1
0
Fork 0
mirror of https://git.tukaani.org/xz.git synced 2024-04-04 12:36:23 +02:00
xz-archive/tests/test_index.c

737 lines
20 KiB
C
Raw Permalink Normal View History

2007-12-08 23:42:33 +01:00
///////////////////////////////////////////////////////////////////////////////
//
2008-01-15 06:41:39 +01:00
/// \file test_index.c
2007-12-08 23:42:33 +01:00
/// \brief Tests functions handling the lzma_index structure
//
// Author: Lasse Collin
2007-12-08 23:42:33 +01:00
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
2007-12-08 23:42:33 +01:00
//
///////////////////////////////////////////////////////////////////////////////
#include "tests.h"
#define MEMLIMIT (LZMA_VLI_C(1) << 20)
#define SMALL_COUNT 3
#define BIG_COUNT 5555
2007-12-08 23:42:33 +01:00
static lzma_index *
create_empty(void)
{
lzma_index *i = lzma_index_init(NULL);
expect(i != NULL);
return i;
}
static lzma_index *
create_small(void)
{
lzma_index *i = lzma_index_init(NULL);
expect(i != NULL);
expect(lzma_index_append(i, NULL, 101, 555) == LZMA_OK);
expect(lzma_index_append(i, NULL, 602, 777) == LZMA_OK);
expect(lzma_index_append(i, NULL, 804, 999) == LZMA_OK);
return i;
}
static lzma_index *
create_big(void)
{
lzma_index *i = lzma_index_init(NULL);
expect(i != NULL);
lzma_vli total_size = 0;
lzma_vli uncompressed_size = 0;
// Add pseudo-random sizes (but always the same size values).
uint32_t n = 11;
for (size_t j = 0; j < BIG_COUNT; ++j) {
n = 7019 * n + 7607;
const uint32_t t = n * 3011;
expect(lzma_index_append(i, NULL, t, n) == LZMA_OK);
total_size += (t + 3) & ~LZMA_VLI_C(3);
uncompressed_size += n;
}
expect(lzma_index_block_count(i) == BIG_COUNT);
expect(lzma_index_total_size(i) == total_size);
expect(lzma_index_uncompressed_size(i) == uncompressed_size);
expect(lzma_index_total_size(i) + lzma_index_size(i)
+ 2 * LZMA_STREAM_HEADER_SIZE
== lzma_index_stream_size(i));
return i;
}
static bool
is_equal(const lzma_index *a, const lzma_index *b)
{
// Compare only the Stream and Block sizes and offsets.
lzma_index_iter ra, rb;
lzma_index_iter_init(&ra, a);
lzma_index_iter_init(&rb, b);
while (true) {
bool reta = lzma_index_iter_next(&ra, LZMA_INDEX_ITER_ANY);
bool retb = lzma_index_iter_next(&rb, LZMA_INDEX_ITER_ANY);
if (reta)
return !(reta ^ retb);
if (ra.stream.number != rb.stream.number
|| ra.stream.block_count
!= rb.stream.block_count
|| ra.stream.compressed_offset
!= rb.stream.compressed_offset
|| ra.stream.uncompressed_offset
!= rb.stream.uncompressed_offset
|| ra.stream.compressed_size
!= rb.stream.compressed_size
|| ra.stream.uncompressed_size
!= rb.stream.uncompressed_size
|| ra.stream.padding
!= rb.stream.padding)
return false;
if (ra.stream.block_count == 0)
continue;
if (ra.block.number_in_file != rb.block.number_in_file
|| ra.block.compressed_file_offset
!= rb.block.compressed_file_offset
|| ra.block.uncompressed_file_offset
!= rb.block.uncompressed_file_offset
|| ra.block.number_in_stream
!= rb.block.number_in_stream
|| ra.block.compressed_stream_offset
!= rb.block.compressed_stream_offset
|| ra.block.uncompressed_stream_offset
!= rb.block.uncompressed_stream_offset
|| ra.block.uncompressed_size
!= rb.block.uncompressed_size
|| ra.block.unpadded_size
!= rb.block.unpadded_size
|| ra.block.total_size
!= rb.block.total_size)
return false;
}
}
static void
test_equal(void)
{
lzma_index *a = create_empty();
lzma_index *b = create_small();
lzma_index *c = create_big();
expect(a && b && c);
expect(is_equal(a, a));
expect(is_equal(b, b));
expect(is_equal(c, c));
expect(!is_equal(a, b));
