1
0
Fork 0
mirror of https://git.tukaani.org/xz.git synced 2024-04-04 12:36:23 +02:00
xz-archive/m4/tuklib_integer.m4

132 lines
3.7 KiB
Text
Raw Permalink Normal View History

#
# SYNOPSIS
#
# TUKLIB_INTEGER
#
# DESCRIPTION
#
# Checks for tuklib_integer.h:
# - Endianness
# - Does the compiler or the operating system provide byte swapping macros
# - Does the hardware support fast unaligned access to 16-bit
# and 32-bit integers
#
# COPYING
#
# Author: Lasse Collin
#
# This file has been put into the public domain.
# You can do whatever you want with this file.
#
AC_DEFUN_ONCE([TUKLIB_INTEGER], [
AC_REQUIRE([TUKLIB_COMMON])
AC_REQUIRE([AC_C_BIGENDIAN])
AC_MSG_CHECKING([if __builtin_bswap16/32/64 are supported])
AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],
[[__builtin_bswap16(1);
__builtin_bswap32(1);
__builtin_bswap64(1);]])],
[
AC_DEFINE([HAVE___BUILTIN_BSWAPXX], [1],
[Define to 1 if the GNU C extensions
__builtin_bswap16/32/64 are supported.])
AC_MSG_RESULT([yes])
], [
AC_MSG_RESULT([no])
# Look for other byteswapping methods.
AC_CHECK_HEADERS([byteswap.h sys/endian.h sys/byteorder.h], [break])
# Even if we have byteswap.h we may lack the specific macros/functions.
if test x$ac_cv_header_byteswap_h = xyes ; then
m4_foreach([FUNC], [bswap_16,bswap_32,bswap_64], [
AC_MSG_CHECKING([if FUNC is available])
AC_LINK_IFELSE([AC_LANG_SOURCE([
#include <byteswap.h>
int
main(void)
{
FUNC[](42);
return 0;
}
])], [
AC_DEFINE(HAVE_[]m4_toupper(FUNC), [1],
[Define to 1 if] FUNC [is available.])
AC_MSG_RESULT([yes])
], [AC_MSG_RESULT([no])])
])dnl
fi
])
AC_MSG_CHECKING([if unaligned memory access should be used])
AC_ARG_ENABLE([unaligned-access], AS_HELP_STRING([--enable-unaligned-access],
[Enable if the system supports *fast* unaligned memory access
with 16-bit and 32-bit integers. By default, this is enabled
only on x86, x86_64, big endian PowerPC,
and some ARM systems.]),
[], [enable_unaligned_access=auto])
if test "x$enable_unaligned_access" = xauto ; then
# TODO: There may be other architectures, on which unaligned access
# is OK.
case $host_cpu in
i?86|x86_64|powerpc|powerpc64)
enable_unaligned_access=yes
;;
arm*|aarch64*)
# On 32-bit and 64-bit ARM, GCC and Clang
# #define __ARM_FEATURE_UNALIGNED if
# unaligned access is supported.
AC_COMPILE_IFELSE([AC_LANG_SOURCE([
#ifndef __ARM_FEATURE_UNALIGNED
compile error
#endif
int main(void) { return 0; }
])], [enable_unaligned_access=yes], [enable_unaligned_access=no])
;;
*)
enable_unaligned_access=no
;;
esac
fi
if test "x$enable_unaligned_access" = xyes ; then
AC_DEFINE([TUKLIB_FAST_UNALIGNED_ACCESS], [1], [Define to 1 if
the system supports fast unaligned access to 16-bit and
32-bit integers.])
AC_MSG_RESULT([yes])
else
AC_MSG_RESULT([no])
fi
AC_MSG_CHECKING([if unsafe type punning should be used])
AC_ARG_ENABLE([unsafe-type-punning],
AS_HELP_STRING([--enable-unsafe-type-punning],
[This introduces strict aliasing violations and may result
in broken code. However, this might improve performance in
some cases, especially with old compilers (e.g.
GCC 3 and early 4.x on x86, GCC < 6 on ARMv6 and ARMv7).]),
[], [enable_unsafe_type_punning=no])
if test "x$enable_unsafe_type_punning" = xyes ; then
AC_DEFINE([TUKLIB_USE_UNSAFE_TYPE_PUNNING], [1], [Define to 1 to use
unsafe type punning, e.g. char *x = ...; *(int *)x = 123;
which violates strict aliasing rules and thus is
undefined behavior and might result in broken code.])
AC_MSG_RESULT([yes])
else
AC_MSG_RESULT([no])
fi
AC_MSG_CHECKING([if __builtin_assume_aligned is supported])
AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[__builtin_assume_aligned("", 1);]])],
[
AC_DEFINE([HAVE___BUILTIN_ASSUME_ALIGNED], [1],
[Define to 1 if the GNU C extension
__builtin_assume_aligned is supported.])
AC_MSG_RESULT([yes])
], [
AC_MSG_RESULT([no])
])
])dnl