// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <memory> #include <ranges> #include <string> #include <unordered_map> #include <utility> #include <vector> #include <fmt/format.h> #include <boost/intrusive/list.hpp> #include "shader_recompiler/environment.h" #include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/ir_emitter.h" #include "shader_recompiler/frontend/maxwell/decode.h" #include "shader_recompiler/frontend/maxwell/structured_control_flow.h" #include "shader_recompiler/frontend/maxwell/translate/translate.h" #include "shader_recompiler/object_pool.h" namespace Shader::Maxwell { namespace { struct Statement; // Use normal_link because we are not guaranteed to destroy the tree in order using ListBaseHook = boost::intrusive::list_base_hook<boost::intrusive::link_mode<boost::intrusive::normal_link>>; using Tree = boost::intrusive::list<Statement, // Allow using Statement without a definition boost::intrusive::base_hook<ListBaseHook>, // Avoid linear complexity on splice, size is never called boost::intrusive::constant_time_size<false>>; using Node = Tree::iterator; enum class StatementType { Code, Goto, Label, If, Loop, Break, Return, Kill, Unreachable, Function, Identity, Not, Or, SetVariable, SetIndirectBranchVariable, Variable, IndirectBranchCond, }; bool HasChildren(StatementType type) { switch (type) { case StatementType::If: case StatementType::Loop: case StatementType::Function: return true; default: return false; } } struct Goto {}; struct Label {}; struct If {}; struct Loop {}; struct Break {}; struct Return {}; struct Kill {}; struct Unreachable {}; struct FunctionTag {}; struct Identity {}; struct Not {}; struct Or {}; struct SetVariable {}; struct SetIndirectBranchVariable {}; struct Variable {}; struct IndirectBranchCond {}; #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 26495) // Always initialize a member variable, expected in Statement #endif struct Statement : ListBaseHook { Statement(const Flow::Block* block_, Statement* up_) : block{block_}, up{up_}, type{StatementType::Code} {} Statement(Goto, Statement* cond_, Node label_, Statement* up_) : label{label_}, cond{cond_}, up{up_}, type{StatementType::Goto} {} Statement(Label, u32 id_, Statement* up_) : id{id_}, up{up_}, type{StatementType::Label} {} Statement(If, Statement* cond_, Tree&& children_, Statement* up_) : children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::If} {} Statement(Loop, Statement* cond_, Tree&& children_, Statement* up_) : children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::Loop} {} Statement(Break, Statement* cond_, Statement* up_) : cond{cond_}, up{up_}, type{StatementType::Break} {} Statement(Return, Statement* up_) : up{up_}, type{StatementType::Return} {} Statement(Kill, Statement* up_) : up{up_}, type{StatementType::Kill} {} Statement(Unreachable, Statement* up_) : up{up_}, type{StatementType::Unreachable} {} Statement(FunctionTag) : children{}, type{StatementType::Function} {} Statement(Identity, IR::Condition cond_, Statement* up_) : guest_cond{cond_}, up{up_}, type{StatementType::Identity} {} Statement(Not, Statement* op_, Statement* up_) : op{op_}, up{up_}, type{StatementType::Not} {} Statement(Or, Statement* op_a_, Statement* op_b_, Statement* up_) : op_a{op_a_}, op_b{op_b_}, up{up_}, type{StatementType::Or} {} Statement(SetVariable, u32 id_, Statement* op_, Statement* up_) : op{op_}, id{id_}, up{up_}, type{StatementType::SetVariable} {} Statement(SetIndirectBranchVariable, IR::Reg branch_reg_, s32 branch_offset_, Statement* up_) : branch_offset{branch_offset_}, branch_reg{branch_reg_}, up{up_}, type{StatementType::SetIndirectBranchVariable} {} Statement(Variable, u32 id_, Statement* up_) : id{id_}, up{up_}, type{StatementType::Variable} {} Statement(IndirectBranchCond, u32 location_, Statement* up_) : location{location_}, up{up_}, type{StatementType::IndirectBranchCond} {} ~Statement() { if (HasChildren(type)) { std::destroy_at(&children); } } union { const Flow::Block* block; Node label; Tree children; IR::Condition guest_cond; Statement* op; Statement* op_a; u32 location; s32 branch_offset; }; union { Statement* cond; Statement* op_b; u32 id; IR::Reg branch_reg; }; Statement* up{}; StatementType type; }; #ifdef _MSC_VER #pragma warning(pop) #endif std::string DumpExpr(const Statement* stmt) { switch (stmt->type) { case StatementType::Identity: return fmt::format("{}", stmt->guest_cond); case StatementType::Not: return fmt::format("!{}", DumpExpr(stmt->op)); case StatementType::Or: return fmt::format("{} || {}", DumpExpr(stmt->op_a), DumpExpr(stmt->op_b)); case StatementType::Variable: return fmt::format("goto_L{}", stmt->id); case StatementType::IndirectBranchCond: return fmt::format("(indirect_branch == {:x})", stmt->location); default: return "<invalid type>"; } } std::string DumpTree(const Tree& tree, u32 indentation = 0) { std::string ret; std::string indent(indentation, ' '); for (auto stmt = tree.begin(); stmt != tree.end(); ++stmt) { switch (stmt->type) { case StatementType::Code: ret += fmt::format("{} Block {:04x} -> {:04x} (0x{:016x});\n", indent, stmt->block->begin, stmt->block->end, reinterpret_cast<uintptr_t>(stmt->block)); break; case StatementType::Goto: ret += fmt::format("{} if ({}) goto L{};\n", indent, DumpExpr(stmt->cond), stmt->label->id); break; case StatementType::Label: ret += fmt::format("{}L{}:\n", indent, stmt->id); break; case StatementType::If: ret += fmt::format("{} if ({}) {{\n", indent, DumpExpr(stmt->cond)); ret += DumpTree(stmt->children, indentation + 4); ret += fmt::format("{} }}\n", indent); break; case StatementType::Loop: ret += fmt::format("{} do {{\n", indent); ret += DumpTree(stmt->children, indentation + 4); ret += fmt::format("{} }} while ({});\n", indent, DumpExpr(stmt->cond)); break; case StatementType::Break: ret += fmt::format("{} if ({}) break;\n", indent, DumpExpr(stmt->cond)); break; case StatementType::Return: ret += fmt::format("{} return;\n", indent); break; case StatementType::Kill: ret += fmt::format("{} kill;\n", indent); break; case StatementType::Unreachable: ret += fmt::format("{} unreachable;\n", indent); break; case StatementType::SetVariable: ret += fmt::format("{} goto_L{} = {};\n", indent, stmt->id, DumpExpr(stmt->op)); break; case StatementType::SetIndirectBranchVariable: ret += fmt::format("{} indirect_branch = {} + {};\n", indent, stmt->branch_reg, stmt->branch_offset); break; case StatementType::Function: case StatementType::Identity: case StatementType::Not: case StatementType::Or: case StatementType::Variable: case StatementType::IndirectBranchCond: throw LogicError("Statement can't be printed"); } } return ret; } void SanitizeNoBreaks(const Tree& tree) { if (std::ranges::find(tree, StatementType::Break, &Statement::type) != tree.end()) { throw NotImplementedException("Capturing statement with break nodes"); } } size_t Level(Node stmt) { size_t level{0}; Statement* node{stmt->up}; while (node) { ++level; node = node->up; } return level; } bool IsDirectlyRelated(Node goto_stmt, Node label_stmt) { const size_t goto_level{Level(goto_stmt)}; const size_t label_level{Level(label_stmt)}; size_t min_level; size_t max_level; Node min; Node max; if (label_level < goto_level) { min_level = label_level; max_level = goto_level; min = label_stmt; max = goto_stmt; } else { // goto_level < label_level min_level = goto_level; max_level = label_level; min = goto_stmt; max = label_stmt; } while (max_level > min_level) { --max_level; max = max->up; } return min->up == max->up; } bool IsIndirectlyRelated(Node goto_stmt, Node label_stmt) { return goto_stmt->up != label_stmt->up && !IsDirectlyRelated(goto_stmt, label_stmt); } [[maybe_unused]] bool AreSiblings(Node goto_stmt, Node label_stmt) noexcept { Node