expect(!is_equal(a, c));
expect(!is_equal(b, c));
lzma_index_end(a, NULL);
lzma_index_end(b, NULL);
lzma_index_end(c, NULL);
}
static void
test_overflow(void)
{
// Integer overflow tests
lzma_index *i = create_empty();
expect(lzma_index_append(i, NULL, LZMA_VLI_MAX - 5, 1234)
== LZMA_DATA_ERROR);
// TODO
lzma_index_end(i, NULL);
}
static void
test_copy(const lzma_index *i)
{
lzma_index *d = lzma_index_dup(i, NULL);
expect(d != NULL);
expect(is_equal(i, d));
lzma_index_end(d, NULL);
}
static void
test_read(lzma_index *i)
{
lzma_index_iter r;
lzma_index_iter_init(&r, i);
// Try twice so we see that rewinding works.
for (size_t j = 0; j < 2; ++j) {
lzma_vli total_size = 0;
lzma_vli uncompressed_size = 0;
lzma_vli stream_offset = LZMA_STREAM_HEADER_SIZE;
lzma_vli uncompressed_offset = 0;
uint32_t count = 0;
while (!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)) {
++count;
total_size += r.block.total_size;
uncompressed_size += r.block.uncompressed_size;
expect(r.block.compressed_file_offset
== stream_offset);
expect(r.block.uncompressed_file_offset
== uncompressed_offset);
stream_offset += r.block.total_size;
uncompressed_offset += r.block.uncompressed_size;
}
expect(lzma_index_total_size(i) == total_size);
expect(lzma_index_uncompressed_size(i) == uncompressed_size);
expect(lzma_index_block_count(i) == count);
lzma_index_iter_rewind(&r);
}
}
static void
test_code(lzma_index *i)
{
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
const size_t alloc_size = 128 * 1024;
uint8_t *buf = malloc(alloc_size);
expect(buf != NULL);
// Encode
lzma_stream strm = LZMA_STREAM_INIT;
expect(lzma_index_encoder(&strm, i) == LZMA_OK);
const lzma_vli index_size = lzma_index_size(i);
succeed(coder_loop(&strm, NULL, 0, buf, index_size,
LZMA_STREAM_END, LZMA_RUN));
// Decode
lzma_index *d;
expect(lzma_index_decoder(&strm, &d, MEMLIMIT) == LZMA_OK);
expect(d == NULL);
succeed(decoder_loop(&strm, buf, index_size));
expect(is_equal(i, d));
lzma_index_end(d, NULL);
lzma_end(&strm);
// Decode with hashing
lzma_index_hash *h = lzma_index_hash_init(NULL, NULL);
expect(h != NULL);
lzma_index_iter r;
lzma_index_iter_init(&r, i);
while (!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK))
expect(lzma_index_hash_append(h, r.block.unpadded_size,
r.block.uncompressed_size) == LZMA_OK);
size_t pos = 0;
while (pos < index_size - 1)
expect(lzma_index_hash_decode(h, buf, &pos, pos + 1)
== LZMA_OK);
expect(lzma_index_hash_decode(h, buf, &pos, pos + 1)
== LZMA_STREAM_END);
lzma_index_hash_end(h, NULL);
// Encode buffer
size_t buf_pos = 1;
expect(lzma_index_buffer_encode(i, buf, &buf_pos, index_size)
== LZMA_BUF_ERROR);
expect(buf_pos == 1);
succeed(lzma_index_buffer_encode(i, buf, &buf_pos, index_size + 1));
expect(buf_pos == index_size + 1);
// Decode buffer
buf_pos = 1;
uint64_t memlimit = MEMLIMIT;
expect(lzma_index_buffer_decode(&d, &memlimit, NULL, buf, &buf_pos,
index_size) == LZMA_DATA_ERROR);
expect(buf_pos == 1);
expect(d == NULL);
succeed(lzma_index_buffer_decode(&d, &memlimit, NULL, buf, &buf_pos,
index_size + 1));
expect(buf_pos == index_size + 1);
expect(is_equal(i, d));
lzma_index_end(d, NULL);
free(buf);
#else
(void)i;
#endif
}
static void
test_many(lzma_index *i)
{
test_copy(i);
test_read(i);
test_code(i);
}
static void
test_cat(void)
{
lzma_index *a, *b, *c, *d, *e, *f;
lzma_index_iter r;
// Empty Indexes
a = create_empty();
b = create_empty();
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_block_count(a) == 0);
expect(lzma_index_stream_size(a) == 2 * LZMA_STREAM_HEADER_SIZE + 8);
