yuzu/src/video_core/renderer_vulkan/vk_buffer_cache.cpp
ReinUsesLisp 35df1d1864 vk_staging_buffer_pool: Add stream buffer for small uploads
This uses a ring buffer similar to OpenGL's stream buffer for small
uploads. This stops us from allocating several small buffers, reducing
memory fragmentation and cache locality.

It uses dedicated allocations when possible.
2021-02-13 02:17:24 -03:00

279 lines
12 KiB
C++

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cstring>
#include <span>
#include <vector>
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
namespace {
VkBufferCopy MakeBufferCopy(const VideoCommon::BufferCopy& copy) {
return VkBufferCopy{
.srcOffset = copy.src_offset,
.dstOffset = copy.dst_offset,
.size = copy.size,
};
}
VkIndexType IndexTypeFromNumElements(const Device& device, u32 num_elements) {
if (num_elements <= 0xff && device.IsExtIndexTypeUint8Supported()) {
return VK_INDEX_TYPE_UINT8_EXT;
}
if (num_elements <= 0xffff) {
return VK_INDEX_TYPE_UINT16;
}
return VK_INDEX_TYPE_UINT32;
}
size_t BytesPerIndex(VkIndexType index_type) {
switch (index_type) {
case VK_INDEX_TYPE_UINT8_EXT:
return 1;
case VK_INDEX_TYPE_UINT16:
return 2;
case VK_INDEX_TYPE_UINT32:
return 4;
default:
UNREACHABLE_MSG("Invalid index type={}", index_type);
return 1;
}
}
template <typename T>
std::array<T, 6> MakeQuadIndices(u32 quad, u32 first) {
std::array<T, 6> indices{0, 1, 2, 0, 2, 3};
std::ranges::transform(indices, indices.begin(),
[quad, first](u32 index) { return first + index + quad * 4; });
return indices;
}
} // Anonymous namespace
Buffer::Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params) {}
Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
VAddr cpu_addr_, u64 size_bytes_)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(rasterizer_, cpu_addr_, size_bytes_) {
buffer = runtime.device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = SizeBytes(),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
if (runtime.device.HasDebuggingToolAttached()) {
buffer.SetObjectNameEXT(fmt::format("Buffer 0x{:x}", CpuAddr()).c_str());
}
commit = runtime.memory_allocator.Commit(buffer, MemoryUsage::DeviceLocal);
}
BufferCacheRuntime::BufferCacheRuntime(const Device& device_, MemoryAllocator& memory_allocator_,
VKScheduler& scheduler_, StagingBufferPool& staging_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_,
VKDescriptorPool& descriptor_pool)
: device{device_}, memory_allocator{memory_allocator_}, scheduler{scheduler_},
staging_pool{staging_pool_}, update_descriptor_queue{update_descriptor_queue_},
uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
quad_index_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue) {}
StagingBufferRef BufferCacheRuntime::UploadStagingBuffer(size_t size) {
return staging_pool.Request(size, MemoryUsage::Upload);
}
StagingBufferRef BufferCacheRuntime::DownloadStagingBuffer(size_t size) {
return staging_pool.Request(size, MemoryUsage::Download);
}
void BufferCacheRuntime::Finish() {
scheduler.Finish();
}
void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
std::span<const VideoCommon::BufferCopy> copies) {
static constexpr VkMemoryBarrier READ_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
};
static constexpr VkMemoryBarrier WRITE_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
// Measuring a popular game, this number never exceeds the specified size once data is warmed up
boost::container::small_vector<VkBufferCopy, 3> vk_copies(copies.size());
std::ranges::transform(copies, vk_copies.begin(), MakeBufferCopy);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer, dst_buffer, vk_copies](vk::CommandBuffer cmdbuf) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, READ_BARRIER);
cmdbuf.CopyBuffer(src_buffer, dst_buffer, vk_copies);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, WRITE_BARRIER);
});
}
void BufferCacheRuntime::BindIndexBuffer(PrimitiveTopology topology, IndexFormat index_format,
u32 base_vertex, u32 num_indices, VkBuffer buffer,
u32 offset, [[maybe_unused]] u32 size) {
VkIndexType vk_index_type = MaxwellToVK::IndexFormat(index_format);
VkDeviceSize vk_offset = offset;
if (topology == PrimitiveTopology::Quads) {
vk_index_type = VK_INDEX_TYPE_UINT32;
std::tie(buffer, vk_offset) =
quad_index_pass.Assemble(index_format, num_indices, base_vertex, buffer, offset);
} else if (vk_index_type == VK_INDEX_TYPE_UINT8_EXT && !device.IsExtIndexTypeUint8Supported()) {
