return ProgramType::TessellationControl;
case Maxwell::ShaderProgram::TesselationEval:
return ProgramType::TessellationEval;
case Maxwell::ShaderProgram::Geometry:
return ProgramType::Geometry;
case Maxwell::ShaderProgram::Fragment:
return ProgramType::Fragment;
}
UNREACHABLE();
return {};
}
/// Hashes one (or two) program streams /// Hashes one (or two) program streams
u64 GetUniqueIdentifier(ProgramType program_type, const ProgramCode& code, u64 GetUniqueIdentifier(ShaderType shader_type, bool is_a, const ProgramCode& code,
const ProgramCode& code_b) { const ProgramCode& code_b) {
u64 unique_identifier = boost::hash_value(code); u64 unique_identifier = boost::hash_value(code);
if (program_type == ProgramType::VertexA) { if (is_a) {
// VertexA programs include two programs // VertexA programs include two programs
boost::hash_combine(unique_identifier, boost::hash_value(code_b)); boost::hash_combine(unique_identifier, boost::hash_value(code_b));
} }
@ -164,79 +146,74 @@ u64 GetUniqueIdentifier(ProgramType program_type, const ProgramCode& code,
} }
/// Creates an unspecialized program from code streams /// Creates an unspecialized program from code streams
std::string GenerateGLSL(const Device& device, ProgramType program_type, const ShaderIR& ir, std::string GenerateGLSL(const Device& device, ShaderType shader_type, const ShaderIR& ir,
const std::optional<ShaderIR>& ir_b) { const std::optional<ShaderIR>& ir_b) {
switch (program_type) { switch (shader_type) {
case ProgramType::VertexA: case ShaderType::Vertex:
case ProgramType::VertexB:
return GLShader::GenerateVertexShader(device, ir, ir_b ? &*ir_b : nullptr); return GLShader::GenerateVertexShader(device, ir, ir_b ? &*ir_b : nullptr);
case ProgramType::Geometry: case ShaderType::Geometry:
return GLShader::GenerateGeometryShader(device, ir); return GLShader::GenerateGeometryShader(device, ir);
case ProgramType::Fragment: case ShaderType::Fragment:
return GLShader::GenerateFragmentShader(device, ir); return GLShader::GenerateFragmentShader(device, ir);
case ProgramType::Compute: case ShaderType::Compute:
return GLShader::GenerateComputeShader(device, ir); return GLShader::GenerateComputeShader(device, ir);
default: default:
UNIMPLEMENTED_MSG("Unimplemented program_type={}", static_cast<u32>(program_type)); UNIMPLEMENTED_MSG("Unimplemented shader_type={}", static_cast<u32>(shader_type));
return {}; return {};
} }
} }
constexpr const char* GetProgramTypeName(ProgramType program_type) { constexpr const char* GetShaderTypeName(ShaderType shader_type) {
switch (program_type) { switch (shader_type) {
case ProgramType::VertexA: case ShaderType::Vertex:
case ProgramType::VertexB:
return "VS"; return "VS";
case ProgramType::TessellationControl: case ShaderType::TesselationControl:
return "TCS"; return "HS";
case ProgramType::TessellationEval: case ShaderType::TesselationEval:
return "TES"; return "DS";
case ProgramType::Geometry: case ShaderType::Geometry:
return "GS"; return "GS";
case ProgramType::Fragment: case ShaderType::Fragment:
return "FS"; return "FS";
case ProgramType::Compute: case ShaderType::Compute:
return "CS"; return "CS";
} }
return "UNK"; return "UNK";
} }
Tegra::Engines::ShaderType GetEnginesShaderType(ProgramType program_type) { constexpr ShaderType GetShaderType(Maxwell::ShaderProgram program_type) {
switch (program_type) { switch (program_type) {
case ProgramType::VertexA: case Maxwell::ShaderProgram::VertexA:
case ProgramType::VertexB: case Maxwell::ShaderProgram::VertexB:
return Tegra::Engines::ShaderType::Vertex; return ShaderType::Vertex;
case ProgramType::TessellationControl: case Maxwell::ShaderProgram::TesselationControl:
return Tegra::Engines::ShaderType::TesselationControl; return ShaderType::TesselationControl;
case ProgramType::TessellationEval: case Maxwell::ShaderProgram::TesselationEval:
return Tegra::Engines::ShaderType::TesselationEval; return ShaderType::TesselationEval;
case ProgramType::Geometry: case Maxwell::ShaderProgram::Geometry:
return Tegra::Engines::ShaderType::Geometry; return ShaderType::Geometry;
case ProgramType::Fragment: case Maxwell::ShaderProgram::Fragment:
return Tegra::Engines::ShaderType::Fragment; return ShaderType::Fragment;
case ProgramType::Compute:
return Tegra::Engines::ShaderType::Compute;
} }
UNREACHABLE();
return {}; return {};
} }
std::string GetShaderId(u64 unique_identifier, ProgramType program_type) { std::string GetShaderId(u64 unique_identifier, ShaderType shader_type) {
return fmt::format("{}{:016X}", GetProgramTypeName(program_type), unique_identifier); return fmt::format("{}{:016X}", GetShaderTypeName(shader_type), unique_identifier);
} }
Tegra::Engines::ConstBufferEngineInterface& GetConstBufferEngineInterface( Tegra::Engines::ConstBufferEngineInterface& GetConstBufferEngineInterface(Core::System& system,
Core::System& system, ProgramType program_type) { ShaderType shader_type) {
if (program_type == ProgramType::Compute) { if (shader_type == ShaderType::Compute) {
return system.GPU().KeplerCompute(); return system.GPU().KeplerCompute();
} else { } else {
return system.GPU().Maxwell3D(); return system.GPU().Maxwell3D();
} }
} }
std::unique_ptr<ConstBufferLocker> MakeLocker(Core::System& system, ProgramType program_type) { std::unique_ptr<ConstBufferLocker> MakeLocker(Core::System& system, ShaderType shader_type) {
return std::make_unique<ConstBufferLocker>(GetEnginesShaderType(program_type), return std::make_unique<ConstBufferLocker>(shader_type,
GetConstBufferEngineInterface(system, program_type)); GetConstBufferEngineInterface(system, shader_type));
} }
void FillLocker(ConstBufferLocker& locker, const ShaderDiskCacheUsage& usage) { void FillLocker(ConstBufferLocker& locker, const ShaderDiskCacheUsage& usage) {
@ -253,33 +230,26 @@ void FillLocker(ConstBufferLocker& locker, const ShaderDiskCacheUsage& usage) {
} }
} }
CachedProgram BuildShader(const Device& device, u64 unique_identifier, ProgramType program_type, CachedProgram BuildShader(const Device& device, u64 unique_identifier, ShaderType shader_type,
const ProgramCode& program_code, const ProgramCode& program_code_b, const ProgramCode& code, const ProgramCode& code_b,
const ProgramVariant& variant, ConstBufferLocker& locker, ConstBufferLocker& locker, const ProgramVariant& variant,
bool hint_retrievable = false) { bool hint_retrievable = false) {
LOG_INFO(Render_OpenGL, "called. {}", GetShaderId(unique_identifier, program_type)); LOG_INFO(Render_OpenGL, "called. {}", GetShaderId(unique_identifier, shader_type));
const bool is_compute = program_type == ProgramType::Compute; const bool is_compute = shader_type == ShaderType::Compute;
const u32 main_offset = is_compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET; const u32 main_offset = is_compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
const ShaderIR ir(program_code, main_offset, COMPILER_SETTINGS, locker); const ShaderIR ir(code, main_offset, COMPILER_SETTINGS, locker);
std::optional<ShaderIR> ir_b; std::optional<ShaderIR> ir_b;
if (!program_code_b.empty()) { if (!code_b.empty()) {
ir_b.emplace(program_code_b, main_offset, COMPILER_SETTINGS, locker); ir_b.emplace(code_b, main_offset, COMPILER_SETTINGS, locker);
} }
const auto entries = GLShader::GetEntries(ir); const auto entries = GLShader::GetEntries(ir);
auto base_bindings{variant.base_bindings};
const auto primitive_mode{variant.primitive_mode};
const auto texture_buffer_usage{variant.texture_buffer_usage};
std::string source = fmt::format(R"(// {} std::string source = fmt::format(R"(// {}
#version 430 core #version 430 core
#extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_separate_shader_objects : enable
)", )",
GetShaderId(unique_identifier, program_type)); GetShaderId(unique_identifier, shader_type));
if (is_compute) {
source += "#extension GL_ARB_compute_variable_group_size : require\n";
}
if (device.HasShaderBallot()) { if (device.HasShaderBallot()) {
source += "#extension GL_ARB_shader_ballot : require\n"; source += "#extension GL_ARB_shader_ballot : require\n";
} }
@ -296,54 +266,35 @@ CachedProgram BuildShader(const Device& device, u64 unique_identifier, ProgramTy
} }
source += '\n'; source += '\n';
if (!is_compute) { if (shader_type == ShaderType::Geometry) {
source += fmt::format("#define EMULATION_UBO_BINDING {}\n", base_bindings.cbuf++);
}
for (const auto& cbuf : entries.const_buffers) {
source +=
fmt::format("#define CBUF_BINDING_{} {}\n", cbuf.GetIndex(), base_bindings.cbuf++);
}
for (const auto& gmem : entries.global_memory_entries) {
source += fmt::format("#define GMEM_BINDING_{}_{} {}\n", gmem.GetCbufIndex(),
gmem.GetCbufOffset(), base_bindings.gmem++);
}
for (const auto& sampler : entries.samplers) {
source += fmt::format("#define SAMPLER_BINDING_{} {}\n", sampler.GetIndex(),
base_bindings.sampler++);
}
for (const auto& image : entries.images) {
source +=
fmt::format("#define IMAGE_BINDING_{} {}\n", image.GetIndex(), base_bindings.image++);
}
// Transform 1D textures to texture samplers by declaring its preprocessor macros.
for (std::size_t i = 0; i < texture_buffer_usage.size(); ++i) {
if (!texture_buffer_usage.test(i)) {
continue;
}
source += fmt::format("#define SAMPLER_{}_IS_BUFFER\n", i);
}
if (texture_buffer_usage.any()) {
source += '\n';
}
if (program_type == ProgramType::Geometry) {
const auto [glsl_topology, debug_name, max_vertices] = const auto [glsl_topology, debug_name, max_vertices] =
GetPrimitiveDescription(primitive_mode); GetPrimitiveDescription(variant.primitive_mode);
source += "layout (" + std::string(glsl_topology) + ") in;\n\n"; source += fmt::format("layout ({}) in;\n\n", glsl_topology);
source += "#define MAX_VERTEX_INPUT " + std::to_string(max_vertices) + '\n'; source += fmt::format("#define MAX_VERTEX_INPUT {}\n", max_vertices);
}
if (shader_type == ShaderType::Compute) {
source +=
fmt::format("layout (local_size_x = {}, local_size_y = {}, local_size_z = {}) in;\n",
variant.block_x, variant.block_y, variant.block_z);
if (variant.shared_memory_size > 0) {
// TODO(Rodrigo): We should divide by four here, but having a larger shared memory pool
// avoids out of bound stores. Find out why shared memory size is being invalid.
source += fmt::format("shared uint smem[{}];", variant.shared_memory_size);
}
if (variant.local_memory_size > 0) {
source += fmt::format("#define LOCAL_MEMORY_SIZE {}",
Common::AlignUp(variant.local_memory_size, 4) / 4);
} }
if (program_type == ProgramType::Compute) {
source += "layout (local_size_variable) in;\n";
} }
source += '\n'; source += '\n';
source += GenerateGLSL(device, program_type, ir, ir_b); source += GenerateGLSL(device, shader_type, ir, ir_b);
OGLShader shader; OGLShader shader;
shader.Create(source.c_str(), GetShaderType(program_type)); shader.Create(source.c_str(), GetGLShaderType(shader_type));
auto program = std::make_shared<OGLProgram>(); auto program = std::make_shared<OGLProgram>();
program->Create(true, hint_retrievable, shader.handle); program->Create(true, hint_retrievable, shader.handle);
@ -366,18 +317,16 @@ std::unordered_set<GLenum> GetSupportedFormats() {
} // Anonymous namespace } // Anonymous namespace
CachedShader::CachedShader(const ShaderParameters& params, ProgramType program_type, CachedShader::CachedShader(const ShaderParameters& params, ShaderType shader_type,
GLShader::ShaderEntries entries, ProgramCode program_code, GLShader::ShaderEntries entries, ProgramCode code, ProgramCode code_b)
ProgramCode program_code_b) : RasterizerCacheObject{params.host_ptr}, system{params.system}, disk_cache{params.disk_cache},
: RasterizerCacheObject{params.host_ptr}, system{params.system}, device{params.device}, cpu_addr{params.cpu_addr}, unique_identifier{params.unique_identifier},
