__SSE2__ is the correct macro for SSE2 support with GCC, Clang,
and ICC. __SSE2_MATH__ means doing floating point math with SSE2
instead of 387. Often the latter macro is defined if the first
one is but it was still a bug.
Support for format version 0 was removed from lzip 1.18 for some
reason. .lz format version 0 files are rare (and old) but some
source packages were released in this format, and some people might
have personal files in this format too. It's very little extra code
to support it along side format version 1 so this commits adds
support for both.
The Sync Flush marker extentension to the original .lz format
version 1 isn't supported. It would require changes to the
LZMA decoder itself. Such files are very rare anyway.
See the API doc for lzma_lzip_decoder() for more details about
the .lz format support.
Thanks to Michał Górny for the original patch.
This affects lzma_memusage() and lzma_memlimit_set() when used
with the threaded decompressor. Now all allocations are reported
by lzma_memusage() (so it's not misleading) and lzma_memlimit_set()
cannot lower the limit below that value.
The alternative would have been to allow lowering the limit if
doing so is possible by freeing the cached memory but since
the primary use case of lzma_memlimit_set() is to increase
memlimit after LZMA_MEMLIMIT_ERROR this simple approach
was selected.
The cached memory was always included when enforcing
the memory usage limit while decoding.
Thanks to Jia Tan.
When encoders were disabled and threading enabled, outqueue.c and
outqueue.h were not compiled. The multi threaded decoder required
these files, so compilation failed.
The documentation states LZMA_PROG_ERROR can be returned from
lzma_index_cat. Previously, lzma_index_cat could not return
LZMA_PROG_ERROR. Now, the validation is similar to
lzma_index_append, which does a NULL check on the index
parameter.
The check type of the last Stream in dest was never copied to
dest->checks (the code tried to copy it but it was done too late).
This meant that the value returned by lzma_index_checks() would
only include the check type of the last Stream when multiple
lzma_indexes had been concatenated.
In xz --list this meant that the summary would only list the
check type of the last Stream, so in this sense this was only
a visual bug. However, it's possible that some applications
use this information for purposes other than merely showing
it to the users in an informational message. I'm not aware of
such applications though and it's quite possible that such
applications don't exist.
Regular streamed decompression in xz or any other application
doesn't use lzma_index_cat() and so this bug cannot affect them.
If lzma_code() returns LZMA_MEMLIMIT_ERROR it is now possible
to use lzma_memlimit_set() to increase the limit and continue
decoding. This was supposed to work from the beginning but
there was a bug. With other decoders (.lzma or threaded .xz)
this already worked correctly.
That is, the Filter ID will be changed once the design is final.
The current version will be removed. So files created with the
tempoary Filter ID won't be supported in the future.
lzma_stream_encoder() and lzma_stream_encoder_mt() always assumed
this. Before this patch, failing lzma_filters_copy() could result
in free(invalid_pointer) or invalid memory reads in stream_encoder.c
or stream_encoder_mt.c.
To trigger this, allocating memory for a filter options structure
has to fail. These are tiny allocations so in practice they very
rarely fail.
Certain badness in the filter chain array could also make
lzma_filters_copy() fail but both stream_encoder.c and
stream_encoder_mt.c validate the filter chain before
trying to copy it, so the crash cannot occur this way.
The documentation in src/liblzma/api/lzma/index.h suggests that
both the unpadded (compressed) size and the uncompressed size
are checked for overflow, but only the unpadded size was checked.
The uncompressed check is done first since that is more likely to
occur than the unpadded or index field size overflows.
RHEL/CentOS 7 shipped with 5.1.2alpha, including the threaded
encoder that is behind #ifdef LZMA_UNSTABLE in the API headers.
In 5.1.2alpha these symbols are under XZ_5.1.2alpha in liblzma.map.
API/ABI compatibility tracking isn't done between development
releases so newer releases didn't have XZ_5.1.2alpha anymore.
Later RHEL/CentOS 7 updated xz to 5.2.2 but they wanted to keep
the exported symbols compatible with 5.1.2alpha. After checking
the ABI changes it turned out that >= 5.2.0 ABI is backward
compatible with the threaded encoder functions from 5.1.2alpha
(but not vice versa as fixes and extensions to these functions
were made between 5.1.2alpha and 5.2.0).
In RHEL/CentOS 7, XZ Utils 5.2.2 was patched with
xz-5.2.2-compat-libs.patch to modify liblzma.map:
- XZ_5.1.2alpha was added with lzma_stream_encoder_mt and
lzma_stream_encoder_mt_memusage. This matched XZ Utils 5.1.2alpha.
- XZ_5.2 was replaced with XZ_5.2.2. It is clear that this was
an error; the intention was to keep using XZ_5.2 (XZ_5.2.2
has never been used in XZ Utils). So XZ_5.2.2 lists all
symbols that were listed under XZ_5.2 before the patch.
lzma_stream_encoder_mt and _mt_memusage are included too so
they are listed both here and under XZ_5.1.2alpha.