it{goto_stmt}; do { if (it == label_stmt) { return true; } --it; } while (it != goto_stmt->up->children.begin()); while (it != goto_stmt->up->children.end()) { if (it == label_stmt) { return true; } ++it; } return false; } Node SiblingFromNephew(Node uncle, Node nephew) noexcept { Statement* const parent{uncle->up}; Statement* it{&*nephew}; while (it->up != parent) { it = it->up; } return Tree::s_iterator_to(*it); } bool AreOrdered(Node left_sibling, Node right_sibling) noexcept { const Node end{right_sibling->up->children.end()}; for (auto it = right_sibling; it != end; ++it) { if (it == left_sibling) { return false; } } return true; } bool NeedsLift(Node goto_stmt, Node label_stmt) noexcept { const Node sibling{SiblingFromNephew(goto_stmt, label_stmt)}; return AreOrdered(sibling, goto_stmt); } class GotoPass { public: explicit GotoPass(Flow::CFG& cfg, ObjectPool<IR::Inst>& inst_pool_, ObjectPool<IR::Block>& block_pool_, ObjectPool<Statement>& stmt_pool) : inst_pool{inst_pool_}, block_pool{block_pool_}, pool{stmt_pool} { std::vector gotos{BuildTree(cfg)}; for (const Node& goto_stmt : gotos | std::views::reverse) { RemoveGoto(goto_stmt); } } Statement& RootStatement() noexcept { return root_stmt; } private: void RemoveGoto(Node goto_stmt) { // Force goto_stmt and label_stmt to be directly related const Node label_stmt{goto_stmt->label}; if (IsIndirectlyRelated(goto_stmt, label_stmt)) { // Move goto_stmt out using outward-movement transformation until it becomes // directly related to label_stmt while (!IsDirectlyRelated(goto_stmt, label_stmt)) { goto_stmt = MoveOutward(goto_stmt); } } // Force goto_stmt and label_stmt to be siblings if (IsDirectlyRelated(goto_stmt, label_stmt)) { const size_t label_level{Level(label_stmt)}; size_t goto_level{Level(goto_stmt)}; if (goto_level > label_level) { // Move goto_stmt out of its level using outward-movement transformations while (goto_level > label_level) { goto_stmt = MoveOutward(goto_stmt); --goto_level; } } else { // Level(goto_stmt) < Level(label_stmt) if (NeedsLift(goto_stmt, label_stmt)) { // Lift goto_stmt to above stmt containing label_stmt using goto-lifting // transformations goto_stmt = Lift(goto_stmt); } // Move goto_stmt into label_stmt's level using inward-movement transformation while (goto_level < label_level) { goto_stmt = MoveInward(goto_stmt); ++goto_level; } } } // Expensive operation: // if (!AreSiblings(goto_stmt, label_stmt)) { // throw LogicError("Goto is not a sibling with the label"); // } // goto_stmt and label_stmt are guaranteed to be siblings, eliminate if (std::next(goto_stmt) == label_stmt) { // Simply eliminate the goto if the label is next to it goto_stmt->up->children.erase(goto_stmt); } else if (AreOrdered(goto_stmt, label_stmt)) { // Eliminate goto_stmt with a conditional EliminateAsConditional(goto_stmt, label_stmt); } else { // Eliminate goto_stmt with a loop EliminateAsLoop(goto_stmt, label_stmt); } } std::vector<Node> BuildTree(Flow::CFG& cfg) { u32 label_id{0}; std::vector<Node> gotos; Flow::Function& first_function{cfg.Functions().front()}; BuildTree(cfg, first_function, label_id, gotos, root_stmt.children.end(), std::nullopt); return gotos; } void BuildTree(Flow::CFG& cfg, Flow::Function& function, u32& label_id, std::vector<Node>& gotos, Node function_insert_point, std::optional<Node> return_label) { Statement* const false_stmt{pool.Create(Identity{}, IR::Condition{false}, &root_stmt)}; Tree& root{root_stmt.children}; std::unordered_map<Flow::Block*, Node> local_labels; local_labels.reserve(function.blocks.size()); for (Flow::Block& block : function.blocks) { Statement* const label{pool.Create(Label{}, label_id, &root_stmt)}; const Node label_it{root.insert(function_insert_point, *label)}; local_labels.emplace(&block, label_it); ++label_id; } for (Flow::Block& block : function.blocks) { const Node label{local_labels.at(&block)}; // Insertion