disk_cache{params.disk_cache}, device{params.device}, cpu_addr{params.cpu_addr}, shader_type{shader_type}, entries{entries}, code{std::move(code)}, code_b{std::move(code_b)} {
unique_identifier{params.unique_identifier}, program_type{program_type}, entries{entries},
program_code{std::move(program_code)}, program_code_b{std::move(program_code_b)} {
if (!params.precompiled_variants) { if (!params.precompiled_variants) {
return; return;
} }
for (const auto& pair : *params.precompiled_variants) { for (const auto& pair : *params.precompiled_variants) {
auto locker = MakeLocker(system, program_type); auto locker = MakeLocker(system, shader_type);
const auto& usage = pair->first; const auto& usage = pair->first;
FillLocker(*locker, usage); FillLocker(*locker, usage);
@ -398,94 +347,83 @@ CachedShader::CachedShader(const ShaderParameters& params, ProgramType program_t
} }
Shader CachedShader::CreateStageFromMemory(const ShaderParameters& params, Shader CachedShader::CreateStageFromMemory(const ShaderParameters& params,
Maxwell::ShaderProgram program_type, Maxwell::ShaderProgram program_type, ProgramCode code,
ProgramCode program_code, ProgramCode program_code_b) { ProgramCode code_b) {
params.disk_cache.SaveRaw(ShaderDiskCacheRaw( const auto shader_type = GetShaderType(program_type);
params.unique_identifier, GetProgramType(program_type), program_code, program_code_b)); params.disk_cache.SaveRaw(
ShaderDiskCacheRaw(params.unique_identifier, shader_type, code, code_b));
ConstBufferLocker locker(GetEnginesShaderType(GetProgramType(program_type)), ConstBufferLocker locker(shader_type, params.system.GPU().Maxwell3D());
params.system.GPU().Maxwell3D()); const ShaderIR ir(code, STAGE_MAIN_OFFSET, COMPILER_SETTINGS, locker);
const ShaderIR ir(program_code, STAGE_MAIN_OFFSET, COMPILER_SETTINGS, locker);
// TODO(Rodrigo): Handle VertexA shaders // TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b; // std::optional<ShaderIR> ir_b;
// if (!program_code_b.empty()) { // if (!code_b.empty()) {
// ir_b.emplace(program_code_b, STAGE_MAIN_OFFSET); // ir_b.emplace(code_b, STAGE_MAIN_OFFSET);
// } // }
return std::shared_ptr<CachedShader>( return std::shared_ptr<CachedShader>(new CachedShader(
new CachedShader(params, GetProgramType(program_type), GLShader::GetEntries(ir), params, shader_type, GLShader::GetEntries(ir), std::move(code), std::move(code_b)));
std::move(program_code), std::move(program_code_b)));
} }
Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code) { Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code) {
params.disk_cache.SaveRaw( params.disk_cache.SaveRaw(
ShaderDiskCacheRaw(params.unique_identifier, ProgramType::Compute, code)); ShaderDiskCacheRaw(params.unique_identifier, ShaderType::Compute, code));
ConstBufferLocker locker(Tegra::Engines::ShaderType::Compute, ConstBufferLocker locker(Tegra::Engines::ShaderType::Compute,
params.system.GPU().KeplerCompute()); params.system.GPU().KeplerCompute());
const ShaderIR ir(code, KERNEL_MAIN_OFFSET, COMPILER_SETTINGS, locker); const ShaderIR ir(code, KERNEL_MAIN_OFFSET, COMPILER_SETTINGS, locker);
return std::shared_ptr<CachedShader>(new CachedShader( return std::shared_ptr<CachedShader>(new CachedShader(
params, ProgramType::Compute, GLShader::GetEntries(ir), std::move(code), {})); params, ShaderType::Compute, GLShader::GetEntries(ir), std::move(code), {}));
} }
Shader CachedShader::CreateFromCache(const ShaderParameters& params, Shader CachedShader::CreateFromCache(const ShaderParameters& params,
const UnspecializedShader& unspecialized) { const UnspecializedShader& unspecialized) {
return std::shared_ptr<CachedShader>(new CachedShader(params, unspecialized.program_type, return std::shared_ptr<CachedShader>(new CachedShader(params, unspecialized.type,
unspecialized.entries, unspecialized.code, unspecialized.entries, unspecialized.code,
unspecialized.code_b)); unspecialized.code_b));
} }
std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(const ProgramVariant& variant) { GLuint CachedShader::GetHandle(const ProgramVariant& variant) {
UpdateVariant(); EnsureValidLockerVariant();
const auto [entry, is_cache_miss] = curr_variant->programs.try_emplace(variant); const auto [entry, is_cache_miss] = curr_locker_variant->programs.try_emplace(variant);
auto& program = entry->second; auto& program = entry->second;
if (is_cache_miss) { if (!is_cache_miss) {
program = BuildShader(device, unique_identifier, program_type, program_code, program_code_b, return program->handle;
variant, *curr_variant->locker); }
disk_cache.SaveUsage(GetUsage(variant, *curr_variant->locker));
program = BuildShader(device, unique_identifier, shader_type, code, code_b,
*curr_locker_variant->locker, variant);
disk_cache.SaveUsage(GetUsage(variant, *curr_locker_variant->locker));
LabelGLObject(GL_PROGRAM, program->handle, cpu_addr); LabelGLObject(GL_PROGRAM, program->handle, cpu_addr);
} return program->handle;
auto base_bindings = variant.base_bindings;
base_bindings.cbuf += static_cast<u32>(entries.const_buffers.size());
if (program_type != ProgramType::Compute) {
base_bindings.cbuf += STAGE_RESERVED_UBOS;
}
base_bindings.gmem += static_cast<u32>(entries.global_memory_entries.size());
base_bindings.sampler += static_cast<u32>(entries.samplers.size());
return {program->handle, base_bindings};
} }
void CachedShader::UpdateVariant() { bool CachedShader::EnsureValidLockerVariant() {
if (curr_variant && !curr_variant->locker->IsConsistent()) { const auto previous_variant = curr_locker_variant;
curr_variant = nullptr; if (curr_locker_variant && !curr_locker_variant->locker->IsConsistent()) {
curr_locker_variant = nullptr;
} }
if (!curr_variant) { if (!curr_locker_variant) {
for (auto& variant : locker_variants) { for (auto& variant : locker_variants) {
if (variant->locker->IsConsistent()) { if (variant->locker->IsConsistent()) {
curr_variant = variant.get(); curr_locker_variant = variant.get();
} }
} }
} }
if (!curr_variant) { if (!curr_locker_variant) {
auto& new_variant = locker_variants.emplace_back(); auto& new_variant = locker_variants.emplace_back();
new_variant = std::make_unique<LockerVariant>(); new_variant = std::make_unique<LockerVariant>();
new_variant->locker = MakeLocker(system, program_type); new_variant->locker = MakeLocker(system, shader_type);
curr_variant = new_variant.get(); curr_locker_variant = new_variant.get();
} }
return previous_variant == curr_locker_variant;
} }
ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant, ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant,
const ConstBufferLocker& locker) const { const ConstBufferLocker& locker) const {
ShaderDiskCacheUsage usage; return ShaderDiskCacheUsage{unique_identifier, variant, locker.GetKeys(),
usage.unique_identifier = unique_identifier; locker.GetBoundSamplers(), locker.GetBindlessSamplers()};
usage.variant = variant;
usage.keys = locker.GetKeys();
usage.bound_samplers = locker.GetBoundSamplers();
usage.bindless_samplers = locker.GetBindlessSamplers();
return usage;
} }
ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System& system, ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System& system,
@ -544,11 +482,12 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
} }
} }
if (!shader) { if (!shader) {
auto locker{MakeLocker(system, unspecialized.program_type)}; auto locker{MakeLocker(system, unspecialized.type)};
FillLocker(*locker, usage); FillLocker(*locker, usage);
shader = BuildShader(device, usage.unique_identifier, unspecialized.program_type,
unspecialized.code, unspecialized.code_b, usage.variant, shader = BuildShader(device, usage.unique_identifier, unspecialized.type,
*locker, true); unspecialized.code, unspecialized.code_b, *locker,
usage.variant, true);
} }
std::scoped_lock lock{mutex}; std::scoped_lock lock{mutex};
@ -651,7 +590,7 @@ bool ShaderCacheOpenGL::GenerateUnspecializedShaders(
const auto& raw{raws[i]}; const auto& raw{raws[i]};
const u64 unique_identifier{raw.GetUniqueIdentifier()}; const u64 unique_identifier{raw.GetUniqueIdentifier()};
const u64 calculated_hash{ const u64 calculated_hash{
GetUniqueIdentifier(raw.GetProgramType(), raw.GetProgramCode(), raw.GetProgramCodeB())}; GetUniqueIdentifier(raw.GetType(), raw.HasProgramA(), raw.GetCode(), raw.GetCodeB())};
if (unique_identifier != calculated_hash) { if (unique_identifier != calculated_hash) {
LOG_ERROR(Render_OpenGL, LOG_ERROR(Render_OpenGL,
"Invalid hash in entry={:016x} (obtained hash={:016x}) - " "Invalid hash in entry={:016x} (obtained hash={:016x}) - "
@ -662,9 +601,9 @@ bool ShaderCacheOpenGL::GenerateUnspecializedShaders(
} }
const u32 main_offset = const u32 main_offset =
raw.GetProgramType() == ProgramType::Compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET; raw.GetType() == ShaderType::Compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
ConstBufferLocker locker(GetEnginesShaderType(raw.GetProgramType())); ConstBufferLocker locker(raw.GetType());
const ShaderIR ir(raw.GetProgramCode(), main_offset, COMPILER_SETTINGS, locker); const ShaderIR ir(raw.GetCode(), main_offset, COMPILER_SETTINGS, locker);
// TODO(Rodrigo): Handle VertexA shaders // TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b; // std::optional<ShaderIR> ir_b;
// if (raw.HasProgramA()) { // if (raw.HasProgramA()) {
@ -673,9 +612,9 @@ bool ShaderCacheOpenGL::GenerateUnspecializedShaders(
UnspecializedShader unspecialized; UnspecializedShader unspecialized;
unspecialized.entries = GLShader::GetEntries(ir); unspecialized.entries = GLShader::GetEntries(ir);
unspecialized.program_type = raw.GetProgramType(); unspecialized.type = raw.GetType();
unspecialized.code = raw.GetProgramCode(); unspecialized.code = raw.GetCode();
unspecialized.code_b = raw.GetProgramCodeB(); unspecialized.code_b = raw.GetCodeB();
unspecialized_shaders.emplace(raw.GetUniqueIdentifier(), unspecialized); unspecialized_shaders.emplace(raw.GetUniqueIdentifier(), unspecialized);
if (callback) { if (callback) {
@ -708,7 +647,8 @@ Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) {
code_b = GetShaderCode(memory_manager, address_b, memory_manager.GetPointer(address_b)); code_b = GetShaderCode(memory_manager, address_b, memory_manager.GetPointer(address_b));
} }
const auto unique_identifier = GetUniqueIdentifier(GetProgramType(program), code, code_b); const auto unique_identifier = GetUniqueIdentifier(
GetShaderType(program), program == Maxwell::ShaderProgram::VertexA, code, code_b);
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier); const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(address)}; const auto cpu_addr{*memory_manager.GpuToCpuAddress(address)};
const ShaderParameters params{system, disk_cache, precompiled_variants, device, const ShaderParameters params{system, disk_cache, precompiled_variants, device,
@ -736,7 +676,7 @@ Shader ShaderCacheOpenGL::GetComputeKernel(GPUVAddr code_addr) {
// No kernel found - create a new one // No kernel found - create a new one
auto code{GetShaderCode(memory_manager, code_addr, host_ptr)}; auto code{GetShaderCode(memory_manager, code_addr, host_ptr)};
const auto unique_identifier{GetUniqueIdentifier(ProgramType::Compute, code, {})}; const auto unique_identifier{GetUniqueIdentifier(ShaderType::Compute, false, code, {})};
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier); const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(code_addr)}; const auto cpu_addr{*memory_manager.GpuToCpuAddress(code_addr)};
const ShaderParameters params{system, disk_cache, precompiled_variants, device, const ShaderParameters params{system, disk_cache, precompiled_variants, device,