expect(lzma_index_file_size(a)
== 2 * (2 * LZMA_STREAM_HEADER_SIZE + 8));
lzma_index_iter_init(&r, a);
expect(lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK));
b = create_empty();
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_block_count(a) == 0);
expect(lzma_index_stream_size(a) == 2 * LZMA_STREAM_HEADER_SIZE + 8);
expect(lzma_index_file_size(a)
== 3 * (2 * LZMA_STREAM_HEADER_SIZE + 8));
b = create_empty();
c = create_empty();
expect(lzma_index_stream_padding(b, 4) == LZMA_OK);
expect(lzma_index_cat(b, c, NULL) == LZMA_OK);
expect(lzma_index_block_count(b) == 0);
expect(lzma_index_stream_size(b) == 2 * LZMA_STREAM_HEADER_SIZE + 8);
expect(lzma_index_file_size(b)
== 2 * (2 * LZMA_STREAM_HEADER_SIZE + 8) + 4);
expect(lzma_index_stream_padding(a, 8) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_block_count(a) == 0);
expect(lzma_index_stream_size(a) == 2 * LZMA_STREAM_HEADER_SIZE + 8);
expect(lzma_index_file_size(a)
== 5 * (2 * LZMA_STREAM_HEADER_SIZE + 8) + 4 + 8);
expect(lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK));
lzma_index_iter_rewind(&r);
expect(lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK));
lzma_index_end(a, NULL);
// Small Indexes
a = create_small();
lzma_vli stream_size = lzma_index_stream_size(a);
lzma_index_iter_init(&r, a);
for (int i = SMALL_COUNT; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
b = create_small();
expect(lzma_index_stream_padding(a, 4) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_file_size(a) == stream_size * 2 + 4);
expect(lzma_index_stream_size(a) > stream_size);
expect(lzma_index_stream_size(a) < stream_size * 2);
for (int i = SMALL_COUNT; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
lzma_index_iter_rewind(&r);
for (int i = SMALL_COUNT * 2; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
b = create_small();
c = create_small();
expect(lzma_index_stream_padding(b, 8) == LZMA_OK);
expect(lzma_index_cat(b, c, NULL) == LZMA_OK);
expect(lzma_index_stream_padding(a, 12) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_file_size(a) == stream_size * 4 + 4 + 8 + 12);
expect(lzma_index_block_count(a) == SMALL_COUNT * 4);
for (int i = SMALL_COUNT * 2; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
lzma_index_iter_rewind(&r);
for (int i = SMALL_COUNT * 4; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
lzma_index_end(a, NULL);
// Mix of empty and small
a = create_empty();
b = create_small();
expect(lzma_index_stream_padding(a, 4) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
lzma_index_iter_init(&r, a);
for (int i = SMALL_COUNT; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
lzma_index_end(a, NULL);
// Big Indexes
a = create_big();
stream_size = lzma_index_stream_size(a);
b = create_big();
expect(lzma_index_stream_padding(a, 4) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_file_size(a) == stream_size * 2 + 4);
expect(lzma_index_stream_size(a) > stream_size);
expect(lzma_index_stream_size(a) < stream_size * 2);
b = create_big();
c = create_big();
expect(lzma_index_stream_padding(b, 8) == LZMA_OK);
expect(lzma_index_cat(b, c, NULL) == LZMA_OK);
expect(lzma_index_stream_padding(a, 12) == LZMA_OK);
expect(lzma_index_cat(a, b, NULL) == LZMA_OK);
expect(lzma_index_file_size(a) == stream_size * 4 + 4 + 8 + 12);
lzma_index_iter_init(&r, a);
for (int i = BIG_COUNT * 4; i >= 0; --i)
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK)
^ (i == 0));
lzma_index_end(a, NULL);
// Test for the bug fix 3d5a99ca373a4e86faf671226ca6487febb9eeac.