point const Node ip{std::next(label)}; // Reset goto variables before the first block and after its respective label const auto make_reset_variable{[&]() -> Statement& { return *pool.Create(SetVariable{}, label->id, false_stmt, &root_stmt); }}; root.push_front(make_reset_variable()); root.insert(ip, make_reset_variable()); root.insert(ip, *pool.Create(&block, &root_stmt)); switch (block.end_class) { case Flow::EndClass::Branch: { Statement* const always_cond{ pool.Create(Identity{}, IR::Condition{true}, &root_stmt)}; if (block.cond == IR::Condition{true}) { const Node true_label{local_labels.at(block.branch_true)}; gotos.push_back( root.insert(ip, *pool.Create(Goto{}, always_cond, true_label, &root_stmt))); } else if (block.cond == IR::Condition{false}) { const Node false_label{local_labels.at(block.branch_false)}; gotos.push_back(root.insert( ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt))); } else { const Node true_label{local_labels.at(block.branch_true)}; const Node false_label{local_labels.at(block.branch_false)}; Statement* const true_cond{pool.Create(Identity{}, block.cond, &root_stmt)}; gotos.push_back( root.insert(ip, *pool.Create(Goto{}, true_cond, true_label, &root_stmt))); gotos.push_back(root.insert( ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt))); } break; } case Flow::EndClass::IndirectBranch: root.insert(ip, *pool.Create(SetIndirectBranchVariable{}, block.branch_reg, block.branch_offset, &root_stmt)); for (const Flow::IndirectBranch& indirect : block.indirect_branches) { const Node indirect_label{local_labels.at(indirect.block)}; Statement* cond{ pool.Create(IndirectBranchCond{}, indirect.address, &root_stmt)}; Statement* goto_stmt{pool.Create(Goto{}, cond, indirect_label, &root_stmt)}; gotos.push_back(root.insert(ip, *goto_stmt)); } root.insert(ip, *pool.Create(Unreachable{}, &root_stmt)); break; case Flow::EndClass::Call: { Flow::Function& call{cfg.Functions()[block.function_call]}; const Node call_return_label{local_labels.at(block.return_block)}; BuildTree(cfg, call, label_id, gotos, ip, call_return_label); break; } case Flow::EndClass::Exit: root.insert(ip, *pool.Create(Return{}, &root_stmt)); break; case Flow::EndClass::Return: { Statement* const always_cond{pool.Create(Identity{}, block.cond, &root_stmt)}; auto goto_stmt{pool.Create(Goto{}, always_cond, return_label.value(), &root_stmt)}; gotos.push_back(root.insert(ip, *goto_stmt)); break; } case Flow::EndClass::Kill: root.insert(ip, *pool.Create(Kill{}, &root_stmt)); break; } } } void UpdateTreeUp(Statement* tree) { for (Statement& stmt : tree->children) { stmt.up = tree; } } void EliminateAsConditional(Node goto_stmt, Node label_stmt) { Tree& body{goto_stmt->up->children}; Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_stmt); Statement* const cond{pool.Create(Not{}, goto_stmt->cond, &root_stmt)}; Statement* const if_stmt{pool.Create(If{}, cond, std::move(if_body), goto_stmt->up)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); body.erase(goto_stmt); } void EliminateAsLoop(Node goto_stmt, Node label_stmt) { Tree& body{goto_stmt->up->children}; Tree loop_body; loop_body.splice(loop_body.begin(), body, label_stmt, goto_stmt); Statement* const cond{goto_stmt->cond}; Statement* const loop{pool.Create(Loop{}, cond, std::move(loop_body), goto_stmt->up)}; UpdateTreeUp(loop); body.insert(goto_stmt, *loop); body.erase(goto_stmt); } [[nodiscard]] Node MoveOutward(Node goto_stmt) { switch (goto_stmt->up->type) { case StatementType::If: return MoveOutwardIf(goto_stmt); case StatementType::Loop: return MoveOutwardLoop(goto_stmt); default: throw LogicError("Invalid outward movement"); } } [[nodiscard]] Node MoveInward(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const Node label{goto_stmt->label}; const Node label_nested_stmt{SiblingFromNephew(goto_stmt, label)}; const u32 