View file

@ -17,6 +17,7 @@
#include <glad/glad.h> #include <glad/glad.h>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/shader_type.h"
#include "video_core/rasterizer_cache.h" #include "video_core/rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h" #include "video_core/renderer_opengl/gl_shader_decompiler.h"
@ -47,7 +48,7 @@ using PrecompiledVariants = std::vector<PrecompiledPrograms::iterator>;
struct UnspecializedShader { struct UnspecializedShader {
GLShader::ShaderEntries entries; GLShader::ShaderEntries entries;
ProgramType program_type; Tegra::Engines::ShaderType type;
ProgramCode code; ProgramCode code;
ProgramCode code_b; ProgramCode code_b;
}; };
@ -77,7 +78,7 @@ public:
} }
std::size_t GetSizeInBytes() const override { std::size_t GetSizeInBytes() const override {
return program_code.size() * sizeof(u64); return code.size() * sizeof(u64);
} }
/// Gets the shader entries for the shader /// Gets the shader entries for the shader
@ -86,7 +87,7 @@ public:
} }
/// Gets the GL program handle for the shader /// Gets the GL program handle for the shader
std::tuple<GLuint, BaseBindings> GetProgramHandle(const ProgramVariant& variant); GLuint GetHandle(const ProgramVariant& variant);
private: private:
struct LockerVariant { struct LockerVariant {
@ -94,11 +95,11 @@ private:
std::unordered_map<ProgramVariant, CachedProgram> programs; std::unordered_map<ProgramVariant, CachedProgram> programs;
}; };
explicit CachedShader(const ShaderParameters& params, ProgramType program_type, explicit CachedShader(const ShaderParameters& params, Tegra::Engines::ShaderType shader_type,
GLShader::ShaderEntries entries, ProgramCode program_code, GLShader::ShaderEntries entries, ProgramCode program_code,
ProgramCode program_code_b); ProgramCode program_code_b);
void UpdateVariant(); bool EnsureValidLockerVariant();
ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant, ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant,
const VideoCommon::Shader::ConstBufferLocker& locker) const; const VideoCommon::Shader::ConstBufferLocker& locker) const;
@ -110,14 +111,14 @@ private:
VAddr cpu_addr{}; VAddr cpu_addr{};
u64 unique_identifier{}; u64 unique_identifier{};
ProgramType program_type{}; Tegra::Engines::ShaderType shader_type{};
GLShader::ShaderEntries entries; GLShader::ShaderEntries entries;
ProgramCode program_code; ProgramCode code;
ProgramCode program_code_b; ProgramCode code_b;
LockerVariant* curr_variant = nullptr; LockerVariant* curr_locker_variant = nullptr;
std::vector<std::unique_ptr<LockerVariant>> locker_variants; std::vector<std::unique_ptr<LockerVariant>> locker_variants;
}; };

