yuzu/src/core/file_sys/cheat_engine.cpp
Lioncash b26481c94b core/cheat_engine: Make MemoryReadImpl and MemoryWriteImpl internally linked
These don't need to be visible outside of the translation unit, so they
can be enclosed within an anonymous namespace.
2019-03-24 18:34:42 -04:00

492 lines
17 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <locale>
#include "common/hex_util.h"
#include "common/microprofile.h"
#include "common/swap.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/file_sys/cheat_engine.h"
#include "core/hle/kernel/process.h"
#include "core/hle/service/hid/controllers/npad.h"
#include "core/hle/service/hid/hid.h"
#include "core/hle/service/sm/sm.h"
namespace FileSys {
constexpr s64 CHEAT_ENGINE_TICKS = static_cast<s64>(Core::Timing::BASE_CLOCK_RATE / 60);
constexpr u32 KEYPAD_BITMASK = 0x3FFFFFF;
u64 Cheat::Address() const {
u64 out;
std::memcpy(&out, raw.data(), sizeof(u64));
return Common::swap64(out) & 0xFFFFFFFFFF;
}
u64 Cheat::ValueWidth(u64 offset) const {
return Value(offset, width);
}
u64 Cheat::Value(u64 offset, u64 width) const {
u64 out;
std::memcpy(&out, raw.data() + offset, sizeof(u64));
out = Common::swap64(out);
if (width == 8)
return out;
return out & ((1ull << (width * CHAR_BIT)) - 1);
}
u32 Cheat::KeypadValue() const {
u32 out;
std::memcpy(&out, raw.data(), sizeof(u32));
return Common::swap32(out) & 0x0FFFFFFF;
}
void CheatList::SetMemoryParameters(VAddr main_begin, VAddr heap_begin, VAddr main_end,
VAddr heap_end, MemoryWriter writer, MemoryReader reader) {
this->main_region_begin = main_begin;
this->main_region_end = main_end;
this->heap_region_begin = heap_begin;
this->heap_region_end = heap_end;
this->writer = writer;
this->reader = reader;
}
MICROPROFILE_DEFINE(Cheat_Engine, "Add-Ons", "Cheat Engine", MP_RGB(70, 200, 70));
void CheatList::Execute() {
MICROPROFILE_SCOPE(Cheat_Engine);
std::fill(scratch.begin(), scratch.end(), 0);
in_standard = false;
for (std::size_t i = 0; i < master_list.size(); ++i) {
LOG_DEBUG(Common_Filesystem, "Executing block #{:08X} ({})", i, master_list[i].first);
current_block = i;
ExecuteBlock(master_list[i].second);
}
in_standard = true;
for (std::size_t i = 0; i < standard_list.size(); ++i) {
LOG_DEBUG(Common_Filesystem, "Executing block #{:08X} ({})", i, standard_list[i].first);
current_block = i;
ExecuteBlock(standard_list[i].second);
}
}
CheatList::CheatList(const Core::System& system_, ProgramSegment master, ProgramSegment standard)
: master_list{std::move(master)}, standard_list{std::move(standard)}, system{&system_} {}
bool CheatList::EvaluateConditional(const Cheat& cheat) const {
using ComparisonFunction = bool (*)(u64, u64);
constexpr std::array<ComparisonFunction, 6> comparison_functions{
[](u64 a, u64 b) { return a > b; }, [](u64 a, u64 b) { return a >= b; },
[](u64 a, u64 b) { return a < b; }, [](u64 a, u64 b) { return a <= b; },
[](u64 a, u64 b) { return a == b; }, [](u64 a, u64 b) { return a != b; },
};
if (cheat.type == CodeType::ConditionalInput) {
const auto applet_resource =
system->ServiceManager().GetService<Service::HID::Hid>("hid")->GetAppletResource();
if (applet_resource == nullptr) {
LOG_WARNING(
Common_Filesystem,
"Attempted to evaluate input conditional, but applet resource is not initialized!");
return false;
}
const auto press_state =
applet_resource
->GetController<Service::HID::Controller_NPad>(Service::HID::HidController::NPad)
.GetAndResetPressState();
return ((press_state & cheat.KeypadValue()) & KEYPAD_BITMASK) != 0;
}
ASSERT(cheat.type == CodeType::Conditional);
const auto offset =
cheat.memory_type == MemoryType::MainNSO ? main_region_begin : heap_region_begin;
ASSERT(static_cast<u8>(cheat.comparison_op.Value()) < 6);
auto* function = comparison_functions[static_cast<u8>(cheat.comparison_op.Value())];
const auto addr = cheat.Address() + offset;