The patch didn't add any __asm__(".symver ...") lines to the .c
files. Thus the resulting liblzma.so exports the threaded encoder
functions under XZ_5.1.2alpha only. Listing the two functions
also under XZ_5.2.2 in liblzma.map has no effect without
matching .symver lines.
The lack of XZ_5.2 in RHEL/CentOS 7 means that binaries linked
against unpatched XZ Utils 5.2.x won't run on RHEL/CentOS 7.
This is unfortunate but this alone isn't too bad as the problem
is contained within RHEL/CentOS 7 and doesn't affect users
of other distributions. It could also be fixed internally in
RHEL/CentOS 7.
The second problem is more serious: In XZ Utils 5.2.2 the API
headers don't have #ifdef LZMA_UNSTABLE for obvious reasons.
This is true in RHEL/CentOS 7 version too. Thus now programs
using new APIs can be compiled without an extra #define. However,
the programs end up depending on symbol version XZ_5.1.2alpha
(and possibly also XZ_5.2.2) instead of XZ_5.2 as they would
with an unpatched XZ Utils 5.2.2. This means that such binaries
won't run on other distributions shipping XZ Utils >= 5.2.0 as
they don't provide XZ_5.1.2alpha or XZ_5.2.2; they only provide
XZ_5.2 (and XZ_5.0). (This includes RHEL/CentOS 8 as the patch
luckily isn't included there anymore with XZ Utils 5.2.4.)
Binaries built by RHEL/CentOS 7 users get distributed and then
people wonder why they don't run on some other distribution.
Seems that people have found out about the patch and been copying
it to some build scripts, seemingly curing the symptoms but
actually spreading the illness further and outside RHEL/CentOS 7.
The ill patch seems to be from late 2016 (RHEL 7.3) and in 2017 it
had spread at least to EasyBuild. I heard about the events only
recently. :-(
This commit splits liblzma.map into two versions: one for
GNU/Linux and another for other OSes that can use symbol versioning
(FreeBSD, Solaris, maybe others). The Linux-specific file and the
matching additions to .c files add full compatibility with binaries
that have been built against a RHEL/CentOS-patched liblzma. Builds
for OSes other than GNU/Linux won't get the vaccine as they should
be immune to the problem (I really hope that no build script uses
the RHEL/CentOS 7 patch outside GNU/Linux).
The RHEL/CentOS compatibility symbols XZ_5.1.2alpha and XZ_5.2.2
are intentionally put *after* XZ_5.2 in liblzma_linux.map. This way
if one forgets to #define HAVE_SYMBOL_VERSIONS_LINUX when building,
the resulting liblzma.so.5 will have lzma_stream_encoder_mt@@XZ_5.2
since XZ_5.2 {...} is the first one that lists that function.
Without HAVE_SYMBOL_VERSIONS_LINUX @XZ_5.1.2alpha and @XZ_5.2.2
will be missing but that's still a minor problem compared to
only having lzma_stream_encoder_mt@@XZ_5.1.2alpha!
The "local: *;" line was moved to XZ_5.0 so that it doesn't need
to be moved around. It doesn't matter where it is put.
Having two similar liblzma_*.map files is a bit silly as it is,
at least for now, easily possible to generate the generic one
from the Linux-specific file. But that adds extra steps and
increases the risk of mistakes when supporting more than one
build system. So I rather maintain two files in parallel and let
validate_map.sh check that they are in sync when "make mydist"
is run.
This adds .symver lines for lzma_stream_encoder_mt@XZ_5.2.2 and
lzma_stream_encoder_mt_memusage@XZ_5.2.2 even though these
weren't exported by RHEL/CentOS 7 (only @@XZ_5.1.2alpha was
for these two). I added these anyway because someone might
misunderstand the RHEL/CentOS 7 patch and think that @XZ_5.2.2
(@@XZ_5.2.2) versions were exported too.
At glance one could suggest using __typeof__ to copy the function
prototypes when making aliases. However, this doesn't work trivially
because __typeof__ won't copy attributes (lzma_nothrow, lzma_pure)
and it won't change symbol visibility from hidden to default (done
by LZMA_API()). Attributes could be copied with __copy__ attribute
but that needs GCC 9 and a fallback method would be needed anyway.
This uses __symver__ attribute with GCC >= 10 and
__asm__(".symver ...") with everything else. The attribute method
is required for LTO (-flto) support with GCC. Using -flto with
GCC older than 10 is now broken on GNU/Linux and will not be fixed
(can silently result in a broken liblzma build that has dangerously
incorrect symbol versions). LTO builds with Clang seem to work
with the traditional __asm__(".symver ...") method.
Thanks to Boud Roukema for reporting the problem and discussing
the details and testing the fix.