View file

@ -16,6 +16,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_device.h" #include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h" #include "video_core/renderer_opengl/gl_shader_decompiler.h"
@ -27,6 +28,7 @@ namespace OpenGL::GLShader {
namespace { namespace {
using Tegra::Engines::ShaderType;
using Tegra::Shader::Attribute; using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse; using Tegra::Shader::AttributeUse;
using Tegra::Shader::Header; using Tegra::Shader::Header;
@ -41,6 +43,9 @@ using namespace VideoCommon::Shader;
using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using Operation = const OperationNode&; using Operation = const OperationNode&;
class ASTDecompiler;
class ExprDecompiler;
enum class Type { Void, Bool, Bool2, Float, Int, Uint, HalfFloat }; enum class Type { Void, Bool, Bool2, Float, Int, Uint, HalfFloat };
struct TextureAoffi {}; struct TextureAoffi {};
@ -223,7 +228,7 @@ private:
Type type{}; Type type{};
}; };
constexpr const char* GetTypeString(Type type) { const char* GetTypeString(Type type) {
switch (type) { switch (type) {
case Type::Bool: case Type::Bool:
return "bool"; return "bool";
@ -243,7 +248,7 @@ constexpr const char* GetTypeString(Type type) {
} }
} }
constexpr const char* GetImageTypeDeclaration(Tegra::Shader::ImageType image_type) { const char* GetImageTypeDeclaration(Tegra::Shader::ImageType image_type) {
switch (image_type) { switch (image_type) {
case Tegra::Shader::ImageType::Texture1D: case Tegra::Shader::ImageType::Texture1D:
return "1D"; return "1D";
@ -331,16 +336,13 @@ std::string FlowStackTopName(MetaStackClass stack) {
return fmt::format("{}_flow_stack_top", GetFlowStackPrefix(stack)); return fmt::format("{}_flow_stack_top", GetFlowStackPrefix(stack));
} }
constexpr bool IsVertexShader(ProgramType stage) { [[deprecated]] constexpr bool IsVertexShader(ShaderType stage) {
return stage == ProgramType::VertexA || stage == ProgramType::VertexB; return stage == ShaderType::Vertex;
} }
class ASTDecompiler;
class ExprDecompiler;
class GLSLDecompiler final { class GLSLDecompiler final {
public: public:
explicit GLSLDecompiler(const Device& device, const ShaderIR& ir, ProgramType stage, explicit GLSLDecompiler(const Device& device, const ShaderIR& ir, ShaderType stage,
std::string suffix) std::string suffix)
: device{device}, ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {} : device{device}, ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {}
@ -427,7 +429,7 @@ private:
} }
void DeclareGeometry() { void DeclareGeometry() {
if (stage != ProgramType::Geometry) { if (stage != ShaderType::Geometry) {
return; return;
} }
@ -510,10 +512,14 @@ private:
} }
void DeclareLocalMemory() { void DeclareLocalMemory() {
// TODO(Rodrigo): Unstub kernel local memory size and pass it from a register at if (stage == ShaderType::Compute) {
// specialization time. code.AddLine("#ifdef LOCAL_MEMORY_SIZE");
const u64 local_memory_size = code.AddLine("uint {}[LOCAL_MEMORY_SIZE];", GetLocalMemory());
stage == ProgramType::Compute ? 0x400 : header.GetLocalMemorySize(); code.AddLine("#endif");
return;
}
const u64 local_memory_size = header.GetLocalMemorySize();
if (local_memory_size == 0) { if (local_memory_size == 0) {
return; return;
} }
@ -522,13 +528,6 @@ private:
code.AddNewLine(); code.AddNewLine();
} }
void DeclareSharedMemory() {
if (stage != ProgramType::Compute) {
return;
}
code.AddLine("shared uint {}[];", GetSharedMemory());
}
void DeclareInternalFlags() { void DeclareInternalFlags() {
for (u32 flag = 0; flag < static_cast<u32>(InternalFlag::Amount); flag++) { for (u32 flag = 0; flag < static_cast<u32>(InternalFlag::Amount); flag++) {
const auto flag_code = static_cast<InternalFlag>(flag); const auto flag_code = static_cast<InternalFlag>(flag);
@ -578,12 +577,12 @@ private:
const u32 location{GetGenericAttributeIndex(index)}; const u32 location{GetGenericAttributeIndex(index)};
std::string name{GetInputAttribute(index)}; std::string name{GetInputAttribute(index)};
if (stage == ProgramType::Geometry) { if (stage == ShaderType::Geometry) {
name = "gs_" + name + "[]"; name = "gs_" + name + "[]";
} }
std::string suffix; std::string suffix;
if (stage == ProgramType::Fragment) { if (stage == ShaderType::Fragment) {
const auto input_mode{header.ps.GetAttributeUse(location)}; const auto input_mode{header.ps.GetAttributeUse(location)};
if (skip_unused && input_mode == AttributeUse::Unused) { if (skip_unused && input_mode == AttributeUse::Unused) {
return; return;
@ -595,7 +594,7 @@ private:
} }
void DeclareOutputAttributes() { void DeclareOutputAttributes() {
if (ir.HasPhysicalAttributes() && stage != ProgramType::Fragment) { if (ir.HasPhysicalAttributes() && stage != ShaderType::Fragment) {
for (u32 i = 0; i < GetNumPhysicalVaryings(); ++i) { for (u32 i = 0; i < GetNumPhysicalVaryings(); ++i) {
DeclareOutputAttribute(ToGenericAttribute(i)); DeclareOutputAttribute(ToGenericAttribute(i));
} }
@ -620,9 +619,9 @@ private:
} }
void DeclareConstantBuffers() { void DeclareConstantBuffers() {
for (const auto& entry : ir.GetConstantBuffers()) { u32 binding = device.GetBaseBindings(stage).uniform_buffer;
const auto [index, size] = entry; for (const auto& [index, cbuf] : ir.GetConstantBuffers()) {
code.AddLine("layout (std140, binding = CBUF_BINDING_{}) uniform {} {{", index, code.AddLine("layout (std140, binding = {}) uniform {} {{", binding++,
GetConstBufferBlock(index)); GetConstBufferBlock(index));
code.AddLine(" uvec4 {}[{}];", GetConstBuffer(index), MAX_CONSTBUFFER_ELEMENTS); code.AddLine(" uvec4 {}[{}];", GetConstBuffer(index), MAX_CONSTBUFFER_ELEMENTS);
code.AddLine("}};"); code.AddLine("}};");
@ -631,9 +630,8 @@ private:
} }
void DeclareGlobalMemory() { void DeclareGlobalMemory() {
for (const auto& gmem : ir.GetGlobalMemory()) { u32 binding = device.GetBaseBindings(stage).shader_storage_buffer;
const auto& [base, usage] = gmem; for (const auto& [base, usage] : ir.GetGlobalMemory()) {
// Since we don't know how the shader will use the shader, hint the driver to disable as // Since we don't know how the shader will use the shader, hint the driver to disable as
// much optimizations as possible // much optimizations as possible
std::string qualifier = "coherent volatile"; std::string qualifier = "coherent volatile";
@ -643,8 +641,8 @@ private:
qualifier += " writeonly"; qualifier += " writeonly";
} }
code.AddLine("layout (std430, binding = GMEM_BINDING_{}_{}) {} buffer {} {{", code.AddLine("layout (std430, binding = {}) {} buffer {} {{", binding++, qualifier,
base.cbuf_index, base.cbuf_offset, qualifier, GetGlobalMemoryBlock(base)); GetGlobalMemoryBlock(base));
code.AddLine(" uint {}[];", GetGlobalMemory(base)); code.AddLine(" uint {}[];", GetGlobalMemory(base));
code.AddLine("}};"); code.AddLine("}};");
code.AddNewLine(); code.AddNewLine();
@ -652,15 +650,17 @@ private:
} }
void DeclareSamplers() { void DeclareSamplers() {
const auto& samplers = ir.GetSamplers(); u32 binding = device.GetBaseBindings(stage).sampler;
for (const auto& sampler : samplers) { for (const auto& sampler : ir.GetSamplers()) {
const std::string name{GetSampler(sampler)}; const std::string name = GetSampler(sampler);
const std::string description{"layout (binding = SAMPLER_BINDING_" + const std::string description = fmt::format("layout (binding = {}) uniform", binding++);
std::to_string(sampler.GetIndex()) + ") uniform"};
std::string sampler_type = [&]() { std::string sampler_type = [&]() {
if (sampler.IsBuffer()) {
return "samplerBuffer";
}
switch (sampler.GetType()) { switch (sampler.GetType()) {
case Tegra::Shader::TextureType::Texture1D: case Tegra::Shader::TextureType::Texture1D:
// Special cased, read below.
return "sampler1D"; return "sampler1D";
case Tegra::Shader::TextureType::Texture2D: case Tegra::Shader::TextureType::Texture2D:
return "sampler2D"; return "sampler2D";
@ -680,21 +680,9 @@ private:
sampler_type += "Shadow"; sampler_type += "Shadow";
} }
if (sampler.GetType() == Tegra::Shader::TextureType::Texture1D) {
// 1D textures can be aliased to texture buffers, hide the declarations behind a
// preprocessor flag and use one or the other from the GPU state. This has to be
// done because shaders don't have enough information to determine the texture type.
EmitIfdefIsBuffer(sampler);
code.AddLine("{} samplerBuffer {};", description, name);
code.AddLine("#else");
code.AddLine("{} {} {};", description, sampler_type, name);
code.AddLine("#endif");
} else {
// The other texture types (2D, 3D and cubes) don't have this issue.
code.AddLine("{} {} {};", description, sampler_type, name); code.AddLine("{} {} {};", description, sampler_type, name);
} }
} if (!ir.GetSamplers().empty()) {
if (!samplers.empty()) {
code.AddNewLine(); code.AddNewLine();
} }
} }
@ -717,7 +705,7 @@ private:
constexpr u32 element_stride = 4; constexpr u32 element_stride = 4;
const u32 address{generic_base + index * generic_stride + element * element_stride}; const u32 address{generic_base + index * generic_stride + element * element_stride};
const bool declared = stage != ProgramType::Fragment || const bool declared = stage != ShaderType::Fragment ||
header.ps.GetAttributeUse(index) != AttributeUse::Unused; header.ps.GetAttributeUse(index) != AttributeUse::Unused;
const std::string value = const std::string value =
declared ? ReadAttribute(attribute, element).AsFloat() : "0.0f"; declared ? ReadAttribute(attribute, element).AsFloat() : "0.0f";
@ -734,8 +722,8 @@ private:
} }
void DeclareImages() { void DeclareImages() {
const auto& images{ir.GetImages()}; u32 binding = device.GetBaseBindings(stage).image;
for (const auto& image : images) { for (const auto& image : ir.GetImages()) {
std::string qualifier = "coherent volatile"; std::string qualifier = "coherent volatile";
if (image.IsRead() && !image.IsWritten()) { if (image.IsRead() && !image.IsWritten()) {
qualifier += " readonly"; qualifier += " readonly";
@ -745,10 +733,10 @@ private:
const char* format = image.IsAtomic() ? "r32ui, " : ""; const char* format = image.IsAtomic() ? "r32ui, " : "";
const char* type_declaration = GetImageTypeDeclaration(image.GetType()); const char* type_declaration = GetImageTypeDeclaration(image.GetType());
code.AddLine("layout ({}binding = IMAGE_BINDING_{}) {} uniform uimage{} {};", format, code.AddLine("layout ({}binding = {}) {} uniform uimage{} {};", format, binding++,
image.GetIndex(), qualifier, type_declaration, GetImage(image)); qualifier, type_declaration, GetImage(image));
} }
if (!images.empty()) { if (!ir.GetImages().empty()) {
code.AddNewLine(); code.AddNewLine();
} }
} }
@ -809,7 +797,7 @@ private:
} }
if (const auto abuf = std::get_if<AbufNode>(&*node)) { if (const auto abuf = std::get_if<AbufNode>(&*node)) {
UNIMPLEMENTED_IF_MSG(abuf->IsPhysicalBuffer() && stage == ProgramType::Geometry, UNIMPLEMENTED_IF_MSG(abuf->IsPhysicalBuffer() && stage == ShaderType::Geometry,
"Physical attributes in geometry shaders are not implemented"); "Physical attributes in geometry shaders are not implemented");
if (abuf->IsPhysicalBuffer()) { if (abuf->IsPhysicalBuffer()) {
return {fmt::format("ReadPhysicalAttribute({})", return {fmt::format("ReadPhysicalAttribute({})",
@ -868,18 +856,13 @@ private:
} }
if (const auto lmem = std::get_if<LmemNode>(&*node)) { if (const auto lmem = std::get_if<LmemNode>(&*node)) {
if (stage == ProgramType::Compute) {
LOG_WARNING(Render_OpenGL, "Local memory is stubbed on compute shaders");
}
return { return {
fmt::format("{}[{} >> 2]", GetLocalMemory(), Visit(lmem->GetAddress()).AsUint()), fmt::format("{}[{} >> 2]", GetLocalMemory(), Visit(lmem->GetAddress()).AsUint()),
Type::Uint}; Type::Uint};
} }
if (const auto smem = std::get_if<SmemNode>(&*node)) { if (const auto smem = std::get_if<SmemNode>(&*node)) {
return { return {fmt::format("smem[{} >> 2]", Visit(smem->GetAddress()).AsUint()), Type::Uint};
fmt::format("{}[{} >> 2]", GetSharedMemory(), Visit(smem->GetAddress()).AsUint()),
Type::Uint};
} }
if (const auto internal_flag = std::get_if<InternalFlagNode>(&*node)) { if (const auto internal_flag = std::get_if<InternalFlagNode>(&*node)) {
@ -909,7 +892,7 @@ private:
Expression ReadAttribute(Attribute::Index attribute, u32 element, const Node& buffer = {}) { Expression ReadAttribute(Attribute::Index attribute, u32 element, const Node& buffer = {}) {
const auto GeometryPass = [&](std::string_view name) { const auto GeometryPass = [&](std::string_view name) {
if (stage == ProgramType::Geometry && buffer) { if (stage == ShaderType::Geometry && buffer) {
// TODO(Rodrigo): Guard geometry inputs against out of bound reads. Some games // TODO(Rodrigo): Guard geometry inputs against out of bound reads. Some games
// set an 0x80000000 index for those and the shader fails to build. Find out why // set an 0x80000000 index for those and the shader fails to build. Find out why
// this happens and what's its intent. // this happens and what's its intent.
@ -921,11 +904,11 @@ private:
switch (attribute) { switch (attribute) {
case Attribute::Index::Position: case Attribute::Index::Position:
switch (stage) { switch (stage) {
case ProgramType::Geometry: case ShaderType::Geometry:
return {fmt::format("gl_in[{}].gl_Position{}", Visit(buffer).AsUint(), return {fmt::format("gl_in[{}].gl_Position{}", Visit(buffer).AsUint(),
GetSwizzle(element)), GetSwizzle(element)),
Type::Float}; Type::Float};
case ProgramType::Fragment: case ShaderType::Fragment:
return {element == 3 ? "1.0f" : ("gl_FragCoord"s + GetSwizzle(element)), return {element == 3 ? "1.0f" : ("gl_FragCoord"s + GetSwizzle(element)),
Type::Float}; Type::Float};
default: default:
@ -959,7 +942,7 @@ private:
return {"0", Type::Int}; return {"0", Type::Int};
case Attribute::Index::FrontFacing: case Attribute::Index::FrontFacing:
// TODO(Subv): Find out what the values are for the other elements. // TODO(Subv): Find out what the values are for the other elements.
ASSERT(stage == ProgramType::Fragment); ASSERT(stage == ShaderType::Fragment);
switch (element) { switch (element) {
case 3: case 3:
return {"(gl_FrontFacing ? -1 : 0)", Type::Int}; return {"(gl_FrontFacing ? -1 : 0)", Type::Int};
@ -985,7 +968,7 @@ private:
// be found in fragment shaders, so we disable precise there. There are vertex shaders that // be found in fragment shaders, so we disable precise there. There are vertex shaders that
// also fail to build but nobody seems to care about those. // also fail to build but nobody seems to care about those.
// Note: Only bugged drivers will skip precise. // Note: Only bugged drivers will skip precise.
const bool disable_precise = device.HasPreciseBug() && stage == ProgramType::Fragment; const bool disable_precise = device.HasPreciseBug() && stage == ShaderType::Fragment;
std::string temporary = code.GenerateTemporary(); std::string temporary = code.GenerateTemporary();
code.AddLine("{}{} {} = {};", disable_precise ? "" : "precise ", GetTypeString(type), code.AddLine("{}{} {} = {};", disable_precise ? "" : "precise ", GetTypeString(type),
@ -1247,17 +1230,12 @@ private:
} }
target = std::move(*output); target = std::move(*output);
} else if (const auto lmem = std::get_if<LmemNode>(&*dest)) { } else if (const auto lmem = std::get_if<LmemNode>(&*dest)) {
if (stage == ProgramType::Compute) {
LOG_WARNING(Render_OpenGL, "Local memory is stubbed on compute shaders");
}
target = { target = {
fmt::format("{}[{} >> 2]", GetLocalMemory(), Visit(lmem->GetAddress()).AsUint()), fmt::format("{}[{} >> 2]", GetLocalMemory(), Visit(lmem->GetAddress()).AsUint()),
Type::Uint}; Type::Uint};
} else if (const auto smem = std::get_if<SmemNode>(&*dest)) { } else if (const auto smem = std::get_if<SmemNode>(&*dest)) {
ASSERT(stage == ProgramType::Compute); ASSERT(stage == ShaderType::Compute);
target = { target = {fmt::format("smem[{} >> 2]", Visit(smem->GetAddress()).AsUint()), Type::Uint};
fmt::format("{}[{} >> 2]", GetSharedMemory(), Visit(smem->GetAddress()).AsUint()),
Type::Uint};
} else if (const auto gmem = std::get_if<GmemNode>(&*dest)) { } else if (const auto gmem = std::get_if<GmemNode>(&*dest)) {
const std::string real = Visit(gmem->GetRealAddress()).AsUint(); const std::string real = Visit(gmem->GetRealAddress()).AsUint();
const std::string base = Visit(gmem->GetBaseAddress()).AsUint(); const std::string base = Visit(gmem->GetBaseAddress()).AsUint();
@ -1749,27 +1727,14 @@ private:
expr += ", "; expr += ", ";
} }
// Store a copy of the expression without the lod to be used with texture buffers if (meta->lod && !meta->sampler.IsBuffer()) {
std::string expr_buffer = expr;
if (meta->lod) {
expr += ", "; expr += ", ";
expr += Visit(meta->lod).AsInt(); expr += Visit(meta->lod).AsInt();
} }
expr += ')'; expr += ')';
expr += GetSwizzle(meta->element); expr += GetSwizzle(meta->element);
expr_buffer += ')'; return {std::move(expr), Type::Float};
expr_buffer += GetSwizzle(meta->element);
const std::string tmp{code.GenerateTemporary()};
EmitIfdefIsBuffer(meta->sampler);
code.AddLine("float {} = {};", tmp, expr_buffer);
code.AddLine("#else");
code.AddLine("float {} = {};", tmp, expr);
code.AddLine("#endif");
return {tmp, Type::Float};
} }
Expression ImageLoad(Operation operation) { Expression ImageLoad(Operation operation) {
@ -1837,7 +1802,7 @@ private:
} }
void PreExit() { void PreExit() {
if (stage != ProgramType::Fragment) { if (stage != ShaderType::Fragment) {
return; return;
} }
const auto& used_registers = ir.GetRegisters(); const auto& used_registers = ir.GetRegisters();
@ -1890,14 +1855,14 @@ private:
} }
Expression EmitVertex(Operation operation) { Expression EmitVertex(Operation operation) {
ASSERT_MSG(stage == ProgramType::Geometry, ASSERT_MSG(stage == ShaderType::Geometry,
"EmitVertex is expected to be used in a geometry shader."); "EmitVertex is expected to be used in a geometry shader.");
code.AddLine("EmitVertex();"); code.AddLine("EmitVertex();");
return {}; return {};
} }
Expression EndPrimitive(Operation operation) { Expression EndPrimitive(Operation operation) {
ASSERT_MSG(stage == ProgramType::Geometry, ASSERT_MSG(stage == ShaderType::Geometry,
"EndPrimitive is expected to be used in a geometry shader."); "EndPrimitive is expected to be used in a geometry shader.");
code.AddLine("EndPrimitive();"); code.AddLine("EndPrimitive();");
return {}; return {};
@ -2193,10 +2158,6 @@ private:
return "lmem_" + suffix; return "lmem_" + suffix;
} }
std::string GetSharedMemory() const {
return fmt::format("smem_{}", suffix);
}
std::string GetInternalFlag(InternalFlag flag) const { std::string GetInternalFlag(InternalFlag flag) const {
constexpr std::array InternalFlagNames = {"zero_flag", "sign_flag", "carry_flag", constexpr std::array InternalFlagNames = {"zero_flag", "sign_flag", "carry_flag",
"overflow_flag"}; "overflow_flag"};
@ -2214,10 +2175,6 @@ private:
return GetDeclarationWithSuffix(static_cast<u32>(image.GetIndex()), "image"); return GetDeclarationWithSuffix(static_cast<u32>(image.GetIndex()), "image");
} }
void EmitIfdefIsBuffer(const Sampler& sampler) {
code.AddLine("#ifdef SAMPLER_{}_IS_BUFFER", sampler.GetIndex());
}
std::string GetDeclarationWithSuffix(u32 index, std::string_view name) const { std::string GetDeclarationWithSuffix(u32 index, std::string_view name) const {
return fmt::format("{}_{}_{}", name, index, suffix); return fmt::format("{}_{}_{}", name, index, suffix);
} }
@ -2236,7 +2193,7 @@ private:
const Device& device; const Device& device;
const ShaderIR& ir; const ShaderIR& ir;
const ProgramType stage; const ShaderType stage;
const std::string suffix; const std::string suffix;
const Header header; const Header header;
@ -2491,7 +2448,7 @@ const float fswzadd_modifiers_b[] = float[4](-1.0f, -1.0f, 1.0f, -1.0f );
)"; )";
} }
std::string Decompile(const Device& device, const ShaderIR& ir, ProgramType stage, std::string Decompile(const Device& device, const ShaderIR& ir, ShaderType stage,
const std::string& suffix) { const std::string& suffix) {
GLSLDecompiler decompiler(device, ir, stage, suffix); GLSLDecompiler decompiler(device, ir, stage, suffix);
decompiler.Decompile(); decompiler.Decompile();

