yuzu/src/core/hle/kernel/k_memory_layout.board.nintendo_nx.cpp
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

201 lines
10 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "common/literals.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_system_control.h"
#include "core/hle/kernel/k_trace.h"
namespace Kernel {
namespace {
using namespace Common::Literals;
constexpr size_t CarveoutAlignment = 0x20000;
constexpr size_t CarveoutSizeMax = (512_MiB) - CarveoutAlignment;
bool SetupPowerManagementControllerMemoryRegion(KMemoryLayout& memory_layout) {
// Above firmware 2.0.0, the PMC is not mappable.
return memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x7000E000, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap) &&
memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x7000E400, 0xC00,
KMemoryRegionType_PowerManagementController | KMemoryRegionAttr_NoUserMap);
}
void InsertPoolPartitionRegionIntoBothTrees(KMemoryLayout& memory_layout, size_t start, size_t size,
KMemoryRegionType phys_type,
KMemoryRegionType virt_type, u32& cur_attr) {
const u32 attr = cur_attr++;
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(start, size,
static_cast<u32>(phys_type), attr));
const KMemoryRegion* phys = memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
static_cast<u32>(phys_type), attr);
ASSERT(phys != nullptr);
ASSERT(phys->GetEndAddress() != 0);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(phys->GetPairAddress(), size,
static_cast<u32>(virt_type), attr));
}
} // namespace
namespace Init {
void SetupDevicePhysicalMemoryRegions(KMemoryLayout& memory_layout) {
ASSERT(SetupPowerManagementControllerMemoryRegion(memory_layout));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x70019000, 0x1000, KMemoryRegionType_MemoryController | KMemoryRegionAttr_NoUserMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x7001C000, 0x1000, KMemoryRegionType_MemoryController0 | KMemoryRegionAttr_NoUserMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x7001D000, 0x1000, KMemoryRegionType_MemoryController1 | KMemoryRegionAttr_NoUserMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x50040000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x50041000, 0x1000,
KMemoryRegionType_InterruptDistributor | KMemoryRegionAttr_ShouldKernelMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x50042000, 0x1000,
KMemoryRegionType_InterruptCpuInterface | KMemoryRegionAttr_ShouldKernelMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x50043000, 0x1D000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
// Map IRAM unconditionally, to support debug-logging-to-iram build config.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x40000000, 0x40000, KMemoryRegionType_LegacyLpsIram | KMemoryRegionAttr_ShouldKernelMap));
// Above firmware 2.0.0, prevent mapping the bpmp exception vectors or the ipatch region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x6000F000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
0x6001DC00, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
}
void SetupDramPhysicalMemoryRegions(KMemoryLayout& memory_layout) {
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
const PAddr physical_memory_base_address =
KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
// Insert blocks into the tree.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
physical_memory_base_address, intended_memory_size, KMemoryRegionType_Dram));
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
physical_memory_base_address, ReservedEarlyDramSize, KMemoryRegionType_DramReservedEarly));
// Insert the KTrace block at the end of Dram, if KTrace is enabled.
static_assert(!IsKTraceEnabled || KTraceBufferSize > 0);
if constexpr (IsKTraceEnabled) {
const PAddr ktrace_buffer_phys_addr =
physical_memory_base_address + intended_memory_size - KTraceBufferSize;
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
ktrace_buffer_phys_addr, KTraceBufferSize, KMemoryRegionType_KernelTraceBuffer));
}
}
void SetupPoolPartitionMemoryRegions(KMemoryLayout& memory_layout) {
// Start by identifying the extents of the DRAM memory region.
const auto dram_extents = memory_layout.GetMainMemoryPhysicalExtents();
ASSERT(dram_extents.GetEndAddress() != 0);
// Determine the end of the pool region.
const u64 pool_end = dram_extents.GetEndAddress() - KTraceBufferSize;
// Find the start of the kernel DRAM region.
const KMemoryRegion* kernel_dram_region =
memory_layout.GetPhysicalMemoryRegionTree().FindFirstDerived(
KMemoryRegionType_DramKernelBase);
ASSERT(kernel_dram_region != nullptr);
const u64 kernel_dram_start = kernel_dram_region->GetAddress();
ASSERT(Common::IsAligned(kernel_dram_start, CarveoutAlignment));
// Find the start of the pool partitions region.
const KMemoryRegion* pool_partitions_region =
memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
KMemoryRegionType_DramPoolPartition, 0);
ASSERT(pool_partitions_region != nullptr);
const u64 pool_partitions_start = pool_partitions_region->GetAddress();
// Setup the pool partition layouts.
// On 5.0.0+, setup modern 4-pool-partition layout.
// Get Application and Applet pool sizes.
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
const size_t unsafe_system_pool_min_size =
KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
// Decide on starting addresses for our pools.
const u64 application_pool_start = pool_end - application_pool_size;
const u64 applet_pool_start = application_pool_start - applet_pool_size;
const u64 unsafe_system_pool_start = std::min(
kernel_dram_start + CarveoutSizeMax,
Common::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
// We want to arrange application pool depending on where the middle of dram is.
const u64 dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
u32 cur_pool_attr = 0;
size_t total_overhead_size = 0;
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(
memory_layout, application_pool_start, application_pool_size,
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
cur_pool_attr);
total_overhead_size +=
KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size =
application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(
memory_layout, application_pool_start, first_application_pool_size,
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(
memory_layout, dram_midpoint, second_application_pool_size,
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
cur_pool_attr);
total_overhead_size +=
KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
total_overhead_size +=
KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
}
// Insert the applet pool.
InsertPoolPartitionRegionIntoBothTrees(memory_layout, applet_pool_start, applet_pool_size,
KMemoryRegionType_DramAppletPool,
KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
// Insert the nonsecure system pool.
InsertPoolPartitionRegionIntoBothTrees(
memory_layout, unsafe_system_pool_start, unsafe_system_pool_size,
KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool,
cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
// Insert the pool management region.
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(
(unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
const u64 pool_management_start = unsafe_system_pool_start - total_overhead_size;
const size_t pool_management_size = total_overhead_size;
u32 pool_management_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(
memory_layout, pool_management_start, pool_management_size,
KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement,
pool_management_attr);
// Insert the system pool.
const u64 system_pool_size = pool_management_start - pool_partitions_start;
InsertPoolPartitionRegionIntoBothTrees(memory_layout, pool_partitions_start, system_pool_size,
KMemoryRegionType_DramSystemPool,
KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
}
} // namespace Init
} // namespace Kernel