1
0
Fork 0
mirror of https://git.tukaani.org/xz.git synced 2024-04-04 12:36:23 +02:00
xz-archive/src/liblzma/common/index.c

748 lines
20 KiB
C
Raw Normal View History

2007-12-08 23:42:33 +01:00
///////////////////////////////////////////////////////////////////////////////
//
/// \file index.c
/// \brief Handling of Index
2007-12-08 23:42:33 +01:00
//
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#include "index.h"
2007-12-08 23:42:33 +01:00
/// Number of Records to allocate at once.
#define INDEX_GROUP_SIZE 256
typedef struct lzma_index_group_s lzma_index_group;
struct lzma_index_group_s {
/// Next group
lzma_index_group *prev;
/// Previous group
lzma_index_group *next;
/// Index of the last Record in this group
size_t last;
/// Total Size fields as cumulative sum relative to the beginning
/// of the group. The total size of the group is total_sums[last].
lzma_vli total_sums[INDEX_GROUP_SIZE];
/// Uncompressed Size fields as cumulative sum relative to the
/// beginning of the group. The uncompressed size of the group is
/// uncompressed_sums[last].
lzma_vli uncompressed_sums[INDEX_GROUP_SIZE];
/// True if the Record is padding
bool paddings[INDEX_GROUP_SIZE];
};
struct lzma_index_s {
/// Total size of the Blocks and padding
lzma_vli total_size;
/// Uncompressed size of the Stream
lzma_vli uncompressed_size;
/// Number of non-padding records. This is needed by Index encoder.
lzma_vli count;
/// Size of the List of Records field; this is updated every time
/// a new non-padding Record is added.
lzma_vli index_list_size;
/// This is zero if no Indexes have been combined with
/// lzma_index_cat(). With combined Indexes, this contains the sizes
/// of all but latest the Streams, including possible Stream Padding
/// fields.
lzma_vli padding_size;
/// First group of Records
lzma_index_group *head;
/// Last group of Records
lzma_index_group *tail;
/// Tracking the read position
struct {
/// Group where the current read position is.
lzma_index_group *group;
/// The most recently read record in *group
lzma_vli record;
/// Uncompressed offset of the beginning of *group relative
/// to the beginning of the Stream
lzma_vli uncompressed_offset;
/// Compressed offset of the beginning of *group relative
/// to the beginning of the Stream
lzma_vli stream_offset;
} current;
/// Information about earlier Indexes when multiple Indexes have
/// been combined.
struct {
/// Sum of the Record counts of the all but the last Stream.
lzma_vli count;
/// Sum of the List of Records fields of all but the last
/// Stream. This is needed when a new Index is concatenated
/// to this lzma_index structure.
lzma_vli index_list_size;
} old;
};
static void
free_index_list(lzma_index *i, lzma_allocator *allocator)
2007-12-08 23:42:33 +01:00
{
lzma_index_group *g = i->head;
2007-12-08 23:42:33 +01:00
while (g != NULL) {
lzma_index_group *tmp = g->next;
lzma_free(g, allocator);
g = tmp;
}
2007-12-08 23:42:33 +01:00
return;
}
2007-12-08 23:42:33 +01:00
extern LZMA_API lzma_index *
lzma_index_init(lzma_index *i, lzma_allocator *allocator)
{
if (i == NULL) {
i = lzma_alloc(sizeof(lzma_index), allocator);
if (i == NULL)
return NULL;
} else {
free_index_list(i, allocator);
2007-12-08 23:42:33 +01:00
}
i->total_size = 0;
i->uncompressed_size = 0;
i->count = 0;
i->index_list_size = 0;
i->padding_size = 0;
i->head = NULL;
i->tail = NULL;
i->current.group = NULL;
i->old.count = 0;
i->old.index_list_size = 0;
return i;
2007-12-08 23:42:33 +01:00
}
extern LZMA_API void
lzma_index_end(lzma_index *i, lzma_allocator *allocator)
2007-12-08 23:42:33 +01:00
{
if (i != NULL) {
free_index_list(i, allocator);
2007-12-08 23:42:33 +01:00
lzma_free(i, allocator);
}
return;
}
extern LZMA_API lzma_vli
lzma_index_count(const lzma_index *i)
{
return i->count;
}
extern LZMA_API lzma_vli
lzma_index_size(const lzma_index *i)
{
return index_size(i->count, i->index_list_size);
}
extern LZMA_API lzma_vli
lzma_index_total_size(const lzma_index *i)
{
return i->total_size;
}
extern LZMA_API lzma_vli
lzma_index_stream_size(const lzma_index *i)
{
// Stream Header + Blocks + Index + Stream Footer
return LZMA_STREAM_HEADER_SIZE + i->total_size
+ index_size(i->count, i->index_list_size)
+ LZMA_STREAM_HEADER_SIZE;
}
extern LZMA_API lzma_vli
lzma_index_file_size(const lzma_index *i)
{
// If multiple Streams are concatenated, the Stream Header, Index,
// and Stream Footer fields of all but the last Stream are already
// included in padding_size. Thus, we need to calculate only the
// size of the last Index, not all Indexes.