It will now return LZMA_DATA_ERROR (not LZMA_OK or LZMA_BUF_ERROR)
if LZMA_FINISH is used and there isn't enough input to finish
decoding the Block Header or the Block. The use of LZMA_DATA_ERROR
is simpler and the less risky than LZMA_BUF_ERROR but this might
be changed before 5.4.0.
Turns out that this is needed for .lzma files as the spec in
LZMA SDK says that end marker may be present even if the size
is stored in the header. Such files are rare but exist in the
real world. The code in liblzma is so old that the spec didn't
exist in LZMA SDK back then and I had understood that such
files weren't possible (the lzma tool in LZMA SDK didn't
create such files).
This modifies the internal API so that LZMA decoder can be told
if EOPM is allowed even when the uncompressed size is known.
It's allowed with .lzma and not with other uses.
Thanks to Karl Beldan for reporting the problem.
In most cases if the input file is corrupt the application won't
care about the uncompressed content at all. With this new flag
the threaded decoder will return an error as soon as any thread
has detected an error; it won't wait to copy out the data before
the location of the error.
I don't plan to use this in xz to keep the behavior consistent
between single-threaded and multi-threaded modes.
This makes it possible to call lzma_code() in a loop that only
reads new input when lzma_code() didn't fill the output buffer
completely. That isn't the calling style suggested by the
liblzma example program 02_decompress.c so perhaps the usefulness
of this feature is limited.
Also, it is possible to write such a loop so that it works
with the single-threaded decoder but not with the threaded
decoder even after this commit, or so that it works only if
lzma_mt.timeout = 0.
The zlib tutorial <https://zlib.net/zlib_how.html> is a well-known
example of a loop where more input is read only when output isn't
full. Porting this as is to liblzma would work with the
single-threaded decoder (if LZMA_CONCATENATED isn't used) but it
wouldn't work with threaded decoder even after this commit because
the loop assumes that no more output is possible when it cannot
read more input ("if (strm.avail_in == 0) break;"). This cannot
be fixed at liblzma side; the loop has to be modified at least
a little.
I'm adding this in any case because the actual code is simple
and short and should have no harmful side-effects in other
situations.
If a worker thread has consumed all input so far and it's
waiting on thr->cond and then the main thread enables
partial update for that thread, the code used to deadlock.
This commit allows one dummy decoding pass to occur in this
situation which then also does the partial update.
As part of the fix, this moves thr->progress_* updates to
avoid the second thr->mutex locking.
Thanks to Jia Tan for finding, debugging, and reporting the bug.
LZMA_TIMED_OUT is not an error and thus stopping threads on
LZMA_TIMED_OUT breaks the decoder badly.
Thanks to Jia Tan for finding the bug and for the patch.
I realize that this is about a decade late.
Big thanks to Sebastian Andrzej Siewior for the original patch.
I made a bunch of smaller changes but after a while quite a few
things got rewritten. So any bugs in the commit were created by me.
Add lzma_outq_clear_cache2() which may leave one buffer allocated
in the cache.
Add lzma_outq_outbuf_memusage() to get the memory needed for
a single lzma_outbuf. This is now used internally in outqueue.c too.
Track both the total amount of memory allocated and the amount of
memory that is in active use (not in cache).
In lzma_outbuf, allow storing the current input position that
matches the current output position. This way the main thread
can notice when no more output is possible without first providing
more input.
Allow specifying return code for lzma_outq_read() in a finished
lzma_outbuf.
If lzma_index_append() failed (most likely memory allocation failure)
it could have gone unnoticed and the resulting .xz file would have
an incorrect Index. Decompressing such a file would produce the
correct uncompressed data but then an error would occur when
verifying the Index field.
Now it limits the input and output buffer sizes that are
passed to a raw decoder. This way there's no need to check
if the sizes can grow too big or overflow when updating
Compressed Size and Uncompressed Size counts. This also means
that a corrupt file cannot cause the raw decoder to process
useless extra input or output that would exceed the size info
in Block Header (and thus cause LZMA_DATA_ERROR anyway).
More importantly, now the size information is verified more
carefully in case raw decoder returns LZMA_OK. This doesn't
really matter with the current single-threaded .xz decoder
as the errors would be detected slightly later anyway. But
this helps avoiding corner cases in the upcoming threaded
decompressor, and it might help other Block decoder uses
outside liblzma too.
The test files bad-1-lzma2-{9,10,11}.xz test these conditions.
With the single-threaded .xz decoder the only difference is
that LZMA_DATA_ERROR is detected in a difference place now.
Previously lzma_lzma_props_encode() and lzma_lzma2_props_encode()
assumed that the options pointers must be non-NULL because the
with these filters the API says it must never be NULL. It is
good to do these checks anyway.
This broke 32-bit builds due to a pointer type mismatch.
This bug was introduced with the output-size-limited encoding
in 625f4c7c99.
Thanks to huangqinjin for the bug report.