Legacy Windows did not need to #include <intrin.h> to use the MSVC
intrinsics. Newer versions likely just issue a warning, but the MSVC
documentation says to include the header file for the intrinsics we use.
GCC and Clang can "pretend" to be MSVC on Windows, so extra checks are
needed in tuklib_integer.h to only include <intrin.h> when it will is
actually needed.
Clang has support for __builtin_clz(), but previously Clang would
fallback to either the MSVC intrinsic or the regular C code. This was
discovered due to a bug where a new version of Clang required the
<intrin.h> header file in order to use the MSVC intrinsics.
Thanks to Anton Kochkov for notifying us about the bug.
The thread method is now configurable for the CMake build. It matches
the Autotools build by allowing ON (pick the best threading method),
OFF (no threading), posix, win95, and vista. If both Windows and
posix threading are both available, then ON will choose Windows
threading. Windows threading will also not use:
target_link_libraries(liblzma Threads::Threads)
since on systems like MinGW-w64 it would link the posix threads
without purpose.
This allows users to change the features they build either in
CMakeCache.txt or by using a CMake GUI. The sources built for
liblzma are affected by this too, so only the necessary files
will be compiled.
This makes no functional difference in the generated configure
(at least with the Autotools versions I have installed) but this
change might prevent future bugs like the one that was just
fixed in the commit 5a5bd7f871.
This is broken in the releases 5.2.6 to 5.4.2. A workaround
for these releases is to pass EGREP='grep -E' as an argument
to configure in addition to --disable-threads.
The problem appeared when m4/ax_pthread.m4 was updated in
the commit 6629ed929c which
introduced the use of AC_EGREP_CPP. AC_EGREP_CPP calls
AC_REQUIRE([AC_PROG_EGREP]) to set the shell variable EGREP
but this was only executed if POSIX threads were enabled.
Libtool code also has AC_REQUIRE([AC_PROG_EGREP]) but Autoconf
omits it as AC_PROG_EGREP has already been required earlier.
Thus, if not using POSIX threads, the shell variable EGREP
would be undefined in the Libtool code in configure.
ax_pthread.m4 is fine. The bug was in configure.ac which called
AX_PTHREAD conditionally in an incorrect way. Using AS_CASE
ensures that all AC_REQUIREs get always run.
Thanks to Frank Busse for reporting the bug.
Fixes: https://github.com/tukaani-project/xz/issues/45
When the docs are installed, calling the directory "liblzma" is
confusing since multiple other files in the doc directory are for
liblzma. This should also make it more natural for distros when they
package the documentation.
The \mainpage command is used in the first block of comments in lzma.h.
This changes the previously nearly empty index.html to use the first
comment block in lzma.h for its contents.
lzma.h is no longer documented separately, but this is for the better
since lzma.h only defined a few macros that users do not need to use.
The individual API header files all have a disclaimer that they should
not be #included directly, so there should be no confusion on the fact
that lzma.h should be the only header used by applications.
Additionally, the note "See ../lzma.h for information about liblzma as
a whole." was removed since lzma.h is now the main page of the
generated HTML and does not have its own page anymore. So it would be
confusing in the HTML version and was only a "nice to have" when
browsing the source files.
Another command line option (--no-doxygen) was added to disable
creating the doxygen documenation in cases where it not wanted or
if the doxygen tool is not installed.
This is a helper script to generate the Doxygen documentation. It can be
run in 'liblzma' or 'internal' mode by setting the first argument. It
will default to 'liblzma' mode and only generate documentation for the
liblzma API header files.
The helper script will be run during the custom mydist hook when we
create releases. This hook already alters the source directory, so its
fine to do it here too. This way, we can include the Doxygen generated
files in the distrubtion and when installing.
In 'liblzma' mode, the JavaScript is stripped from the .html files and
the .js files are removed. This avoids license hassle from jQuery and
other libraries that Doxygen 1.9.6 puts into jquery.js in minified form.
Added a install-data-local target to install the Doxygen documentation
only when it has been generated. In order to correctly remove the docs,
a corresponding uninstall-local target was added.
If the doxygen docs exist in the source tree, they will also be included
in the distribution now too.
Instead of having Doxyfile.in configured by Autoconf, the Doxyfile
can have the tags that need to be configured piped into the doxygen
command through stdin with the overrides after Doxyfile's contents.
Going forward, the documentation should be generated in two different
modes: liblzma or internal.
liblzma is useful for most users. It is the documentation for just
the liblzma API header files. This is the default.
internal is for people who want to understand how xz and liblzma work.
It might be useful for people who want to contribute to the project.
Converts the existing lzma_index tests into tuktests and covers every
API function from index.h except for lzma_file_info_decoder, which can
be tested in the future.
(This commit combines related commits from the master branch.)
If Capsicum support is missing from the kernel or xz is being run
in an emulator that lacks Capsicum suport, the syscalls will fail
and set errno to ENOSYS. Previously xz would display and error and
exit, making xz unusable. Now it will check for ENOSYS and run
without sandbox support. Other tools like ssh behave similarly.
Displaying a warning for missing Capsicum support was considered
but such extra output would quickly become annoying. It would also
break test_scripts.sh in "make check".
Also move cap_enter() to be the first step instead of the last one.
This matches the example in the cap_rights_limit(2) man page. With
the current code it shouldn't make any practical difference though.
Thanks to Xin Li for the bug report, suggesting a fix, and testing:
https://github.com/tukaani-project/xz/pull/43
Thanks to Jia Tan for most of the original commits.
Now, the LZMA_VERSION_MAJOR, LZMA_VERSION_MINOR, and LZMA_VERSION_PATCH
macros do not need to be on consecutive lines in version.h. They can be
separated by more whitespace, comments, or even other content, as long
as they appear in the proper order (major, minor, patch).