View file

@ -10,6 +10,7 @@
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/shader/shader_ir.h" #include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader { namespace VideoCommon::Shader {
@ -17,20 +18,8 @@ class ShaderIR;
} }
namespace OpenGL { namespace OpenGL {
class Device; class Device;
}
enum class ProgramType : u32 {
VertexA = 0,
VertexB = 1,
TessellationControl = 2,
TessellationEval = 3,
Geometry = 4,
Fragment = 5,
Compute = 6
};
} // namespace OpenGL
namespace OpenGL::GLShader { namespace OpenGL::GLShader {
@ -94,6 +83,6 @@ ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir);
std::string GetCommonDeclarations(); std::string GetCommonDeclarations();
std::string Decompile(const Device& device, const VideoCommon::Shader::ShaderIR& ir, std::string Decompile(const Device& device, const VideoCommon::Shader::ShaderIR& ir,
ProgramType stage, const std::string& suffix); Tegra::Engines::ShaderType stage, const std::string& suffix);
} // namespace OpenGL::GLShader } // namespace OpenGL::GLShader

View file

@ -3,6 +3,7 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <cstring> #include <cstring>
#include <fmt/format.h> #include <fmt/format.h>
#include "common/assert.h" #include "common/assert.h"
@ -12,39 +13,22 @@
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/scm_rev.h" #include "common/scm_rev.h"
#include "common/zstd_compression.h" #include "common/zstd_compression.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/process.h" #include "core/hle/kernel/process.h"
#include "core/settings.h" #include "core/settings.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_shader_cache.h" #include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/renderer_opengl/gl_shader_disk_cache.h" #include "video_core/renderer_opengl/gl_shader_disk_cache.h"
namespace OpenGL { namespace OpenGL {
using Tegra::Engines::ShaderType;
using VideoCommon::Shader::BindlessSamplerMap; using VideoCommon::Shader::BindlessSamplerMap;
using VideoCommon::Shader::BoundSamplerMap; using VideoCommon::Shader::BoundSamplerMap;
using VideoCommon::Shader::KeyMap; using VideoCommon::Shader::KeyMap;
namespace { namespace {
struct ConstBufferKey {
u32 cbuf;
u32 offset;
u32 value;
};
struct BoundSamplerKey {
u32 offset;
Tegra::Engines::SamplerDescriptor sampler;
};
struct BindlessSamplerKey {
u32 cbuf;
u32 offset;
Tegra::Engines::SamplerDescriptor sampler;
};
using ShaderCacheVersionHash = std::array<u8, 64>; using ShaderCacheVersionHash = std::array<u8, 64>;
enum class TransferableEntryKind : u32 { enum class TransferableEntryKind : u32 {
@ -52,10 +36,27 @@ enum class TransferableEntryKind : u32 {
Usage, Usage,
}; };
constexpr u32 NativeVersion = 5; struct ConstBufferKey {
u32 cbuf{};
u32 offset{};
u32 value{};
};
struct BoundSamplerKey {
u32 offset{};
Tegra::Engines::SamplerDescriptor sampler{};
};
struct BindlessSamplerKey {
u32 cbuf{};
u32 offset{};
Tegra::Engines::SamplerDescriptor sampler{};
};
constexpr u32 NativeVersion = 11;
// Making sure sizes doesn't change by accident // Making sure sizes doesn't change by accident
static_assert(sizeof(BaseBindings) == 16); static_assert(sizeof(ProgramVariant) == 20);
ShaderCacheVersionHash GetShaderCacheVersionHash() { ShaderCacheVersionHash GetShaderCacheVersionHash() {
ShaderCacheVersionHash hash{}; ShaderCacheVersionHash hash{};
@ -66,10 +67,10 @@ ShaderCacheVersionHash GetShaderCacheVersionHash() {
} // Anonymous namespace } // Anonymous namespace
ShaderDiskCacheRaw::ShaderDiskCacheRaw(u64 unique_identifier, ProgramType program_type, ShaderDiskCacheRaw::ShaderDiskCacheRaw(u64 unique_identifier, ShaderType type, ProgramCode code,
ProgramCode program_code, ProgramCode program_code_b) ProgramCode code_b)
: unique_identifier{unique_identifier}, program_type{program_type}, : unique_identifier{unique_identifier}, type{type}, code{std::move(code)}, code_b{std::move(
program_code{std::move(program_code)}, program_code_b{std::move(program_code_b)} {} code_b)} {}
ShaderDiskCacheRaw::ShaderDiskCacheRaw() = default; ShaderDiskCacheRaw::ShaderDiskCacheRaw() = default;
@ -77,42 +78,39 @@ ShaderDiskCacheRaw::~ShaderDiskCacheRaw() = default;
bool ShaderDiskCacheRaw::Load(FileUtil::IOFile& file) { bool ShaderDiskCacheRaw::Load(FileUtil::IOFile& file) {
if (file.ReadBytes(&unique_identifier, sizeof(u64)) != sizeof(u64) || if (file.ReadBytes(&unique_identifier, sizeof(u64)) != sizeof(u64) ||
file.ReadBytes(&program_type, sizeof(u32)) != sizeof(u32)) { file.ReadBytes(&type, sizeof(u32)) != sizeof(u32)) {
return false; return false;
} }
u32 program_code_size{}; u32 code_size{};
u32 program_code_size_b{}; u32 code_size_b{};
if (file.ReadBytes(&program_code_size, sizeof(u32)) != sizeof(u32) || if (file.ReadBytes(&code_size, sizeof(u32)) != sizeof(u32) ||
file.ReadBytes(&program_code_size_b, sizeof(u32)) != sizeof(u32)) { file.ReadBytes(&code_size_b, sizeof(u32)) != sizeof(u32)) {
return false; return false;
} }
program_code.resize(program_code_size); code.resize(code_size);
program_code_b.resize(program_code_size_b); code_b.resize(code_size_b);
if (file.ReadArray(program_code.data(), program_code_size) != program_code_size) if (file.ReadArray(code.data(), code_size) != code_size)
return false; return false;
if (HasProgramA() && if (HasProgramA() && file.ReadArray(code_b.data(), code_size_b) != code_size_b) {
file.ReadArray(program_code_b.data(), program_code_size_b) != program_code_size_b) {
return false; return false;
} }
return true; return true;
} }
bool ShaderDiskCacheRaw::Save(FileUtil::IOFile& file) const { bool ShaderDiskCacheRaw::Save(FileUtil::IOFile& file) const {
if (file.WriteObject(unique_identifier) != 1 || if (file.WriteObject(unique_identifier) != 1 || file.WriteObject(static_cast<u32>(type)) != 1 ||
file.WriteObject(static_cast<u32>(program_type)) != 1 || file.WriteObject(static_cast<u32>(code.size())) != 1 ||
file.WriteObject(static_cast<u32>(program_code.size())) != 1 || file.WriteObject(static_cast<u32>(code_b.size())) != 1) {
file.WriteObject(static_cast<u32>(program_code_b.size())) != 1) {
return false; return false;
} }
if (file.WriteArray(program_code.data(), program_code.size()) != program_code.size()) if (file.WriteArray(code.data(), code.size()) != code.size())
return false; return false;
if (HasProgramA() && if (HasProgramA() && file.WriteArray(code_b.data(), code_b.size()) != code_b.size()) {
file.WriteArray(program_code_b.data(), program_code_b.size()) != program_code_b.size()) {
return false; return false;
} }
return true; return true;

View file

@ -4,7 +4,6 @@
#pragma once #pragma once
#include <bitset>
#include <optional> #include <optional>
#include <string> #include <string>
#include <tuple> #include <tuple>
@ -19,6 +18,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "core/file_sys/vfs_vector.h" #include "core/file_sys/vfs_vector.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/shader/const_buffer_locker.h" #include "video_core/shader/const_buffer_locker.h"
@ -37,42 +37,42 @@ struct ShaderDiskCacheDump;
using ProgramCode = std::vector<u64>; using ProgramCode = std::vector<u64>;
using ShaderDumpsMap = std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>; using ShaderDumpsMap = std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>;
using TextureBufferUsage = std::bitset<64>;
/// Allocated bindings used by an OpenGL shader program /// Describes the different variants a program can be compiled with.
struct BaseBindings { struct ProgramVariant final {
u32 cbuf{}; ProgramVariant() = default;
u32 gmem{};
u32 sampler{};
u32 image{};
bool operator==(const BaseBindings& rhs) const { /// Graphics constructor.
return std::tie(cbuf, gmem, sampler, image) == explicit constexpr ProgramVariant(GLenum primitive_mode) noexcept
std::tie(rhs.cbuf, rhs.gmem, rhs.sampler, rhs.image); : primitive_mode{primitive_mode} {}
}
bool operator!=(const BaseBindings& rhs) const { /// Compute constructor.
return !operator==(rhs); explicit constexpr ProgramVariant(u32 block_x, u32 block_y, u32 block_z, u32 shared_memory_size,
} u32 local_memory_size) noexcept
}; : block_x{block_x}, block_y{static_cast<u16>(block_y)}, block_z{static_cast<u16>(block_z)},
static_assert(std::is_trivially_copyable_v<BaseBindings>); shared_memory_size{shared_memory_size}, local_memory_size{local_memory_size} {}
/// Describes the different variants a single program can be compiled. // Graphics specific parameters.
struct ProgramVariant {
BaseBindings base_bindings;
GLenum primitive_mode{}; GLenum primitive_mode{};
TextureBufferUsage texture_buffer_usage{};
bool operator==(const ProgramVariant& rhs) const { // Compute specific parameters.
return std::tie(base_bindings, primitive_mode, texture_buffer_usage) == u32 block_x{};
std::tie(rhs.base_bindings, rhs.primitive_mode, rhs.texture_buffer_usage); u16 block_y{};
u16 block_z{};
u32 shared_memory_size{};
u32 local_memory_size{};
bool operator==(const ProgramVariant& rhs) const noexcept {
return std::tie(primitive_mode, block_x, block_y, block_z, shared_memory_size,
local_memory_size) == std::tie(rhs.primitive_mode, rhs.block_x, rhs.block_y,
rhs.block_z, rhs.shared_memory_size,
rhs.local_memory_size);
} }
bool operator!=(const ProgramVariant& rhs) const { bool operator!=(const ProgramVariant& rhs) const noexcept {
return !operator==(rhs); return !operator==(rhs);
} }
}; };
static_assert(std::is_trivially_copyable_v<ProgramVariant>); static_assert(std::is_trivially_copyable_v<ProgramVariant>);
/// Describes how a shader is used. /// Describes how a shader is used.
@ -98,22 +98,15 @@ struct ShaderDiskCacheUsage {
namespace std { namespace std {
template <>
struct hash<OpenGL::BaseBindings> {
std::size_t operator()(const OpenGL::BaseBindings& bindings) const noexcept {
return static_cast<std::size_t>(bindings.cbuf) ^
(static_cast<std::size_t>(bindings.gmem) << 8) ^
(static_cast<std::size_t>(bindings.sampler) << 16) ^
(static_cast<std::size_t>(bindings.image) << 24);
}
};
template <> template <>
struct hash<OpenGL::ProgramVariant> { struct hash<OpenGL::ProgramVariant> {
std::size_t operator()(const OpenGL::ProgramVariant& variant) const noexcept { std::size_t operator()(const OpenGL::ProgramVariant& variant) const noexcept {
return std::hash<OpenGL::BaseBindings>()(variant.base_bindings) ^ return (static_cast<std::size_t>(variant.primitive_mode) << 6) ^
std::hash<OpenGL::TextureBufferUsage>()(variant.texture_buffer_usage) ^ static_cast<std::size_t>(variant.block_x) ^
(static_cast<std::size_t>(variant.primitive_mode) << 6); (static_cast<std::size_t>(variant.block_y) << 32) ^
(static_cast<std::size_t>(variant.block_z) << 48) ^
(static_cast<std::size_t>(variant.shared_memory_size) << 16) ^
(static_cast<std::size_t>(variant.local_memory_size) << 36);
} }
}; };
@ -121,7 +114,7 @@ template <>
struct hash<OpenGL::ShaderDiskCacheUsage> { struct hash<OpenGL::ShaderDiskCacheUsage> {
std::size_t operator()(const OpenGL::ShaderDiskCacheUsage& usage) const noexcept { std::size_t operator()(const OpenGL::ShaderDiskCacheUsage& usage) const noexcept {
return static_cast<std::size_t>(usage.unique_identifier) ^ return static_cast<std::size_t>(usage.unique_identifier) ^
std::hash<OpenGL::ProgramVariant>()(usage.variant); std::hash<OpenGL::ProgramVariant>{}(usage.variant);
} }
}; };
@ -132,8 +125,8 @@ namespace OpenGL {
/// Describes a shader how it's used by the guest GPU /// Describes a shader how it's used by the guest GPU
class ShaderDiskCacheRaw { class ShaderDiskCacheRaw {
public: public:
explicit ShaderDiskCacheRaw(u64 unique_identifier, ProgramType program_type, explicit ShaderDiskCacheRaw(u64 unique_identifier, Tegra::Engines::ShaderType type,
ProgramCode program_code, ProgramCode program_code_b = {}); ProgramCode code, ProgramCode code_b = {});
ShaderDiskCacheRaw(); ShaderDiskCacheRaw();
~ShaderDiskCacheRaw(); ~ShaderDiskCacheRaw();
@ -146,27 +139,26 @@ public:
} }
bool HasProgramA() const { bool HasProgramA() const {
return program_type == ProgramType::VertexA; return !code.empty() && !code_b.empty();
} }
ProgramType GetProgramType() const { Tegra::Engines::ShaderType GetType() const {
return program_type; return type;
} }
const ProgramCode& GetProgramCode() const { const ProgramCode& GetCode() const {
return program_code; return code;
} }
const ProgramCode& GetProgramCodeB() const { const ProgramCode& GetCodeB() const {
return program_code_b; return code_b;
} }
private: private:
u64 unique_identifier{}; u64 unique_identifier{};
ProgramType program_type{}; Tegra::Engines::ShaderType type{};
ProgramCode code;
ProgramCode program_code; ProgramCode code_b;
ProgramCode program_code_b;
}; };
/// Contains an OpenGL dumped binary program /// Contains an OpenGL dumped binary program