label_id{label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)}; body.insert(goto_stmt, *set_var); Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_nested_stmt); Statement* const variable{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const neg_var{pool.Create(Not{}, variable, &root_stmt)}; if (!if_body.empty()) { Statement* const if_stmt{pool.Create(If{}, neg_var, std::move(if_body), parent)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); } body.erase(goto_stmt); switch (label_nested_stmt->type) { case StatementType::If: // Update nested if condition label_nested_stmt->cond = pool.Create(Or{}, variable, label_nested_stmt->cond, &root_stmt); break; case StatementType::Loop: break; default: throw LogicError("Invalid inward movement"); } Tree& nested_tree{label_nested_stmt->children}; Statement* const new_goto{pool.Create(Goto{}, variable, label, &*label_nested_stmt)}; return nested_tree.insert(nested_tree.begin(), *new_goto); } [[nodiscard]] Node Lift(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const Node label{goto_stmt->label}; const u32 label_id{label->id}; const Node label_nested_stmt{SiblingFromNephew(goto_stmt, label)}; Tree loop_body; loop_body.splice(loop_body.begin(), body, label_nested_stmt, goto_stmt); SanitizeNoBreaks(loop_body); Statement* const variable{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const loop_stmt{pool.Create(Loop{}, variable, std::move(loop_body), parent)}; UpdateTreeUp(loop_stmt); body.insert(goto_stmt, *loop_stmt); Statement* const new_goto{pool.Create(Goto{}, variable, label, loop_stmt)}; loop_stmt->children.push_front(*new_goto); const Node new_goto_node{loop_stmt->children.begin()}; Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_stmt->cond, loop_stmt)}; loop_stmt->children.push_back(*set_var); body.erase(goto_stmt); return new_goto_node; } Node MoveOutwardIf(Node goto_stmt) { const Node parent{Tree::s_iterator_to(*goto_stmt->up)}; Tree& body{parent->children}; const u32 label_id{goto_stmt->label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, &*parent)}; body.insert(goto_stmt, *set_goto_var); Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), body.end()); if_body.pop_front(); Statement* const cond{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const neg_cond{pool.Create(Not{}, cond, &root_stmt)}; Statement* const if_stmt{pool.Create(If{}, neg_cond, std::move(if_body), &*parent)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); body.erase(goto_stmt); Statement* const new_cond{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const new_goto{pool.Create(Goto{}, new_cond, goto_stmt->label, parent->up)}; Tree& parent_tree{parent->up->children}; return parent_tree.insert(std::next(parent), *new_goto); } Node MoveOutwardLoop(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const u32 label_id{goto_stmt->label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)}; Statement* const cond{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const break_stmt{pool.Create(Break{}, cond, parent)}; body.insert(goto_stmt, *set_goto_var); body.insert(goto_stmt, *break_stmt); body.erase(goto_stmt); const Node loop{Tree::s_iterator_to(*goto_stmt->up)}; Statement* const new_goto_cond{pool.Create(Variable{}, label_id, &root_stmt)}; Statement* const new_goto{pool.Create(Goto{}, new_goto_cond, goto_stmt->label, loop->up)}; Tree& parent_tree{loop->up->children}; return parent_tree.insert(std::next(loop), *new_goto); } ObjectPool<IR::Inst>& inst_pool; ObjectPool<IR::Block>& block_pool; ObjectPool<Statement>& pool; Statement root_stmt{FunctionTag{}}; }; [[nodiscard]] Statement* TryFindForwardBlock(Statement& stmt) { Tree& tree{stmt.up->children}; const Node end{tree.end()}; Node forward_node{std::next(Tree::s_iterator_to(stmt))}; while (forward_node != end && !HasChildren(forward_node->type)) { if (forward_node->type == StatementType::Code) { return &*forward_node; } ++forward_node; } return nullptr; } [[nodiscard]] IR::U1 VisitExpr(IR::IREmitter& ir, const Statement& stmt) { switch (stmt.type) { case StatementType::Identity: return ir.Condition(stmt.guest_cond); case StatementType::Not: return ir.LogicalNot(IR::U1{VisitExpr(ir, *stmt.op)}); case StatementType::Or: return ir.LogicalOr(VisitExpr(ir, *stmt.op_a), VisitExpr(ir, *stmt.op_b)); case StatementType::Variable: return ir.GetGotoVariable(stmt.id); case StatementType::IndirectBranchCond: return ir.IEqual(ir.GetIndirectBranchVariable(), ir.Imm32(stmt.location)); default: throw NotImplementedException("Statement type {}", stmt.type); } } class TranslatePass { public: TranslatePass(ObjectPool<IR::Inst>& inst_pool_, ObjectPool<IR::Block>& block_pool_, ObjectPool<Statement>& stmt_pool_, Environment& env_, Statement& root_stmt, IR::AbstractSyntaxList& syntax_list_) : stmt_pool{stmt_pool_}, inst_pool{inst_pool_}, block_pool{block_pool_}, env{env_}, syntax_list{syntax_list_} { Visit(root_stmt, nullptr, nullptr); IR::Block& first_block{*syntax_list.front().data.block}; IR::IREmitter ir = IR::IREmitter(first_block, first_block.begin()); ir.Prologue(); } private: void Visit(Statement& parent, IR::Block* break_block, IR::Block* fallthrough_block) { IR::Block* current_block{}; const auto ensure_block{[&] { if (current_block) { return; } current_block = block_pool.Create(inst_pool); auto& node{syntax_list.emplace_back()}; node.type = IR::AbstractSyntaxNode::Type::Block; node.data.block = current_block; }}; Tree& tree{parent.children}; for (auto it = tree.begin(); it != tree.end(); ++it) { Statement& stmt{*it}; switch (stmt.type) { case StatementType::Label: // Labels can be ignored break; case StatementType::Code: { ensure_block(); Translate(env, current_block, stmt.block->begin.Offset(), stmt.block->end.Offset()); break; } case StatementType::SetVariable: { ensure_block(); IR::IREmitter ir{*current_block}; ir.SetGotoVariable(stmt.id, VisitExpr(ir, *stmt.op)); break; } case StatementType::SetIndirectBranchVariable: { ensure_block(); IR::IREmitter ir{*current_block}; IR::U32 address{ir.IAdd(ir.GetReg(stmt.branch_reg), ir.Imm32(stmt.branch_offset))}; ir.SetIndirectBranchVariable(address); break; } case StatementType::If: { ensure_block(); IR::Block* const merge_block{MergeBlock(parent, stmt)}; // Implement if header block IR::IREmitter ir{*current_block}; const IR::U1 cond{ir.ConditionRef(VisitExpr(ir, *stmt.cond))}; const size_t if_node_index{syntax_list.size()}; syntax_list.emplace_back(); // Visit children const size_t then_block_index{syntax_list.size()}; Visit(stmt, break_block, merge_block); IR::Block* const then_block{syntax_list.at(then_block_index).data.block}; current_block->AddBranch(then_block); current_block->AddBranch(merge_block); current_block = merge_block; auto& if_node{syntax_list[if_node_index]}; if_node.type = IR::AbstractSyntaxNode::Type::If; if_node.data.if_node.cond = cond; if_node.data.if_node.body = then_block; if_node.data.if_node.merge = merge_block; auto& endif_node{syntax_list.emplace_back()}; endif_node.type = IR::AbstractSyntaxNode::Type::EndIf; endif_node.data.end_if.merge = merge_block; auto& merge{syntax_list.emplace_back()}; merge.type = IR::AbstractSyntaxNode::Type::Block; merge.data.block = merge_block; break; } case StatementType::Loop: { IR::Block* const loop_header_block{block_pool.Create(inst_pool)}; if (current_block) { current_block->AddBranch(loop_header_block); } auto& header_node{syntax_list.emplace_back()}; header_node.type = IR::AbstractSyntaxNode::Type::Block; header_node.data.block = loop_header_block; IR::Block* const continue_block{block_pool.Create(inst_pool)}; IR::Block* const merge_block{MergeBlock(parent, stmt)}; const size_t loop_node_index{syntax_list.size()}; syntax_list.emplace_back(); // Visit children const size_t