return i->total_size + i->padding_size
+ index_size(i->count - i->old.count,
i->index_list_size - i->old.index_list_size)
+ LZMA_STREAM_HEADER_SIZE * 2;
}
extern LZMA_API lzma_vli
lzma_index_uncompressed_size(const lzma_index *i)
{
return i->uncompressed_size;
}
extern uint32_t
lzma_index_padding_size(const lzma_index *i)
{
return (LZMA_VLI_C(4)
- index_size_unpadded(i->count, i->index_list_size)) & 3;
}
/// Helper function for index_append()
static lzma_ret
index_append_real(lzma_index *i, lzma_allocator *allocator,
lzma_vli total_size, lzma_vli uncompressed_size,
bool is_padding)
{
// Add the new record.
if (i->tail == NULL || i->tail->last == INDEX_GROUP_SIZE - 1) {
// Allocate a new group.
lzma_index_group *g = lzma_alloc(sizeof(lzma_index_group),
allocator);
if (g == NULL)
return LZMA_MEM_ERROR;
// Initialize the group and set its first record.
g->prev = i->tail;
g->next = NULL;
g->last = 0;
g->total_sums[0] = total_size;
g->uncompressed_sums[0] = uncompressed_size;
g->paddings[0] = is_padding;
// If this is the first group, make it the head.
if (i->head == NULL)
i->head = g;
else
i->tail->next = g;
// Make it the new tail.
i->tail = g;
} else {
// i->tail has space left for at least one record.
i->tail->total_sums[i->tail->last + 1]
= i->tail->total_sums[i->tail->last]
+ total_size;
i->tail->uncompressed_sums[i->tail->last + 1]
= i->tail->uncompressed_sums[i->tail->last]
+ uncompressed_size;
i->tail->paddings[i->tail->last + 1] = is_padding;
++i->tail->last;
}
return LZMA_OK;
}
static lzma_ret
index_append(lzma_index *i, lzma_allocator *allocator, lzma_vli total_size,
lzma_vli uncompressed_size, bool is_padding)
{
if (total_size > LZMA_VLI_MAX
|| uncompressed_size > LZMA_VLI_MAX)
return LZMA_DATA_ERROR;
// This looks a bit ugly. We want to first validate that the Index
// and Stream stay in valid limits after adding this Record. After
// validating, we may need to allocate a new lzma_index_group (it's
// slightly more correct to validate before allocating, YMMV).
lzma_ret ret;
if (is_padding) {
assert(uncompressed_size == 0);
// First update the info so we can validate it.
i->padding_size += total_size;
if (i->padding_size > LZMA_VLI_MAX
|| lzma_index_file_size(i) > LZMA_VLI_MAX)
ret = LZMA_DATA_ERROR; // Would grow past the limits.
else
ret = index_append_real(i, allocator,
total_size, uncompressed_size, true);
// If something went wrong, undo the updated value.
if (ret != LZMA_OK)
i->padding_size -= total_size;
} else {
// First update the overall info so we can validate it.