View file

@ -2,8 +2,13 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <string>
#include <fmt/format.h> #include <fmt/format.h>
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h" #include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/shader/shader_ir.h" #include "video_core/shader/shader_ir.h"
@ -11,6 +16,7 @@
namespace OpenGL::GLShader { namespace OpenGL::GLShader {
using Tegra::Engines::Maxwell3D; using Tegra::Engines::Maxwell3D;
using Tegra::Engines::ShaderType;
using VideoCommon::Shader::CompileDepth; using VideoCommon::Shader::CompileDepth;
using VideoCommon::Shader::CompilerSettings; using VideoCommon::Shader::CompilerSettings;
using VideoCommon::Shader::ProgramCode; using VideoCommon::Shader::ProgramCode;
@ -18,16 +24,16 @@ using VideoCommon::Shader::ShaderIR;
std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b) { std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b) {
std::string out = GetCommonDeclarations(); std::string out = GetCommonDeclarations();
out += R"( out += fmt::format(R"(
layout (std140, binding = EMULATION_UBO_BINDING) uniform vs_config { layout (std140, binding = {}) uniform vs_config {{
float y_direction; float y_direction;
}; }};
)"; )",
const auto stage = ir_b ? ProgramType::VertexA : ProgramType::VertexB; EmulationUniformBlockBinding);
out += Decompile(device, ir, stage, "vertex"); out += Decompile(device, ir, ShaderType::Vertex, "vertex");
if (ir_b) { if (ir_b) {
out += Decompile(device, *ir_b, ProgramType::VertexB, "vertex_b"); out += Decompile(device, *ir_b, ShaderType::Vertex, "vertex_b");
} }
out += R"( out += R"(
@ -44,13 +50,14 @@ void main() {
std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir) { std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations(); std::string out = GetCommonDeclarations();
out += R"( out += fmt::format(R"(
layout (std140, binding = EMULATION_UBO_BINDING) uniform gs_config { layout (std140, binding = {}) uniform gs_config {{
float y_direction; float y_direction;
}; }};
)"; )",
out += Decompile(device, ir, ProgramType::Geometry, "geometry"); EmulationUniformBlockBinding);
out += Decompile(device, ir, ShaderType::Geometry, "geometry");
out += R"( out += R"(
void main() { void main() {
@ -62,7 +69,7 @@ void main() {
std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir) { std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations(); std::string out = GetCommonDeclarations();
out += R"( out += fmt::format(R"(
layout (location = 0) out vec4 FragColor0; layout (location = 0) out vec4 FragColor0;
layout (location = 1) out vec4 FragColor1; layout (location = 1) out vec4 FragColor1;
layout (location = 2) out vec4 FragColor2; layout (location = 2) out vec4 FragColor2;
@ -72,12 +79,13 @@ layout (location = 5) out vec4 FragColor5;
layout (location = 6) out vec4 FragColor6; layout (location = 6) out vec4 FragColor6;
layout (location = 7) out vec4 FragColor7; layout (location = 7) out vec4 FragColor7;
layout (std140, binding = EMULATION_UBO_BINDING) uniform fs_config { layout (std140, binding = {}) uniform fs_config {{
float y_direction; float y_direction;
}; }};
)"; )",
out += Decompile(device, ir, ProgramType::Fragment, "fragment"); EmulationUniformBlockBinding);
out += Decompile(device, ir, ShaderType::Fragment, "fragment");
out += R"( out += R"(
void main() { void main() {
@ -89,7 +97,7 @@ void main() {
std::string GenerateComputeShader(const Device& device, const ShaderIR& ir) { std::string GenerateComputeShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations(); std::string out = GetCommonDeclarations();
out += Decompile(device, ir, ProgramType::Compute, "compute"); out += Decompile(device, ir, ShaderType::Compute, "compute");
out += R"( out += R"(
void main() { void main() {
execute_compute(); execute_compute();

View file

@ -417,14 +417,24 @@ void OpenGLState::ApplyClipControl() {
} }
void OpenGLState::ApplyTextures() { void OpenGLState::ApplyTextures() {
if (const auto update = UpdateArray(cur_state.textures, textures)) { const std::size_t size = std::size(textures);
glBindTextures(update->first, update->second, textures.data() + update->first); for (std::size_t i = 0; i < size; ++i) {
if (UpdateValue(cur_state.textures[i], textures[i])) {
// BindTextureUnit doesn't support binding null textures, skip those binds.
// TODO(Rodrigo): Stop using null textures
if (textures[i] != 0) {
glBindTextureUnit(static_cast<GLuint>(i), textures[i]);
}
}
} }
} }
void OpenGLState::ApplySamplers() { void OpenGLState::ApplySamplers() {
if (const auto update = UpdateArray(cur_state.samplers, samplers)) { const std::size_t size = std::size(samplers);
glBindSamplers(update->first, update->second, samplers.data() + update->first); for (std::size_t i = 0; i < size; ++i) {
if (UpdateValue(cur_state.samplers[i], samplers[i])) {
glBindSampler(static_cast<GLuint>(i), samplers[i]);
}
} }
} }

View file

@ -96,9 +96,11 @@ public:
GLenum operation = GL_COPY; GLenum operation = GL_COPY;
} logic_op; } logic_op;
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumTextureSamplers> textures = {}; static constexpr std::size_t NumSamplers = 32 * 5;
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumTextureSamplers> samplers = {}; static constexpr std::size_t NumImages = 8 * 5;
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumImages> images = {}; std::array<GLuint, NumSamplers> textures = {};
std::array<GLuint, NumSamplers> samplers = {};
std::array<GLuint, NumImages> images = {};
struct { struct {
GLuint read_framebuffer = 0; // GL_READ_FRAMEBUFFER_BINDING GLuint read_framebuffer = 0; // GL_READ_FRAMEBUFFER_BINDING

View file

@ -3,7 +3,10 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <string> #include <string>
#include <vector>
#include <fmt/format.h> #include <fmt/format.h>
#include <glad/glad.h> #include <glad/glad.h>
#include "common/assert.h" #include "common/assert.h"
@ -48,34 +51,19 @@ BindBuffersRangePushBuffer::BindBuffersRangePushBuffer(GLenum target) : target{t
BindBuffersRangePushBuffer::~BindBuffersRangePushBuffer() = default; BindBuffersRangePushBuffer::~BindBuffersRangePushBuffer() = default;
void BindBuffersRangePushBuffer::Setup(GLuint first_) { void BindBuffersRangePushBuffer::Setup() {
first = first_; entries.clear();
buffer_pointers.clear();
offsets.clear();
sizes.clear();
} }
void BindBuffersRangePushBuffer::Push(const GLuint* buffer, GLintptr offset, GLsizeiptr size) { void BindBuffersRangePushBuffer::Push(GLuint binding, const GLuint* buffer, GLintptr offset,
buffer_pointers.push_back(buffer); GLsizeiptr size) {
offsets.push_back(offset); entries.push_back(Entry{binding, buffer, offset, size});
sizes.push_back(size);
} }
void BindBuffersRangePushBuffer::Bind() { void BindBuffersRangePushBuffer::Bind() {
// Ensure sizes are valid. for (const Entry& entry : entries) {
const std::size_t count{buffer_pointers.size()}; glBindBufferRange(target, entry.binding, *entry.buffer, entry.offset, entry.size);
DEBUG_ASSERT(count == offsets.size() && count == sizes.size());
if (count == 0) {
return;
} }
// Dereference buffers.
buffers.resize(count);
std::transform(buffer_pointers.begin(), buffer_pointers.end(), buffers.begin(),
[](const GLuint* pointer) { return *pointer; });
glBindBuffersRange(target, first, static_cast<GLsizei>(count), buffers.data(), offsets.data(),
sizes.data());
} }
void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_view extra_info) { void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_view extra_info) {

View file

@ -43,20 +43,22 @@ public:
explicit BindBuffersRangePushBuffer(GLenum target); explicit BindBuffersRangePushBuffer(GLenum target);
~BindBuffersRangePushBuffer(); ~BindBuffersRangePushBuffer();
void Setup(GLuint first_); void Setup();
void Push(const GLuint* buffer, GLintptr offset, GLsizeiptr size); void Push(GLuint binding, const GLuint* buffer, GLintptr offset, GLsizeiptr size);
void Bind(); void Bind();
private: private:
GLenum target{}; struct Entry {
GLuint first{}; GLuint binding;
std::vector<const GLuint*> buffer_pointers; const GLuint* buffer;
GLintptr offset;
GLsizeiptr size;
};
std::vector<GLuint> buffers; GLenum target;
std::vector<GLintptr> offsets; std::vector<Entry> entries;
std::vector<GLsizeiptr> sizes;
}; };
void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_view extra_info = {}); void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_view extra_info = {});