// lzma_index_checks would previously only return the checks
// for the last stream that was concatenated to the index.
d = create_small();
e = create_small();
f = create_small();
lzma_stream_flags crc32_flags = {
.backward_size = LZMA_BACKWARD_SIZE_MIN,
.check = LZMA_CHECK_CRC32
};
expect(lzma_index_stream_flags(d, &crc32_flags) == LZMA_OK);
lzma_stream_flags crc64_flags = {
.backward_size = LZMA_BACKWARD_SIZE_MIN,
.check = LZMA_CHECK_CRC64
};
expect(lzma_index_stream_flags(e, &crc64_flags) == LZMA_OK);
lzma_stream_flags sha256_flags = {
.backward_size = LZMA_BACKWARD_SIZE_MIN,
.check = LZMA_CHECK_SHA256
};
expect(lzma_index_stream_flags(f, &sha256_flags) == LZMA_OK);
expect(lzma_index_checks(d) == (1U << LZMA_CHECK_CRC32));
expect(lzma_index_checks(e) == (1U << LZMA_CHECK_CRC64));
expect(lzma_index_checks(f) == (1U << LZMA_CHECK_SHA256));
expect(lzma_index_cat(d, e, NULL) == LZMA_OK);
expect(lzma_index_checks(d) == ((1U << LZMA_CHECK_CRC32) |
(1U << LZMA_CHECK_CRC64)));
expect(lzma_index_cat(d, f, NULL) == LZMA_OK);
expect(lzma_index_checks(d) == ((1U << LZMA_CHECK_CRC32) |
(1U << LZMA_CHECK_CRC64) |
(1U << LZMA_CHECK_SHA256)));
lzma_index_end(d, NULL);
}
static void
test_locate(void)
{
lzma_index *i = lzma_index_init(NULL);
expect(i != NULL);
lzma_index_iter r;
lzma_index_iter_init(&r, i);
// Cannot locate anything from an empty Index.
expect(lzma_index_iter_locate(&r, 0));
expect(lzma_index_iter_locate(&r, 555));
// One empty Record: nothing is found since there's no uncompressed
// data.
expect(lzma_index_append(i, NULL, 16, 0) == LZMA_OK);
expect(lzma_index_iter_locate(&r, 0));
// Non-empty Record and we can find something.
expect(lzma_index_append(i, NULL, 32, 5) == LZMA_OK);
expect(!lzma_index_iter_locate(&r, 0));
expect(r.block.total_size == 32);
expect(r.block.uncompressed_size == 5);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16);
expect(r.block.uncompressed_file_offset == 0);
// Still cannot find anything past the end.
expect(lzma_index_iter_locate(&r, 5));
// Add the third Record.