vk_index_type = VK_INDEX_TYPE_UINT16;
std::tie(buffer, vk_offset) = uint8_pass.Assemble(num_indices, buffer, offset);
}
scheduler.Record([buffer, vk_offset, vk_index_type](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(buffer, vk_offset, vk_index_type);
});
}
void BufferCacheRuntime::BindQuadArrayIndexBuffer(u32 first, u32 count) {
ReserveQuadArrayLUT(first + count, true);
// The LUT has the indices 0, 1, 2, and 3 copied as an array
// To apply these 'first' offsets we can apply an offset based on the modulus.
const VkIndexType index_type = quad_array_lut_index_type;
const size_t sub_first_offset = static_cast<size_t>(first % 4) * (current_num_indices / 4);
const size_t offset = (sub_first_offset + first / 4) * 6ULL * BytesPerIndex(index_type);
scheduler.Record([buffer = *quad_array_lut, index_type, offset](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(buffer, offset, index_type);
});
}
void BufferCacheRuntime::BindVertexBuffer(u32 index, VkBuffer buffer, u32 offset, u32 size,
u32 stride) {
if (device.IsExtExtendedDynamicStateSupported()) {
scheduler.Record([index, buffer, offset, size, stride](vk::CommandBuffer cmdbuf) {
const VkDeviceSize vk_offset = offset;
const VkDeviceSize vk_size = buffer != VK_NULL_HANDLE ? size : VK_WHOLE_SIZE;
const VkDeviceSize vk_stride = stride;
cmdbuf.BindVertexBuffers2EXT(index, 1, &buffer, &vk_offset, &vk_size, &vk_stride);
});
} else {
scheduler.Record([index, buffer, offset](vk::CommandBuffer cmdbuf) {
cmdbuf.BindVertexBuffer(index, buffer, offset);
});
}
}
void BufferCacheRuntime::BindTransformFeedbackBuffer(u32 index, VkBuffer buffer, u32 offset,
u32 size) {
if (!device.IsExtTransformFeedbackSupported()) {
// Already logged in the rasterizer
return;
}
scheduler.Record([index, buffer, offset, size](vk::CommandBuffer cmdbuf) {
const VkDeviceSize vk_offset = offset;
const VkDeviceSize vk_size = size;
cmdbuf.BindTransformFeedbackBuffersEXT(index, 1, &buffer, &vk_offset, &vk_size);
});
}
void BufferCacheRuntime::BindBuffer(VkBuffer buffer, u32 offset, u32 size) {
update_descriptor_queue.AddBuffer(buffer, offset, size);
}
void BufferCacheRuntime::ReserveQuadArrayLUT(u32 num_indices, bool wait_for_idle) {
if (num_indices <= current_num_indices) {
return;
}
if (wait_for_idle) {
scheduler.Finish();
}
current_num_indices = num_indices;
quad_array_lut_index_type = IndexTypeFromNumElements(device, num_indices);
const u32 num_quads = num_indices / 4;
const u32 num_triangle_indices = num_quads * 6;
const u32 num_first_offset_copies = 4;
const size_t bytes_per_index = BytesPerIndex(quad_array_lut_index_type);
const size_t size_bytes = num_triangle_indices * bytes_per_index * num_first_offset_copies;
quad_array_lut = device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = size_bytes,
.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
if (device.HasDebuggingToolAttached()) {
quad_array_lut.SetObjectNameEXT("Quad LUT");
}
quad_array_lut_commit = memory_allocator.Commit(quad_array_lut, MemoryUsage::DeviceLocal);
const StagingBufferRef staging = staging_pool.Request(size_bytes, MemoryUsage::Upload);
u8* staging_data = staging.mapped_span.data();
const size_t quad_size = bytes_per_index * 6;
for (u32 first = 0; first < num_first_offset_copies; ++first) {
for (u32 quad = 0; quad < num_quads; ++quad) {
switch (quad_array_lut_index_type) {
case VK_INDEX_TYPE_UINT8_EXT:
std::memcpy(staging_data, MakeQuadIndices<u8>(quad, first).data(), quad_size);
break;
case VK_INDEX_TYPE_UINT16:
std::memcpy(staging_data, MakeQuadIndices<u16>(quad, first).data(), quad_size);
break;
case VK_INDEX_TYPE_UINT32:
std::memcpy(staging_data, MakeQuadIndices<u32>(quad, first).data(), quad_size);
break;
default:
UNREACHABLE();
break;
}
staging_data += quad_size;
}
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer = staging.buffer, src_offset = staging.offset,
dst_buffer = *quad_array_lut, size_bytes](vk::CommandBuffer cmdbuf) {
const VkBufferCopy copy{
.srcOffset = src_offset,
.dstOffset = 0,
.size = size_bytes,
};
const VkBufferMemoryBarrier write_barrier{
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_INDEX_READ_BIT,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = dst_buffer,
.offset = 0,
.size = size_bytes,
};
cmdbuf.CopyBuffer(src_buffer, dst_buffer, copy);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
0, write_barrier);
});
}
} // namespace Vulkan