const lzma_vli index_list_size_add
= lzma_vli_size(total_size / 4 - 1)
+ lzma_vli_size(uncompressed_size);
i->total_size += total_size;
i->uncompressed_size += uncompressed_size;
++i->count;
i->index_list_size += index_list_size_add;
if (i->total_size > LZMA_VLI_MAX
|| i->uncompressed_size > LZMA_VLI_MAX
|| lzma_index_size(i) > LZMA_BACKWARD_SIZE_MAX
|| lzma_index_file_size(i) > LZMA_VLI_MAX)
ret = LZMA_DATA_ERROR; // Would grow past the limits.
else
ret = index_append_real(i, allocator,
total_size, uncompressed_size, false);
if (ret != LZMA_OK) {
// Something went wrong. Undo the updates.
i->total_size -= total_size;
i->uncompressed_size -= uncompressed_size;
--i->count;
i->index_list_size -= index_list_size_add;
2007-12-08 23:42:33 +01:00
}
}
return ret;
}
extern LZMA_API lzma_ret
lzma_index_append(lzma_index *i, lzma_allocator *allocator,
lzma_vli total_size, lzma_vli uncompressed_size)
{
return index_append(i, allocator,
total_size, uncompressed_size, false);
}
/// Initialize i->current to point to the first Record.
static bool
init_current(lzma_index *i)
{
if (i->head == NULL) {
assert(i->count == 0);
return true;
}
assert(i->count > 0);
i->current.group = i->head;
i->current.record = 0;
i->current.stream_offset = LZMA_STREAM_HEADER_SIZE;
i->current.uncompressed_offset = 0;
2007-12-08 23:42:33 +01:00
return false;
}
/// Go backward to the previous group.
static void
previous_group(lzma_index *i)
{
assert(i->current.group->prev != NULL);
// Go to the previous group first.
i->current.group = i->current.group->prev;
i->current.record = i->current.group->last;
// Then update the offsets.
i->current.stream_offset -= i->current.group
->total_sums[i->current.group->last];
i->current.uncompressed_offset -= i->current.group
->uncompressed_sums[i->current.group->last];
return;
}
/// Go forward to the next group.
static void
next_group(lzma_index *i)
{
assert(i->current.group->next != NULL);
// Update the offsets first.
i->current.stream_offset += i->current.group
->total_sums[i->current.group->last];
i->current.uncompressed_offset += i->current.group
->uncompressed_sums[i->current.group->last];
// Then go to the next group.
i->current.record = 0;
i->current.group = i->current.group->next;
return;
}
/// Set *info from i->current.
static void
set_info(const lzma_index *i, lzma_index_record *info)
{
info->total_size = i->current.group->total_sums[i->current.record];
info->uncompressed_size = i->current.group->uncompressed_sums[
i->current.record];
info->stream_offset = i->current.stream_offset;
info->uncompressed_offset = i->current.uncompressed_offset;
// If it's not the first Record in this group, we need to do some
// adjustements.
if (i->current.record > 0) {
// _sums[] are cumulative, thus we need to substract the
// _previous _sums[] to get the sizes of this Record.
info->total_size -= i->current.group
->total_sums[i->current.record - 1];
info->uncompressed_size -= i->current.group
->uncompressed_sums[i->current.record - 1];
// i->current.{total,uncompressed}_offsets have the offset
// of the beginning of the group, thus we need to add the
// appropriate amount to get the offsetes of this Record.
info->stream_offset += i->current.group
->total_sums[i->current.record - 1];
info->uncompressed_offset += i->current.group
->uncompressed_sums[i->current.record - 1];
}
return;
}
extern LZMA_API lzma_bool
lzma_index_read(lzma_index *i, lzma_index_record *info)
{
if (i->current.group == NULL) {
// We are at the beginning of the Record list. Set up
// i->current point at the first Record. Return if there
// are no Records.
if (init_current(i))
return true;
} else do {
// Try to go the next Record.
if (i->current.record < i->current.group->last)
++i->current.record;
else if (i->current.group->next == NULL)
return true;
else
next_group(i);
} while (i->current.group->paddings[i->current.record]);
// We found a new Record. Set the information to *info.
set_info(i, info);
return false;
}
extern LZMA_API void
lzma_index_rewind(lzma_index *i)
{
i->current.group = NULL;
return;
}
extern LZMA_API lzma_bool
lzma_index_locate(lzma_index *i, lzma_index_record *info, lzma_vli target)
{
// Check if it is possible to fullfill the request.