body_block_index{syntax_list.size()}; Visit(stmt, merge_block, continue_block); // The continue block is located at the end of the loop IR::IREmitter ir{*continue_block}; const IR::U1 cond{ir.ConditionRef(VisitExpr(ir, *stmt.cond))}; IR::Block* const body_block{syntax_list.at(body_block_index).data.block}; loop_header_block->AddBranch(body_block); continue_block->AddBranch(loop_header_block); continue_block->AddBranch(merge_block); current_block = merge_block; auto& loop{syntax_list[loop_node_index]}; loop.type = IR::AbstractSyntaxNode::Type::Loop; loop.data.loop.body = body_block; loop.data.loop.continue_block = continue_block; loop.data.loop.merge = merge_block; auto& continue_block_node{syntax_list.emplace_back()}; continue_block_node.type = IR::AbstractSyntaxNode::Type::Block; continue_block_node.data.block = continue_block; auto& repeat{syntax_list.emplace_back()}; repeat.type = IR::AbstractSyntaxNode::Type::Repeat; repeat.data.repeat.cond = cond; repeat.data.repeat.loop_header = loop_header_block; repeat.data.repeat.merge = merge_block; auto& merge{syntax_list.emplace_back()}; merge.type = IR::AbstractSyntaxNode::Type::Block; merge.data.block = merge_block; break; } case StatementType::Break: { ensure_block(); IR::Block* const skip_block{MergeBlock(parent, stmt)}; IR::IREmitter ir{*current_block}; const IR::U1 cond{ir.ConditionRef(VisitExpr(ir, *stmt.cond))}; current_block->AddBranch(break_block); current_block->AddBranch(skip_block); current_block = skip_block; auto& break_node{syntax_list.emplace_back()}; break_node.type = IR::AbstractSyntaxNode::Type::Break; break_node.data.break_node.cond = cond; break_node.data.break_node.merge = break_block; break_node.data.break_node.skip = skip_block; auto& merge{syntax_list.emplace_back()}; merge.type = IR::AbstractSyntaxNode::Type::Block; merge.data.block = skip_block; break; } case StatementType::Return: { ensure_block(); IR::IREmitter{*current_block}.Epilogue(); current_block = nullptr; syntax_list.emplace_back().type = IR::AbstractSyntaxNode::Type::Return; break; } case StatementType::Kill: { ensure_block(); IR::Block* demote_block{MergeBlock(parent, stmt)}; IR::IREmitter{*current_block}.DemoteToHelperInvocation(); current_block->AddBranch(demote_block); current_block = demote_block; auto& merge{syntax_list.emplace_back()}; merge.type = IR::AbstractSyntaxNode::Type::Block; merge.data.block = demote_block; break; } case StatementType::Unreachable: { ensure_block(); current_block = nullptr; syntax_list.emplace_back().type = IR::AbstractSyntaxNode::Type::Unreachable; break; } default: throw NotImplementedException("Statement type {}", stmt.type); } } if (current_block) { if (fallthrough_block) { current_block->AddBranch(fallthrough_block); } else { syntax_list.emplace_back().type = IR::AbstractSyntaxNode::Type::Unreachable; } } } IR::Block* MergeBlock(Statement& parent, Statement& stmt) { Statement* merge_stmt{TryFindForwardBlock(stmt)}; if (!merge_stmt) { // Create a merge block we can visit later merge_stmt = stmt_pool.Create(&dummy_flow_block, &parent); parent.children.insert(std::next(Tree::s_iterator_to(stmt)), *merge_stmt); } return block_pool.Create(inst_pool); } ObjectPool<Statement>& stmt_pool; ObjectPool<IR::Inst>& inst_pool; ObjectPool<IR::Block>& block_pool; Environment& env; IR::AbstractSyntaxList& syntax_list; // TODO: Make this constexpr when std::vector is constexpr const Flow::Block dummy_flow_block; }; } // Anonymous namespace IR::AbstractSyntaxList BuildASL(ObjectPool<IR::Inst>& inst_pool, ObjectPool<IR::Block>& block_pool, Environment& env, Flow::CFG& cfg) { ObjectPool<Statement> stmt_pool{64}; GotoPass goto_pass{cfg, inst_pool, block_pool, stmt_pool}; Statement& root{goto_pass.RootStatement()}; IR::AbstractSyntaxList syntax_list; TranslatePass{inst_pool, block_pool, stmt_pool, env, root, syntax_list}; return syntax_list; } } // namespace Shader::Maxwell