expect(lzma_index_append(i, NULL, 40, 11) == LZMA_OK);
expect(!lzma_index_iter_locate(&r, 0));
expect(r.block.total_size == 32);
expect(r.block.uncompressed_size == 5);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16);
expect(r.block.uncompressed_file_offset == 0);
expect(!lzma_index_iter_next(&r, LZMA_INDEX_ITER_BLOCK));
expect(r.block.total_size == 40);
expect(r.block.uncompressed_size == 11);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16 + 32);
expect(r.block.uncompressed_file_offset == 5);
expect(!lzma_index_iter_locate(&r, 2));
expect(r.block.total_size == 32);
expect(r.block.uncompressed_size == 5);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16);
expect(r.block.uncompressed_file_offset == 0);
expect(!lzma_index_iter_locate(&r, 5));
expect(r.block.total_size == 40);
expect(r.block.uncompressed_size == 11);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16 + 32);
expect(r.block.uncompressed_file_offset == 5);
expect(!lzma_index_iter_locate(&r, 5 + 11 - 1));
expect(r.block.total_size == 40);
expect(r.block.uncompressed_size == 11);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 16 + 32);
expect(r.block.uncompressed_file_offset == 5);
expect(lzma_index_iter_locate(&r, 5 + 11));
expect(lzma_index_iter_locate(&r, 5 + 15));
// Large Index
lzma_index_end(i, NULL);
i = lzma_index_init(NULL);
expect(i != NULL);
lzma_index_iter_init(&r, i);
for (size_t n = 4; n <= 4 * 5555; n += 4)
expect(lzma_index_append(i, NULL, n + 8, n) == LZMA_OK);
expect(lzma_index_block_count(i) == 5555);
// First Record
expect(!lzma_index_iter_locate(&r, 0));
expect(r.block.total_size == 4 + 8);
expect(r.block.uncompressed_size == 4);
expect(r.block.compressed_file_offset == LZMA_STREAM_HEADER_SIZE);
expect(r.block.uncompressed_file_offset == 0);
expect(!lzma_index_iter_locate(&r, 3));
expect(r.block.total_size == 4 + 8);
expect(r.block.uncompressed_size == 4);
expect(r.block.compressed_file_offset == LZMA_STREAM_HEADER_SIZE);
expect(r.block.uncompressed_file_offset == 0);
// Second Record
expect(!lzma_index_iter_locate(&r, 4));
expect(r.block.total_size == 2 * 4 + 8);
expect(r.block.uncompressed_size == 2 * 4);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + 4 + 8);
expect(r.block.uncompressed_file_offset == 4);
// Last Record
expect(!lzma_index_iter_locate(
&r, lzma_index_uncompressed_size(i) - 1));
expect(r.block.total_size == 4 * 5555 + 8);
expect(r.block.uncompressed_size == 4 * 5555);
expect(r.block.compressed_file_offset == lzma_index_total_size(i)
+ LZMA_STREAM_HEADER_SIZE - 4 * 5555 - 8);
expect(r.block.uncompressed_file_offset
== lzma_index_uncompressed_size(i) - 4 * 5555);
// Allocation chunk boundaries. See INDEX_GROUP_SIZE in
// liblzma/common/index.c.
const size_t group_multiple = 256 * 4;
const size_t radius = 8;
const size_t start = group_multiple - radius;
lzma_vli ubase = 0;
lzma_vli tbase = 0;
size_t n;
for (n = 1; n < start; ++n) {
ubase += n * 4;
tbase += n * 4 + 8;
}
while (n < start + 2 * radius) {
expect(!lzma_index_iter_locate(&r, ubase + n * 4));
expect(r.block.compressed_file_offset == tbase + n * 4 + 8
+ LZMA_STREAM_HEADER_SIZE);
expect(r.block.uncompressed_file_offset == ubase + n * 4);
tbase += n * 4 + 8;
ubase += n * 4;
++n;
expect(r.block.total_size == n * 4 + 8);
expect(r.block.uncompressed_size == n * 4);
}
// Do it also backwards.
while (n > start) {
expect(!lzma_index_iter_locate(&r, ubase + (n - 1) * 4));
expect(r.block.total_size == n * 4 + 8);
expect(r.block.uncompressed_size == n * 4);
--n;
tbase -= n * 4 + 8;
ubase -= n * 4;
expect(r.block.compressed_file_offset == tbase + n * 4 + 8
+ LZMA_STREAM_HEADER_SIZE);
expect(r.block.uncompressed_file_offset == ubase + n * 4);
}
// Test locating in concatenated Index.