return function(reader(cheat.width, SanitizeAddress(addr)), cheat.ValueWidth(8));
}
void CheatList::ProcessBlockPairs(const Block& block) {
block_pairs.clear();
u64 scope = 0;
std::map<u64, u64> pairs;
for (std::size_t i = 0; i < block.size(); ++i) {
const auto& cheat = block[i];
switch (cheat.type) {
case CodeType::Conditional:
case CodeType::ConditionalInput:
pairs.insert_or_assign(scope, i);
++scope;
break;
case CodeType::EndConditional: {
--scope;
const auto idx = pairs.at(scope);
block_pairs.insert_or_assign(idx, i);
break;
}
case CodeType::Loop: {
if (cheat.end_of_loop) {
--scope;
const auto idx = pairs.at(scope);
block_pairs.insert_or_assign(idx, i);
} else {
pairs.insert_or_assign(scope, i);
++scope;
}
break;
}
}
}
}
void CheatList::WriteImmediate(const Cheat& cheat) {
const auto offset =
cheat.memory_type == MemoryType::MainNSO ? main_region_begin : heap_region_begin;
const auto& register_3 = scratch.at(cheat.register_3);
const auto addr = cheat.Address() + offset + register_3;
LOG_DEBUG(Common_Filesystem, "writing value={:016X} to addr={:016X}", addr,
cheat.Value(8, cheat.width));
writer(cheat.width, SanitizeAddress(addr), cheat.ValueWidth(8));
}
void CheatList::BeginConditional(const Cheat& cheat) {
if (EvaluateConditional(cheat)) {
return;
}
const auto iter = block_pairs.find(current_index);
ASSERT(iter != block_pairs.end());
current_index = iter->second - 1;
}
void CheatList::EndConditional(const Cheat& cheat) {
LOG_DEBUG(Common_Filesystem, "Ending conditional block.");
}
void CheatList::Loop(const Cheat& cheat) {
if (cheat.end_of_loop.Value())
ASSERT(!cheat.end_of_loop.Value());
auto& register_3 = scratch.at(cheat.register_3);
const auto iter = block_pairs.find(current_index);
ASSERT(iter != block_pairs.end());
ASSERT(iter->first < iter->second);
const s32 initial_value = static_cast<s32>(cheat.Value(4, sizeof(s32)));
for (s32 i = initial_value; i >= 0; --i) {
register_3 = static_cast<u64>(i);
for (std::size_t c = iter->first + 1; c < iter->second; ++c) {
current_index = c;
ExecuteSingleCheat(
(in_standard ? standard_list : master_list)[current_block].second[c]);
}
}
current_index = iter->second;
}
void CheatList::LoadImmediate(const Cheat& cheat) {
auto& register_3 = scratch.at(cheat.register_3);
LOG_DEBUG(Common_Filesystem, "setting register={:01X} equal to value={:016X}", cheat.register_3,
cheat.Value(4, 8));
register_3 = cheat.Value(4, 8);
}
void CheatList::LoadIndexed(const Cheat& cheat) {
const auto offset =
cheat.memory_type == MemoryType::MainNSO ? main_region_begin : heap_region_begin;
auto& register_3 = scratch.at(cheat.register_3);
const auto addr = (cheat.load_from_register.Value() ? register_3 : offset) + cheat.Address();
LOG_DEBUG(Common_Filesystem, "writing indexed value to register={:01X}, addr={:016X}",
cheat.register_3, addr);
register_3 = reader(cheat.width, SanitizeAddress(addr));
}
void CheatList::StoreIndexed(const Cheat& cheat) {
const auto& register_3 = scratch.at(cheat.register_3);
const auto addr =
register_3 + (cheat.add_additional_register.Value() ? scratch.at(cheat.register_6) : 0);
LOG_DEBUG(Common_Filesystem, "writing value={:016X} to addr={:016X}",
cheat.Value(4, cheat.width), addr);
writer(cheat.width, SanitizeAddress(addr), cheat.ValueWidth(4));
}
void CheatList::RegisterArithmetic(const Cheat& cheat) {
using ArithmeticFunction = u64 (*)(u64, u64);
constexpr std::array<ArithmeticFunction, 5> arithmetic_functions{
[](u64 a, u64 b) { return a + b; }, [](u64 a, u64 b) { return a - b; },
[](u64 a, u64 b) { return a * b; }, [](u64 a, u64 b) { return a << b; },
[](u64 a, u64 b) { return a >> b; },
};
using ArithmeticOverflowCheck = bool (*)(u64, u64);
constexpr std::array<ArithmeticOverflowCheck, 5> arithmetic_overflow_checks{
[](u64 a, u64 b) { return a > (std::numeric_limits<u64>::max() - b); }, // a + b
