The workflow action for our CI pipeline can only reference artifacts in
the source directory, so we should ignore these files if the ci_build.sh
is run locally.
This way, if xz is stopped the elapsed time and estimated time
remaining won't get confused by the amount of time spent in
the stopped state.
This raises SIGSTOP. It's not clear to me if this is the correct way.
POSIX and glibc docs say that SIGTSTP shouldn't stop the process if
it is orphaned but this commit doesn't attempt to handle that.
Search for SIGTSTP in section 2.4.3:
https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html
The previous documentation for lzma_str_to_filters() was technically
correct, but misleading. lzma_str_to_filters() returns NULL on success,
which is in practice always defined to 0. This is the same value as
LZMA_OK, but lzma_str_to_filters() does not return lzma_ret so we should
be more clear.
This reverts commit 82e3c968bf.
Macros in the reserved namespace (_foo or __foo) shouldn't be #defined
without a very good reason. Here the alternative would have been
to #define tuklib_has_warning(str) to an approriate value.
Also the tuklib_* files should stay namespace clean if possible.
__has_warning and other __has_foo macros are meant to become
compiler-agnostic so it's not good to check for __clang__ with it.
This also relied on tuklib_common.h for #defining __has_warning
which was confusing as #defining reserved macros is generally
not a good idea.
A few Doxygen tags were obsolete from 1.4.7. Version 1.8.17 released
in 2019, so this should be compatible with resonable modern distros.
The purpose of Doxygen these days is for docs on the website, so it
doesn't necessarily have to work for everyone. Just when the maintainers
want to update the docs.
Doxygen is now configurable in autotools only with
--enable-doxygen=[api|all]. The default is "api", which will only
generate HTML output for liblzma API functions. The LaTex documentation
output was also disabled.
tuklib_physmem depends on GetProcAddress() for both MSVC and MinGW-w64
to retrieve a function address. The proper way to do this is to cast the
return value to the type of function pointer retrieved. Unfortunately,
this causes a cast-function-type warning, so the best solution is to
simply ignore the warning.
clang supports the __has_warning macro to determine if the version of
clang compiling the code supports a given warning. If we do not define
it for other compilers, it may cause a preprocessor error.
The 32-bit build needs to be first so the configure cache only needs to
be reset one time. The 32-bit build sets the CFLAGS env variable, so any
build using that flag after will fail unless the cache is reset.
Calling coder_set_compression_settings() in list mode with verbose mode
on caused the filter chain and memory requirements to print. This was
unnecessary since the command results in an error and not consistent
with other formats like lzma and alone.
Disabling shared library generation and linking should help speed up the
runners. The shared library is still being tested in the 32 bit build
and the full feature.
Disabling nls is to check for any unexpected warnings or errors.
It's not that important. It can be annoying in builds that
disable many features since in those cases the tests programs
will correctly trigger this warning with Clang.
It doesn't warn on a 64-bit system because truncating
a ptrdiff_t (signed long) to uint32_t is diagnosed under
-Wconversion by GCC and -Wshorten-64-to-32 by Clang.
-Wstrict-aliasing was removed from the list since it is enabled
by -Wall already.
A normal build is clean with these on GNU/Linux x86-64 with
GCC 12.2.0 and Clang 14.0.6.
Explicitly casting the integer to lzma_check silences the warning.
Since such an invalid value is needed in multiple tests, a constant
INVALID_LZMA_CHECK_ID was added to tests.h.
The use of 0x1000 for lzma_block.check wasn't optimal as if
the underlying type is a char then 0x1000 will be truncated to 0.
However, in these test cases the value is ignored, thus even with
such truncation the test would have passed.
Note that assigning an unsigned int to lzma_check doesn't warn
on GNU/Linux x86-64 since the enum type is unsigned on that
platform. The enum can be signed on some other platform though
so it's best to use enumeration type lzma_check in these situations.
This is similar to 2ce4f36f17.
The actual initialization of the variables is done inside
mythread_sync() macro. Clang doesn't seem to see that
the initialization code inside the macro is always executed.
clang and gcc differ in how they handle -Wformat-nonliteral. gcc will
allow a non-literal format string as long as the function takes its
format arguments as a va_list.
This only occurs in test_filter_flags when the BCJ filters are not
configured and built. In this case, ARRAY_SIZE() returns 0 and causes a
type-limits warning with the loop variable since an unsigned number will
always be >= 0.
This affects only 32-bit x86 builds. x86-64 is OK as is.
I still cannot easily test this myself. The reporter has tested
this and it passes the tests included in the CMake build and
performance is good: raw CRC64 is 2-3 times faster than the
C version of the slice-by-four method. (Note that liblzma doesn't
include a MSVC-compatible version of the 32-bit x86 assembly code
for the slice-by-four method.)
Thanks to Iouri Kharon for figuring out a fix, testing, and
benchmarking.