lzma_index_end(i, NULL);
i = lzma_index_init(NULL);
expect(i != NULL);
lzma_index_iter_init(&r, i);
for (n = 0; n < group_multiple; ++n)
expect(lzma_index_append(i, NULL, 8, 0) == LZMA_OK);
expect(lzma_index_append(i, NULL, 16, 1) == LZMA_OK);
expect(!lzma_index_iter_locate(&r, 0));
expect(r.block.total_size == 16);
expect(r.block.uncompressed_size == 1);
expect(r.block.compressed_file_offset
== LZMA_STREAM_HEADER_SIZE + group_multiple * 8);
expect(r.block.uncompressed_file_offset == 0);
lzma_index_end(i, NULL);
}
static void
test_corrupt(void)
{
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
const size_t alloc_size = 128 * 1024;
uint8_t *buf = malloc(alloc_size);
expect(buf != NULL);
lzma_stream strm = LZMA_STREAM_INIT;
lzma_index *i = create_empty();
expect(lzma_index_append(i, NULL, 0, 1) == LZMA_PROG_ERROR);
lzma_index_end(i, NULL);
// Create a valid Index and corrupt it in different ways.
i = create_small();
expect(lzma_index_encoder(&strm, i) == LZMA_OK);
succeed(coder_loop(&strm, NULL, 0, buf, 20,
LZMA_STREAM_END, LZMA_RUN));
lzma_index_end(i, NULL);
// Wrong Index Indicator
buf[0] ^= 1;
expect(lzma_index_decoder(&strm, &i, MEMLIMIT) == LZMA_OK);
succeed(decoder_loop_ret(&strm, buf, 1, LZMA_DATA_ERROR));
buf[0] ^= 1;
// Wrong Number of Records and thus CRC32 fails.
--buf[1];
expect(lzma_index_decoder(&strm, &i, MEMLIMIT) == LZMA_OK);
succeed(decoder_loop_ret(&strm, buf, 10, LZMA_DATA_ERROR));
++buf[1];
// Padding not NULs
buf[15] ^= 1;
expect(lzma_index_decoder(&strm, &i, MEMLIMIT) == LZMA_OK);
succeed(decoder_loop_ret(&strm, buf, 16, LZMA_DATA_ERROR));
lzma_end(&strm);
free(buf);
#endif
}
// Allocator that succeeds for the first two allocation but fails the rest.
static void *
my_alloc(void *opaque, size_t a, size_t b)
{
(void)opaque;
static unsigned count = 0;
if (++count > 2)
return NULL;
return malloc(a * b);
}
static const lzma_allocator my_allocator = { &my_alloc, NULL, NULL };
2007-12-08 23:42:33 +01:00
int
2007-12-09 10:03:28 +01:00
main(void)
2007-12-08 23:42:33 +01:00
{
test_equal();
test_overflow();
lzma_index *i = create_empty();
test_many(i);
lzma_index_end(i, NULL);
i = create_small();
test_many(i);
lzma_index_end(i, NULL);
i = create_big();
test_many(i);
lzma_index_end(i, NULL);
2007-12-08 23:42:33 +01:00
test_cat();
2007-12-08 23:42:33 +01:00
test_locate();
2007-12-08 23:42:33 +01:00
test_corrupt();
2007-12-08 23:42:33 +01:00
// Test for the bug fix 21515d79d778b8730a434f151b07202d52a04611:
// liblzma: Fix lzma_index_dup() for empty Streams.
i = create_empty();
expect(lzma_index_stream_padding(i, 4) == LZMA_OK);
test_copy(i);
lzma_index_end(i, NULL);
// Test for the bug fix 3bf857edfef51374f6f3fffae3d817f57d3264a0:
// liblzma: Fix a memory leak in error path of lzma_index_dup().
// Use Valgrind to see that there are no leaks.
i = create_small();
expect(lzma_index_dup(i, &my_allocator) == NULL);
lzma_index_end(i, NULL);
2007-12-08 23:42:33 +01:00
return 0;
}