[](u64 a, u64 b) { return a > (std::numeric_limits<u64>::max() + b); }, // a - b
[](u64 a, u64 b) { return a > (std::numeric_limits<u64>::max() / b); }, // a * b
[](u64 a, u64 b) { return b >= 64 || (a & ~((1ull << (64 - b)) - 1)) != 0; }, // a << b
[](u64 a, u64 b) { return b >= 64 || (a & ((1ull << b) - 1)) != 0; }, // a >> b
};
static_assert(sizeof(arithmetic_functions) == sizeof(arithmetic_overflow_checks),
"Missing or have extra arithmetic overflow checks compared to functions!");
auto& register_3 = scratch.at(cheat.register_3);
ASSERT(static_cast<u8>(cheat.arithmetic_op.Value()) < 5);
auto* function = arithmetic_functions[static_cast<u8>(cheat.arithmetic_op.Value())];
auto* overflow_function =
arithmetic_overflow_checks[static_cast<u8>(cheat.arithmetic_op.Value())];
LOG_DEBUG(Common_Filesystem, "performing arithmetic with register={:01X}, value={:016X}",
cheat.register_3, cheat.ValueWidth(4));
if (overflow_function(register_3, cheat.ValueWidth(4))) {
LOG_WARNING(Common_Filesystem,
"overflow will occur when performing arithmetic operation={:02X} with operands "
"a={:016X}, b={:016X}!",
static_cast<u8>(cheat.arithmetic_op.Value()), register_3, cheat.ValueWidth(4));
}
register_3 = function(register_3, cheat.ValueWidth(4));
}
void CheatList::BeginConditionalInput(const Cheat& cheat) {
if (EvaluateConditional(cheat))
return;
const auto iter = block_pairs.find(current_index);
ASSERT(iter != block_pairs.end());
current_index = iter->second - 1;
}
VAddr CheatList::SanitizeAddress(VAddr in) const {
if ((in < main_region_begin || in >= main_region_end) &&
(in < heap_region_begin || in >= heap_region_end)) {
LOG_ERROR(Common_Filesystem,
"Cheat attempting to access memory at invalid address={:016X}, if this persists, "
"the cheat may be incorrect. However, this may be normal early in execution if "
"the game has not properly set up yet.",
in);
return 0; ///< Invalid addresses will hard crash
}
return in;
}
void CheatList::ExecuteSingleCheat(const Cheat& cheat) {
using CheatOperationFunction = void (CheatList::*)(const Cheat&);
constexpr std::array<CheatOperationFunction, 9> cheat_operation_functions{
&CheatList::WriteImmediate, &CheatList::BeginConditional,
&CheatList::EndConditional, &CheatList::Loop,
&CheatList::LoadImmediate, &CheatList::LoadIndexed,
&CheatList::StoreIndexed, &CheatList::RegisterArithmetic,
&CheatList::BeginConditionalInput,
};
const auto index = static_cast<u8>(cheat.type.Value());
ASSERT(index < sizeof(cheat_operation_functions));
const auto op = cheat_operation_functions[index];
(this->*op)(cheat);
}
void CheatList::ExecuteBlock(const Block& block) {
encountered_loops.clear();
ProcessBlockPairs(block);
for (std::size_t i = 0; i < block.size(); ++i) {
current_index = i;
ExecuteSingleCheat(block[i]);
i = current_index;
}
}
CheatParser::~CheatParser() = default;
CheatList CheatParser::MakeCheatList(const Core::System& system, CheatList::ProgramSegment master,
CheatList::ProgramSegment standard) const {
return {system, std::move(master), std::move(standard)};
}
TextCheatParser::~TextCheatParser() = default;
CheatList TextCheatParser::Parse(const Core::System& system, const std::vector<u8>& data) const {
std::stringstream ss;
ss.write(reinterpret_cast<const char*>(data.data()), data.size());
std::vector<std::string> lines;
std::string stream_line;
while (std::getline(ss, stream_line)) {
// Remove a trailing \r
if (!stream_line.empty() && stream_line.back() == '\r')
stream_line.pop_back();
lines.push_back(std::move(stream_line));
}
CheatList::ProgramSegment master_list;
CheatList::ProgramSegment standard_list;
for (std::size_t i = 0; i < lines.size(); ++i) {
auto line = lines[i];
if (!line.empty() && (line[0] == '[' || line[0] == '{')) {
const auto master = line[0] == '{';
const auto begin = master ? line.find('{') : line.find('[');
