The kernel makes sure that the given size to unmap is always the same
size as the entire region managed by the shared memory instance,
otherwise it returns an error code signifying an invalid size.
This is similarly done for transfer memory (which we already check for).
Many of these functions are carried over from Dolphin (where they aren't
used anymore). Given these have no use (and we really shouldn't be
screwing around with OS-specific thread scheduler handling from the
emulator, these can be removed.
The function for setting the thread name is left, however, since it can
have debugging utility usages.
This was initially added to prevent problems from stubbed/not implemented NFC services, but as we never encountered such and as it's only used in a deprecated function anyway, I guess we can just remove it to prevent more clutter of the settings.
Reports the (mostly) correct size through svcGetInfo now for queries to
total used physical memory. This still doesn't correctly handle memory
allocated via svcMapPhysicalMemory, however, we don't currently handle
that case anyways.
This will make operating with the process-related SVC commands much
nicer in the future (the parameter representing the stack size in
svcStartProcess is a 64-bit value).
This isn't used at all in the OpenGL shader cache, so we can remove it's
include here, meaning one less file needs to be recompiled if any
changes ever occur within that header.
core/memory.h is also not used within this file at all, so we can remove
it as well.
We can just pass in the Maxwell3D instance instead of going through the
system class to get at it.
This also lets us simplify the interface a little bit. Since we pass in
the Maxwell3D context now, we only really need to pass the shader stage
index value in.
The pusher instance is only ever used in the constructor of the
ThreadManager for creating the thread that the ThreadManager instance
contains. Aside from that, the member is unused, so it can be removed.
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.
In some cases, our callbacks were using s64 as a parameter, and in other
cases, they were using an int, which is inconsistent.
To make all callbacks consistent, we can just use an s64 as the type for
late cycles, given it gets rid of the need to cast internally.
While we're at it, also resolve some signed/unsigned conversions that
were occurring related to the callback registration.
One behavior that we weren't handling properly in our heap allocation
process was the ability for the heap to be shrunk down in size if a
larger size was previously requested.
This adds the basic behavior to do so and also gets rid of HeapFree, as
it's no longer necessary now that we have allocations and deallocations
going through the same API function.
While we're at it, fully document the behavior that this function
performs.
Makes it more obvious that this function is intending to stand in for
the actual supervisor call itself, and not acting as a general heap
allocation function.
Also the following change will merge the freeing behavior of HeapFree
into this function, so leaving it as HeapAllocate would be misleading.
In cases where HeapAllocate is called with the same size of the current
heap, we can simply do nothing and return successfully.
This avoids doing work where we otherwise don't have to. This is also
what the kernel itself does in this scenario.
Another holdover from citra that can be tossed out is the notion of the
heap needing to be allocated in different addresses. On the switch, the
base address of the heap will always be managed by the memory allocator
in the kernel, so this doesn't need to be specified in the function's
interface itself.
The heap on the switch is always allocated with read/write permissions,
so we don't need to add specifying the memory permissions as part of the
heap allocation itself either.
This also corrects the error code returned from within the function.
If the size of the heap is larger than the entire heap region, then the
kernel will report an out of memory condition.