View file

@ -13,6 +13,8 @@
namespace Vulkan::MaxwellToVK { namespace Vulkan::MaxwellToVK {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
namespace Sampler { namespace Sampler {
vk::Filter Filter(Tegra::Texture::TextureFilter filter) { vk::Filter Filter(Tegra::Texture::TextureFilter filter) {
@ -196,17 +198,17 @@ std::pair<vk::Format, bool> SurfaceFormat(const VKDevice& device, FormatType for
return {device.GetSupportedFormat(tuple.format, usage, format_type), tuple.attachable}; return {device.GetSupportedFormat(tuple.format, usage, format_type), tuple.attachable};
} }
vk::ShaderStageFlagBits ShaderStage(Maxwell::ShaderStage stage) { vk::ShaderStageFlagBits ShaderStage(Tegra::Engines::ShaderType stage) {
switch (stage) { switch (stage) {
case Maxwell::ShaderStage::Vertex: case Tegra::Engines::ShaderType::Vertex:
return vk::ShaderStageFlagBits::eVertex; return vk::ShaderStageFlagBits::eVertex;
case Maxwell::ShaderStage::TesselationControl: case Tegra::Engines::ShaderType::TesselationControl:
return vk::ShaderStageFlagBits::eTessellationControl; return vk::ShaderStageFlagBits::eTessellationControl;
case Maxwell::ShaderStage::TesselationEval: case Tegra::Engines::ShaderType::TesselationEval:
return vk::ShaderStageFlagBits::eTessellationEvaluation; return vk::ShaderStageFlagBits::eTessellationEvaluation;
case Maxwell::ShaderStage::Geometry: case Tegra::Engines::ShaderType::Geometry:
return vk::ShaderStageFlagBits::eGeometry; return vk::ShaderStageFlagBits::eGeometry;
case Maxwell::ShaderStage::Fragment: case Tegra::Engines::ShaderType::Fragment:
return vk::ShaderStageFlagBits::eFragment; return vk::ShaderStageFlagBits::eFragment;
} }
UNIMPLEMENTED_MSG("Unimplemented shader stage={}", static_cast<u32>(stage)); UNIMPLEMENTED_MSG("Unimplemented shader stage={}", static_cast<u32>(stage));

View file

@ -32,7 +32,7 @@ vk::CompareOp DepthCompareFunction(Tegra::Texture::DepthCompareFunc depth_compar
std::pair<vk::Format, bool> SurfaceFormat(const VKDevice& device, FormatType format_type, std::pair<vk::Format, bool> SurfaceFormat(const VKDevice& device, FormatType format_type,
PixelFormat pixel_format); PixelFormat pixel_format);
vk::ShaderStageFlagBits ShaderStage(Maxwell::ShaderStage stage); vk::ShaderStageFlagBits ShaderStage(Tegra::Engines::ShaderType stage);
vk::PrimitiveTopology PrimitiveTopology(Maxwell::PrimitiveTopology topology); vk::PrimitiveTopology PrimitiveTopology(Maxwell::PrimitiveTopology topology);

View file

@ -17,6 +17,7 @@
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_bytecode.h" #include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h" #include "video_core/engines/shader_header.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_vulkan/vk_device.h" #include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_shader_decompiler.h" #include "video_core/renderer_vulkan/vk_shader_decompiler.h"
#include "video_core/shader/node.h" #include "video_core/shader/node.h"
@ -25,13 +26,13 @@
namespace Vulkan::VKShader { namespace Vulkan::VKShader {
using Sirit::Id; using Sirit::Id;
using Tegra::Engines::ShaderType;
using Tegra::Shader::Attribute; using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse; using Tegra::Shader::AttributeUse;
using Tegra::Shader::Register; using Tegra::Shader::Register;
using namespace VideoCommon::Shader; using namespace VideoCommon::Shader;
using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ShaderStage = Tegra::Engines::Maxwell3D::Regs::ShaderStage;
using Operation = const OperationNode&; using Operation = const OperationNode&;
// TODO(Rodrigo): Use rasterizer's value // TODO(Rodrigo): Use rasterizer's value
@ -93,7 +94,7 @@ class ExprDecompiler;
class SPIRVDecompiler : public Sirit::Module { class SPIRVDecompiler : public Sirit::Module {
public: public:
explicit SPIRVDecompiler(const VKDevice& device, const ShaderIR& ir, ShaderStage stage) explicit SPIRVDecompiler(const VKDevice& device, const ShaderIR& ir, ShaderType stage)
: Module(0x00010300), device{device}, ir{ir}, stage{stage}, header{ir.GetHeader()} { : Module(0x00010300), device{device}, ir{ir}, stage{stage}, header{ir.GetHeader()} {
AddCapability(spv::Capability::Shader); AddCapability(spv::Capability::Shader);
AddExtension("SPV_KHR_storage_buffer_storage_class"); AddExtension("SPV_KHR_storage_buffer_storage_class");
@ -256,21 +257,21 @@ private:
} }
void DeclareVertex() { void DeclareVertex() {
if (stage != ShaderStage::Vertex) if (stage != ShaderType::Vertex)
return; return;
DeclareVertexRedeclarations(); DeclareVertexRedeclarations();
} }
void DeclareGeometry() { void DeclareGeometry() {
if (stage != ShaderStage::Geometry) if (stage != ShaderType::Geometry)
return; return;
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
void DeclareFragment() { void DeclareFragment() {
if (stage != ShaderStage::Fragment) if (stage != ShaderType::Fragment)
return; return;
for (u32 rt = 0; rt < static_cast<u32>(frag_colors.size()); ++rt) { for (u32 rt = 0; rt < static_cast<u32>(frag_colors.size()); ++rt) {
@ -354,7 +355,7 @@ private:
continue; continue;
} }
UNIMPLEMENTED_IF(stage == ShaderStage::Geometry); UNIMPLEMENTED_IF(stage == ShaderType::Geometry);
const u32 location = GetGenericAttributeLocation(index); const u32 location = GetGenericAttributeLocation(index);
const Id id = OpVariable(t_in_float4, spv::StorageClass::Input); const Id id = OpVariable(t_in_float4, spv::StorageClass::Input);
@ -364,7 +365,7 @@ private:
Decorate(id, spv::Decoration::Location, location); Decorate(id, spv::Decoration::Location, location);
if (stage != ShaderStage::Fragment) { if (stage != ShaderType::Fragment) {
continue; continue;
} }
switch (header.ps.GetAttributeUse(location)) { switch (header.ps.GetAttributeUse(location)) {
@ -548,7 +549,7 @@ private:
switch (attribute) { switch (attribute) {
case Attribute::Index::Position: case Attribute::Index::Position:
if (stage != ShaderStage::Fragment) { if (stage != ShaderType::Fragment) {
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} else { } else {
@ -561,7 +562,7 @@ private:
// TODO(Subv): Find out what the values are for the first two elements when inside a // TODO(Subv): Find out what the values are for the first two elements when inside a
// vertex shader, and what's the value of the fourth element when inside a Tess Eval // vertex shader, and what's the value of the fourth element when inside a Tess Eval
// shader. // shader.
ASSERT(stage == ShaderStage::Vertex); ASSERT(stage == ShaderType::Vertex);
switch (element) { switch (element) {
case 2: case 2:
return BitcastFrom<Type::Uint>(Emit(OpLoad(t_uint, instance_index))); return BitcastFrom<Type::Uint>(Emit(OpLoad(t_uint, instance_index)));
@ -572,7 +573,7 @@ private:
return Constant(t_float, 0); return Constant(t_float, 0);
case Attribute::Index::FrontFacing: case Attribute::Index::FrontFacing:
// TODO(Subv): Find out what the values are for the other elements. // TODO(Subv): Find out what the values are for the other elements.
ASSERT(stage == ShaderStage::Fragment); ASSERT(stage == ShaderType::Fragment);
if (element == 3) { if (element == 3) {
const Id is_front_facing = Emit(OpLoad(t_bool, front_facing)); const Id is_front_facing = Emit(OpLoad(t_bool, front_facing));
const Id true_value = const Id true_value =
@ -1075,7 +1076,7 @@ private:
Id PreExit() { Id PreExit() {
switch (stage) { switch (stage) {
case ShaderStage::Vertex: { case ShaderType::Vertex: {
// TODO(Rodrigo): We should use VK_EXT_depth_range_unrestricted instead, but it doesn't // TODO(Rodrigo): We should use VK_EXT_depth_range_unrestricted instead, but it doesn't
// seem to be working on Nvidia's drivers and Intel (mesa and blob) doesn't support it. // seem to be working on Nvidia's drivers and Intel (mesa and blob) doesn't support it.
const Id z_pointer = AccessElement(t_out_float, per_vertex, position_index, 2u); const Id z_pointer = AccessElement(t_out_float, per_vertex, position_index, 2u);
@ -1085,7 +1086,7 @@ private:
Emit(OpStore(z_pointer, depth)); Emit(OpStore(z_pointer, depth));
break; break;
} }
case ShaderStage::Fragment: { case ShaderType::Fragment: {
const auto SafeGetRegister = [&](u32 reg) { const auto SafeGetRegister = [&](u32 reg) {
// TODO(Rodrigo): Replace with contains once C++20 releases // TODO(Rodrigo): Replace with contains once C++20 releases
if (const auto it = registers.find(reg); it != registers.end()) { if (const auto it = registers.find(reg); it != registers.end()) {
@ -1511,7 +1512,7 @@ private:
const VKDevice& device; const VKDevice& device;
const ShaderIR& ir; const ShaderIR& ir;
const ShaderStage stage; const ShaderType stage;
const Tegra::Shader::Header header; const Tegra::Shader::Header header;
u64 conditional_nest_count{}; u64 conditional_nest_count{};
u64 inside_branch{}; u64 inside_branch{};
@ -1843,7 +1844,7 @@ void SPIRVDecompiler::DecompileAST() {
} }
DecompilerResult Decompile(const VKDevice& device, const VideoCommon::Shader::ShaderIR& ir, DecompilerResult Decompile(const VKDevice& device, const VideoCommon::Shader::ShaderIR& ir,
Maxwell::ShaderStage stage) { ShaderType stage) {
auto decompiler = std::make_unique<SPIRVDecompiler>(device, ir, stage); auto decompiler = std::make_unique<SPIRVDecompiler>(device, ir, stage);
decompiler->Decompile(); decompiler->Decompile();
return {std::move(decompiler), decompiler->GetShaderEntries()}; return {std::move(decompiler), decompiler->GetShaderEntries()};

View file

@ -79,6 +79,6 @@ struct ShaderEntries {
using DecompilerResult = std::pair<std::unique_ptr<Sirit::Module>, ShaderEntries>; using DecompilerResult = std::pair<std::unique_ptr<Sirit::Module>, ShaderEntries>;
DecompilerResult Decompile(const VKDevice& device, const VideoCommon::Shader::ShaderIR& ir, DecompilerResult Decompile(const VKDevice& device, const VideoCommon::Shader::ShaderIR& ir,
Maxwell::ShaderStage stage); Tegra::Engines::ShaderType stage);
} // namespace Vulkan::VKShader } // namespace Vulkan::VKShader

View file

@ -9,6 +9,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/shader/const_buffer_locker.h" #include "video_core/shader/const_buffer_locker.h"
namespace VideoCommon::Shader { namespace VideoCommon::Shader {

View file

@ -8,6 +8,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/hash.h" #include "common/hash.h"
#include "video_core/engines/const_buffer_engine_interface.h" #include "video_core/engines/const_buffer_engine_interface.h"
#include "video_core/engines/shader_type.h"
namespace VideoCommon::Shader { namespace VideoCommon::Shader {
@ -20,7 +21,7 @@ using BindlessSamplerMap =
* The ConstBufferLocker is a class use to interface the 3D and compute engines with the shader * The ConstBufferLocker is a class use to interface the 3D and compute engines with the shader
* compiler. with it, the shader can obtain required data from GPU state and store it for disk * compiler. with it, the shader can obtain required data from GPU state and store it for disk
* shader compilation. * shader compilation.
**/ */
class ConstBufferLocker { class ConstBufferLocker {
public: public:
explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage); explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage);