if (target >= i->uncompressed_size)
return true;
// Now we know that we will have an answer. Initialize the current
// read position if needed.
if (i->current.group == NULL && init_current(i))
return true;
// Locate the group where the wanted Block is. First search forward.
while (i->current.uncompressed_offset <= target) {
// If the first uncompressed byte of the next group is past
// the target offset, it has to be this or an earlier group.
if (i->current.uncompressed_offset + i->current.group
->uncompressed_sums[i->current.group->last]
> target)
break;
// Go forward to the next group.
next_group(i);
}
// Then search backward.
while (i->current.uncompressed_offset > target)
previous_group(i);
// Now the target Block is somewhere in i->current.group. Offsets
// in groups are relative to the beginning of the group, thus
// we must adjust the target before starting the search loop.
assert(target >= i->current.uncompressed_offset);
target -= i->current.uncompressed_offset;
// Use binary search to locate the exact Record. It is the first
// Record whose uncompressed_sums[] value is greater than target.
// This is because we want the rightmost Record that fullfills the
// search criterion. It is possible that there are empty Blocks or
// padding, we don't want to return them.
size_t left = 0;
size_t right = i->current.group->last;
while (left < right) {
const size_t pos = left + (right - left) / 2;
if (i->current.group->uncompressed_sums[pos] <= target)
left = pos + 1;
else
right = pos;
}
i->current.record = left;
#ifndef NDEBUG
// The found Record must not be padding or have zero uncompressed size.
assert(!i->current.group->paddings[i->current.record]);
if (i->current.record == 0)
assert(i->current.group->uncompressed_sums[0] > 0);
else
assert(i->current.group->uncompressed_sums[i->current.record]
- i->current.group->uncompressed_sums[
i->current.record - 1] > 0);
#endif
set_info(i, info);
return false;
}
extern LZMA_API lzma_ret
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
lzma_allocator *allocator, lzma_vli padding)
{
if (dest == NULL || src == NULL || dest == src
|| padding > LZMA_VLI_MAX)
return LZMA_PROG_ERROR;
// Check that the combined size of the Indexes stays within limits.
{
const lzma_vli dest_size = lzma_index_file_size(dest);
const lzma_vli src_size = lzma_index_file_size(src);
if (dest_size + src_size > LZMA_VLI_UNKNOWN
|| dest_size + src_size + padding
> LZMA_VLI_UNKNOWN)
return LZMA_DATA_ERROR;
}
// Add a padding Record to take into account the size of
// Index + Stream Footer + Stream Padding + Stream Header.
//
// NOTE: This cannot overflow, because Index Size is always
// far smaller than LZMA_VLI_MAX, and adding two VLIs
// (Index Size and padding) doesn't overflow. It may become
// an invalid VLI if padding is huge, but that is caught by
// index_append().
padding += index_size(dest->count - dest->old.count,
dest->index_list_size
- dest->old.index_list_size)
+ LZMA_STREAM_HEADER_SIZE * 2;
// Add the padding Record.
return_if_error(index_append(
dest, allocator, padding, 0, true));
// Avoid wasting lots of memory if src->head has only a few records
// that fit into dest->tail. That is, combine two groups if possible.
//
// NOTE: We know that dest->tail != NULL since we just appended
// a padding Record. But we don't know about src->head.
if (src->head != NULL && src->head->last + 1
<= INDEX_GROUP_SIZE - dest->tail->last - 1) {
// Copy the first Record.
dest->tail->total_sums[dest->tail->last + 1]
= dest->tail->total_sums[dest->tail->last]
+ src->head->total_sums[0];
dest->tail->uncompressed_sums[dest->tail->last + 1]
= dest->tail->uncompressed_sums[dest->tail->last]
+ src->head->uncompressed_sums[0];
dest->tail->paddings[dest->tail->last + 1]
= src->head->paddings[0];
++dest->tail->last;
// Copy the rest.