const auto end = master ? line.rfind('}') : line.rfind(']');
ASSERT(begin != std::string::npos && end != std::string::npos);
const std::string patch_name{line.begin() + begin + 1, line.begin() + end};
CheatList::Block block{};
while (i < lines.size() - 1) {
line = lines[++i];
if (!line.empty() && (line[0] == '[' || line[0] == '{')) {
--i;
break;
}
if (line.size() < 8)
continue;
Cheat out{};
out.raw = ParseSingleLineCheat(line);
block.push_back(out);
}
(master ? master_list : standard_list).emplace_back(patch_name, block);
}
}
return MakeCheatList(system, master_list, standard_list);
}
std::array<u8, 16> TextCheatParser::ParseSingleLineCheat(const std::string& line) const {
std::array<u8, 16> out{};
if (line.size() < 8)
return out;
const auto word1 = Common::HexStringToArray<sizeof(u32)>(std::string_view{line.data(), 8});
std::memcpy(out.data(), word1.data(), sizeof(u32));
if (line.size() < 17 || line[8] != ' ')
return out;
const auto word2 = Common::HexStringToArray<sizeof(u32)>(std::string_view{line.data() + 9, 8});
std::memcpy(out.data() + sizeof(u32), word2.data(), sizeof(u32));
if (line.size() < 26 || line[17] != ' ') {
// Perform shifting in case value is truncated early.
const auto type = static_cast<CodeType>((out[0] & 0xF0) >> 4);
if (type == CodeType::Loop || type == CodeType::LoadImmediate ||
type == CodeType::StoreIndexed || type == CodeType::RegisterArithmetic) {
std::memcpy(out.data() + 8, out.data() + 4, sizeof(u32));
std::memset(out.data() + 4, 0, sizeof(u32));
}
return out;
}
const auto word3 = Common::HexStringToArray<sizeof(u32)>(std::string_view{line.data() + 18, 8});
std::memcpy(out.data() + 2 * sizeof(u32), word3.data(), sizeof(u32));
if (line.size() < 35 || line[26] != ' ') {
// Perform shifting in case value is truncated early.
const auto type = static_cast<CodeType>((out[0] & 0xF0) >> 4);
if (type == CodeType::WriteImmediate || type == CodeType::Conditional) {
std::memcpy(out.data() + 12, out.data() + 8, sizeof(u32));
std::memset(out.data() + 8, 0, sizeof(u32));
}
return out;
}
const auto word4 = Common::HexStringToArray<sizeof(u32)>(std::string_view{line.data() + 27, 8});
std::memcpy(out.data() + 3 * sizeof(u32), word4.data(), sizeof(u32));
return out;
}
namespace {
u64 MemoryReadImpl(u32 width, VAddr addr) {
switch (width) {
case 1:
return Memory::Read8(addr);
case 2:
return Memory::Read16(addr);
case 4:
return Memory::Read32(addr);
case 8:
return Memory::Read64(addr);
default:
UNREACHABLE();
return 0;
}
}
void MemoryWriteImpl(u32 width, VAddr addr, u64 value) {
switch (width) {
case 1:
Memory::Write8(addr, static_cast<u8>(value));
break;
case 2:
Memory::Write16(addr, static_cast<u16>(value));
break;
case 4:
Memory::Write32(addr, static_cast<u32>(value));
break;
case 8:
Memory::Write64(addr, value);
break;
default:
UNREACHABLE();
}
}
} // Anonymous namespace
CheatEngine::CheatEngine(Core::System& system, std::vector<CheatList> cheats_,
const std::string& build_id, VAddr code_region_start,
VAddr code_region_end)
: cheats{std::move(cheats_)}, core_timing{system.CoreTiming()} {
event = core_timing.RegisterEvent(
"CheatEngine::FrameCallback::" + build_id,
[this](u64 userdata, s64 cycles_late) { FrameCallback(userdata, cycles_late); });
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS, event);
const auto& vm_manager = system.CurrentProcess()->VMManager();
for (auto& list : this->cheats) {
list.SetMemoryParameters(code_region_start, vm_manager.GetHeapRegionBaseAddress(),
code_region_end, vm_manager.GetHeapRegionEndAddress(),
&MemoryWriteImpl, &MemoryReadImpl);
}
}
CheatEngine::~CheatEngine() {
core_timing.UnscheduleEvent(event, 0);
}
void CheatEngine::FrameCallback(u64 userdata, s64 cycles_late) {
for (auto& list : cheats) {
list.Execute();
}
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS - cycles_late, event);
}
} // namespace FileSys