View file

@ -128,8 +128,8 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
} }
const Node component = Immediate(static_cast<u32>(instr.tld4s.component)); const Node component = Immediate(static_cast<u32>(instr.tld4s.component));
const auto& sampler = const SamplerInfo info{TextureType::Texture2D, false, depth_compare};
GetSampler(instr.sampler, {{TextureType::Texture2D, false, depth_compare}}); const auto& sampler = GetSampler(instr.sampler, info);
Node4 values; Node4 values;
for (u32 element = 0; element < values.size(); ++element) { for (u32 element = 0; element < values.size(); ++element) {
@ -149,7 +149,7 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
// Sadly, not all texture instructions specify the type of texture their sampler // Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance. // uses. This must be fixed at a later instance.
const auto& sampler = const auto& sampler =
is_bindless ? GetBindlessSampler(instr.gpr8, {}) : GetSampler(instr.sampler, {}); is_bindless ? GetBindlessSampler(instr.gpr8) : GetSampler(instr.sampler);
u32 indexer = 0; u32 indexer = 0;
switch (instr.txq.query_type) { switch (instr.txq.query_type) {
@ -185,8 +185,7 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
auto texture_type = instr.tmml.texture_type.Value(); auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0; const bool is_array = instr.tmml.array != 0;
const auto& sampler = const auto& sampler =
is_bindless ? GetBindlessSampler(instr.gpr20, {{texture_type, is_array, false}}) is_bindless ? GetBindlessSampler(instr.gpr20) : GetSampler(instr.sampler);
: GetSampler(instr.sampler, {{texture_type, is_array, false}});
std::vector<Node> coords; std::vector<Node> coords;
@ -254,67 +253,50 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
return pc; return pc;
} }
ShaderIR::SamplerInfo ShaderIR::GetSamplerInfo(std::optional<SamplerInfo> sampler_info, u32 offset,
std::optional<u32> buffer) {
if (sampler_info) {
return *sampler_info;
}
const auto sampler =
buffer ? locker.ObtainBindlessSampler(*buffer, offset) : locker.ObtainBoundSampler(offset);
if (!sampler) {
LOG_WARNING(HW_GPU, "Unknown sampler info");
return SamplerInfo{TextureType::Texture2D, false, false, false};
}
return SamplerInfo{sampler->texture_type, sampler->is_array != 0, sampler->is_shadow != 0,
sampler->is_buffer != 0};
}
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler,
std::optional<SamplerInfo> sampler_info) { std::optional<SamplerInfo> sampler_info) {
const auto offset = static_cast<u32>(sampler.index.Value()); const auto offset = static_cast<u32>(sampler.index.Value());
const auto info = GetSamplerInfo(sampler_info, offset);
TextureType type;
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (const auto sampler = locker.ObtainBoundSampler(offset)) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
LOG_WARNING(HW_GPU, "Unknown sampler info");
type = TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping. // If this sampler has already been used, return the existing mapping.
const auto it = const auto it =
std::find_if(used_samplers.begin(), used_samplers.end(), std::find_if(used_samplers.begin(), used_samplers.end(),
[offset](const Sampler& entry) { return entry.GetOffset() == offset; }); [offset](const Sampler& entry) { return entry.GetOffset() == offset; });
if (it != used_samplers.end()) { if (it != used_samplers.end()) {
ASSERT(!it->IsBindless() && it->GetType() == type && it->IsArray() == is_array && ASSERT(!it->IsBindless() && it->GetType() == info.type && it->IsArray() == info.is_array &&
it->IsShadow() == is_shadow); it->IsShadow() == info.is_shadow && it->IsBuffer() == info.is_buffer);
return *it; return *it;
} }
// Otherwise create a new mapping for this sampler // Otherwise create a new mapping for this sampler
const auto next_index = static_cast<u32>(used_samplers.size()); const auto next_index = static_cast<u32>(used_samplers.size());
return used_samplers.emplace_back(Sampler(next_index, offset, type, is_array, is_shadow)); return used_samplers.emplace_back(next_index, offset, info.type, info.is_array, info.is_shadow,
info.is_buffer);
} }
const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg, const Sampler& ShaderIR::GetBindlessSampler(Tegra::Shader::Register reg,
std::optional<SamplerInfo> sampler_info) { std::optional<SamplerInfo> sampler_info) {
const Node sampler_register = GetRegister(reg); const Node sampler_register = GetRegister(reg);
const auto [base_sampler, buffer, offset] = const auto [base_sampler, buffer, offset] =
TrackCbuf(sampler_register, global_code, static_cast<s64>(global_code.size())); TrackCbuf(sampler_register, global_code, static_cast<s64>(global_code.size()));
ASSERT(base_sampler != nullptr); ASSERT(base_sampler != nullptr);
TextureType type; const auto info = GetSamplerInfo(sampler_info, offset, buffer);
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (const auto sampler = locker.ObtainBindlessSampler(buffer, offset)) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
LOG_WARNING(HW_GPU, "Unknown sampler info");
type = TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping. // If this sampler has already been used, return the existing mapping.
const auto it = const auto it =
@ -323,15 +305,15 @@ const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg,
return entry.GetBuffer() == buffer && entry.GetOffset() == offset; return entry.GetBuffer() == buffer && entry.GetOffset() == offset;
}); });
if (it != used_samplers.end()) { if (it != used_samplers.end()) {
ASSERT(it->IsBindless() && it->GetType() == type && it->IsArray() == is_array && ASSERT(it->IsBindless() && it->GetType() == info.type && it->IsArray() == info.is_array &&
it->IsShadow() == is_shadow); it->IsShadow() == info.is_shadow);
return *it; return *it;
} }
// Otherwise create a new mapping for this sampler // Otherwise create a new mapping for this sampler
const auto next_index = static_cast<u32>(used_samplers.size()); const auto next_index = static_cast<u32>(used_samplers.size());
return used_samplers.emplace_back( return used_samplers.emplace_back(next_index, offset, buffer, info.type, info.is_array,
Sampler(next_index, offset, buffer, type, is_array, is_shadow)); info.is_shadow, info.is_buffer);
} }
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) { void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
@ -416,17 +398,16 @@ Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
(texture_type == TextureType::TextureCube && is_array && is_shadow), (texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported."); "This method is not supported.");
const SamplerInfo info{texture_type, is_array, is_shadow, false};
const auto& sampler = const auto& sampler =
is_bindless ? GetBindlessSampler(*bindless_reg, {{texture_type, is_array, is_shadow}}) is_bindless ? GetBindlessSampler(*bindless_reg, info) : GetSampler(instr.sampler, info);
: GetSampler(instr.sampler, {{texture_type, is_array, is_shadow}});
const bool lod_needed = process_mode == TextureProcessMode::LZ || const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL || process_mode == TextureProcessMode::LL ||
process_mode == TextureProcessMode::LLA; process_mode == TextureProcessMode::LLA;
// LOD selection (either via bias or explicit textureLod) not // LOD selection (either via bias or explicit textureLod) not supported in GL for
// supported in GL for sampler2DArrayShadow and // sampler2DArrayShadow and samplerCubeArrayShadow.
// samplerCubeArrayShadow.
const bool gl_lod_supported = const bool gl_lod_supported =
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) || !((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow)); (texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
@ -436,8 +417,8 @@ Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported); UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
Node bias = {}; Node bias;
Node lod = {}; Node lod;
if (process_mode != TextureProcessMode::None && gl_lod_supported) { if (process_mode != TextureProcessMode::None && gl_lod_supported) {
switch (process_mode) { switch (process_mode) {
case TextureProcessMode::LZ: case TextureProcessMode::LZ:
@ -573,10 +554,9 @@ Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool de
u64 parameter_register = instr.gpr20.Value(); u64 parameter_register = instr.gpr20.Value();
const auto& sampler = const SamplerInfo info{texture_type, is_array, depth_compare, false};
is_bindless const auto& sampler = is_bindless ? GetBindlessSampler(parameter_register++, info)
? GetBindlessSampler(parameter_register++, {{texture_type, is_array, depth_compare}}) : GetSampler(instr.sampler, info);
: GetSampler(instr.sampler, {{texture_type, is_array, depth_compare}});
std::vector<Node> aoffi; std::vector<Node> aoffi;
if (is_aoffi) { if (is_aoffi) {
@ -623,7 +603,7 @@ Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr}; // const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr}; // const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}}); const auto& sampler = GetSampler(instr.sampler);
Node4 values; Node4 values;
for (u32 element = 0; element < values.size(); ++element) { for (u32 element = 0; element < values.size(); ++element) {
@ -636,6 +616,8 @@ Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
} }
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) { Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const auto& sampler = GetSampler(instr.sampler);
const std::size_t type_coord_count = GetCoordCount(texture_type); const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL; const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
@ -659,7 +641,14 @@ Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is
// When lod is used always is in gpr20 // When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0); const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}}); // Fill empty entries from the guest sampler.
const std::size_t entry_coord_count = GetCoordCount(sampler.GetType());
if (type_coord_count != entry_coord_count) {
LOG_WARNING(HW_GPU, "Bound and built texture types mismatch");
}
for (std::size_t i = type_coord_count; i < entry_coord_count; ++i) {
coords.push_back(GetRegister(Register::ZeroIndex));
}
Node4 values; Node4 values;
for (u32 element = 0; element < values.size(); ++element) { for (u32 element = 0; element < values.size(); ++element) {

View file

@ -225,14 +225,15 @@ class Sampler {
public: public:
/// This constructor is for bound samplers /// This constructor is for bound samplers
constexpr explicit Sampler(u32 index, u32 offset, Tegra::Shader::TextureType type, constexpr explicit Sampler(u32 index, u32 offset, Tegra::Shader::TextureType type,
bool is_array, bool is_shadow) bool is_array, bool is_shadow, bool is_buffer)
: index{index}, offset{offset}, type{type}, is_array{is_array}, is_shadow{is_shadow} {} : index{index}, offset{offset}, type{type}, is_array{is_array}, is_shadow{is_shadow},
is_buffer{is_buffer} {}
/// This constructor is for bindless samplers /// This constructor is for bindless samplers
constexpr explicit Sampler(u32 index, u32 offset, u32 buffer, Tegra::Shader::TextureType type, constexpr explicit Sampler(u32 index, u32 offset, u32 buffer, Tegra::Shader::TextureType type,
bool is_array, bool is_shadow) bool is_array, bool is_shadow, bool is_buffer)
: index{index}, offset{offset}, buffer{buffer}, type{type}, is_array{is_array}, : index{index}, offset{offset}, buffer{buffer}, type{type}, is_array{is_array},
is_shadow{is_shadow}, is_bindless{true} {} is_shadow{is_shadow}, is_buffer{is_buffer}, is_bindless{true} {}
constexpr u32 GetIndex() const { constexpr u32 GetIndex() const {
return index; return index;
@ -258,6 +259,10 @@ public:
return is_shadow; return is_shadow;
} }
constexpr bool IsBuffer() const {
return is_buffer;
}
constexpr bool IsBindless() const { constexpr bool IsBindless() const {
return is_bindless; return is_bindless;
} }
@ -270,6 +275,7 @@ private:
Tegra::Shader::TextureType type{}; ///< The type used to sample this texture (Texture2D, etc) Tegra::Shader::TextureType type{}; ///< The type used to sample this texture (Texture2D, etc)
bool is_array{}; ///< Whether the texture is being sampled as an array texture or not. bool is_array{}; ///< Whether the texture is being sampled as an array texture or not.
bool is_shadow{}; ///< Whether the texture is being sampled as a depth texture or not. bool is_shadow{}; ///< Whether the texture is being sampled as a depth texture or not.
bool is_buffer{}; ///< Whether the texture is a texture buffer without sampler.
bool is_bindless{}; ///< Whether this sampler belongs to a bindless texture or not. bool is_bindless{}; ///< Whether this sampler belongs to a bindless texture or not.
}; };

View file

@ -179,6 +179,7 @@ private:
Tegra::Shader::TextureType type; Tegra::Shader::TextureType type;
bool is_array; bool is_array;
bool is_shadow; bool is_shadow;
bool is_buffer;
}; };
void Decode(); void Decode();
@ -303,13 +304,17 @@ private:
/// Returns a predicate combiner operation /// Returns a predicate combiner operation
OperationCode GetPredicateCombiner(Tegra::Shader::PredOperation operation); OperationCode GetPredicateCombiner(Tegra::Shader::PredOperation operation);
/// Queries the missing sampler info from the execution context.
SamplerInfo GetSamplerInfo(std::optional<SamplerInfo> sampler_info, u32 offset,
std::optional<u32> buffer = std::nullopt);
/// Accesses a texture sampler /// Accesses a texture sampler
const Sampler& GetSampler(const Tegra::Shader::Sampler& sampler, const Sampler& GetSampler(const Tegra::Shader::Sampler& sampler,
std::optional<SamplerInfo> sampler_info); std::optional<SamplerInfo> sampler_info = std::nullopt);
// Accesses a texture sampler for a bindless texture. /// Accesses a texture sampler for a bindless texture.
const Sampler& GetBindlessSampler(const Tegra::Shader::Register& reg, const Sampler& GetBindlessSampler(Tegra::Shader::Register reg,
std::optional<SamplerInfo> sampler_info); std::optional<SamplerInfo> sampler_info = std::nullopt);
/// Accesses an image. /// Accesses an image.
Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type); Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type);