for (size_t i = 1; i < src->head->last; ++i) {
dest->tail->total_sums[dest->tail->last + 1]
= dest->tail->total_sums[dest->tail->last]
+ src->head->total_sums[i + 1]
- src->head->total_sums[i];
dest->tail->uncompressed_sums[dest->tail->last + 1]
= dest->tail->uncompressed_sums[
dest->tail->last]
+ src->head->uncompressed_sums[i + 1]
- src->head->uncompressed_sums[i];
dest->tail->paddings[dest->tail->last + 1]
= src->head->paddings[i + 1];
++dest->tail->last;
2007-12-08 23:42:33 +01:00
}
// Free the head group of *src. Don't bother updating prev
// pointers since those won't be used for anything before
// we deallocate the whole *src structure.
lzma_index_group *tmp = src->head;
src->head = src->head->next;
lzma_free(tmp, allocator);
}
// If there are groups left in *src, join them as is. Note that if we
// are combining already combined Indexes, src->head can be non-NULL
// even if we just combined the old src->head to dest->tail.
if (src->head != NULL) {
src->head->prev = dest->tail;
dest->tail->next = src->head;
dest->tail = src->tail;
2007-12-08 23:42:33 +01:00
}
// Update information about earlier Indexes. Only the last Index
// from *src won't be counted in dest->old. The last Index is left
// open and can be even appended with lzma_index_append().
dest->old.count = dest->count + src->old.count;
dest->old.index_list_size
= dest->index_list_size + src->old.index_list_size;
// Update overall information.
dest->total_size += src->total_size;
dest->uncompressed_size += src->uncompressed_size;
dest->count += src->count;
dest->index_list_size += src->index_list_size;
dest->padding_size += src->padding_size;
// *src has nothing left but the base structure.
lzma_free(src, allocator);
2007-12-08 23:42:33 +01:00
return LZMA_OK;
}
extern LZMA_API lzma_index *
lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
{
lzma_index *dest = lzma_alloc(sizeof(lzma_index), allocator);
if (dest == NULL)
return NULL;
// Copy the base structure except the pointers.
*dest = *src;
dest->head = NULL;
dest->tail = NULL;
dest->current.group = NULL;
// Copy the Records.
const lzma_index_group *src_group = src->head;
while (src_group != NULL) {
// Allocate a new group.
lzma_index_group *dest_group = lzma_alloc(
sizeof(lzma_index_group), allocator);
if (dest_group == NULL) {
lzma_index_end(dest, allocator);
return NULL;
}
// Set the pointers.
dest_group->prev = dest->tail;
dest_group->next = NULL;
if (dest->head == NULL)
dest->head = dest_group;
else
dest->tail->next = dest_group;
dest->tail = dest_group;
dest_group->last = src_group->last;
// Copy the arrays so that we don't read uninitialized memory.
const size_t count = src_group->last + 1;
memcpy(dest_group->total_sums, src_group->total_sums,
sizeof(lzma_vli) * count);
memcpy(dest_group->uncompressed_sums,
src_group->uncompressed_sums,
sizeof(lzma_vli) * count);
memcpy(dest_group->paddings, src_group->paddings,
sizeof(bool) * count);
// Copy also the read position.
if (src_group == src->current.group)
dest->current.group = dest->tail;
src_group = src_group->next;
}
return dest;
}
2007-12-08 23:42:33 +01:00
extern LZMA_API lzma_bool
lzma_index_equal(const lzma_index *a, const lzma_index *b)
2007-12-08 23:42:33 +01:00
{
// No point to compare more if the pointers are the same.
if (a == b)
return true;
// Compare the basic properties.
if (a->total_size != b->total_size
|| a->uncompressed_size != b->uncompressed_size
|| a->index_list_size != b->index_list_size
|| a->count != b->count)
return false;
// Compare the Records.
const lzma_index_group *ag = a->head;
const lzma_index_group *bg = b->head;
while (ag != NULL && bg != NULL) {
const size_t count = ag->last + 1;
if (ag->last != bg->last
|| memcmp(ag->total_sums,
bg->total_sums,
sizeof(lzma_vli) * count) != 0
|| memcmp(ag->uncompressed_sums,
bg->uncompressed_sums,
sizeof(lzma_vli) * count) != 0
|| memcmp(ag->paddings, bg->paddings,
sizeof(bool) * count) != 0)
2007-12-08 23:42:33 +01:00
return false;
ag = ag->next;
bg = bg->next;
2007-12-08 23:42:33 +01:00
}
return ag == NULL && bg == NULL;
2007-12-08 23:42:33 +01:00
}