Turns out that this is needed for .lzma files as the spec in
LZMA SDK says that end marker may be present even if the size
is stored in the header. Such files are rare but exist in the
real world. The code in liblzma is so old that the spec didn't
exist in LZMA SDK back then and I had understood that such
files weren't possible (the lzma tool in LZMA SDK didn't
create such files).
This modifies the internal API so that LZMA decoder can be told
if EOPM is allowed even when the uncompressed size is known.
It's allowed with .lzma and not with other uses.
Thanks to Karl Beldan for reporting the problem.
The SIZE_MAX / 3 was 1365 MiB. 1400 MiB gives little more room
and it looks like a round (artificial) number in --info-memory
once --info-memory is made to display it.
Also, using #if avoids useless code on 64-bit builds.
This is a soft limit in sense that it only affects the number of
threads. It never makes xz fail and it never makes xz change
settings that would affect the compressed output.
The idea is to make -T0 have more reasonable behavior when
the system has very many cores or when a memory-hungry
compression options are used. This also helps with 32-bit xz,
preventing it from running out of address space.
The downside of this commit is that now the number of threads
might become too low compared to what the user expected. I
hope this to be an acceptable compromise as the old behavior
has been a source of well-argued complaints for a long time.
The main problem withi the old behavior is that the compressed
output is different on single-core systems vs. multicore systems.
This commit fixes it by making -T0 one thread in multithreaded mode
on single-core systems.
The downside of this is that it uses more memory. However, if
--memlimit-compress is used, xz can (thanks to the previous commit)
drop to the single-threaded mode still.
In single-threaded mode, --memlimit-compress can make xz scale down
the LZMA2 dictionary size to meet the memory usage limit. This
obviously affects the compressed output. However, if xz was in
threaded mode, --memlimit-compress could make xz reduce the number
of threads but it wouldn't make xz switch from multithreaded mode
to single-threaded mode or scale down the LZMA2 dictionary size.
This seemed illogical and there was even a "FIXME?" about it.
Now --memlimit-compress can make xz switch to single-threaded
mode if one thread in multithreaded mode uses too much memory.
If memory usage is still too high, then the LZMA2 dictionary
size can be scaled down too.
The option --no-adjust was also changed so that it no longer
prevents xz from scaling down the number of threads as that
doesn't affect compressed output (only performance). After
this commit --no-adjust only prevents adjustments that affect
compressed output, that is, with --no-adjust xz won't switch
from multithreaded mode to single-threaded mode and won't
scale down the LZMA2 dictionary size.
The man page wasn't updated yet.
--memlimit-mt-decompress allows specifying the limit for
multithreaded decompression. This matches memlimit_threading in
liblzma. This limit can only affect the number of threads being
used; it will never prevent xz from decompressing a file. The
old --memlimit-decompress option is still used at the same time.
If the value of --memlimit-decompress (the default value or
one specified by the user) is less than the value of
--memlimit-mt-decompress , then --memlimit-mt-decompress is
reduced to match --memlimit-decompress.
Man page wasn't updated yet.
In most cases if the input file is corrupt the application won't
care about the uncompressed content at all. With this new flag
the threaded decoder will return an error as soon as any thread
has detected an error; it won't wait to copy out the data before
the location of the error.
I don't plan to use this in xz to keep the behavior consistent
between single-threaded and multi-threaded modes.
This makes it possible to call lzma_code() in a loop that only
reads new input when lzma_code() didn't fill the output buffer
completely. That isn't the calling style suggested by the
liblzma example program 02_decompress.c so perhaps the usefulness
of this feature is limited.
Also, it is possible to write such a loop so that it works
with the single-threaded decoder but not with the threaded
decoder even after this commit, or so that it works only if
lzma_mt.timeout = 0.
The zlib tutorial <https://zlib.net/zlib_how.html> is a well-known
example of a loop where more input is read only when output isn't
full. Porting this as is to liblzma would work with the
single-threaded decoder (if LZMA_CONCATENATED isn't used) but it
wouldn't work with threaded decoder even after this commit because
the loop assumes that no more output is possible when it cannot
read more input ("if (strm.avail_in == 0) break;"). This cannot
be fixed at liblzma side; the loop has to be modified at least
a little.
I'm adding this in any case because the actual code is simple
and short and should have no harmful side-effects in other
situations.
Malicious filenames can make xzgrep to write to arbitrary files
or (with a GNU sed extension) lead to arbitrary code execution.
xzgrep from XZ Utils versions up to and including 5.2.5 are
affected. 5.3.1alpha and 5.3.2alpha are affected as well.
This patch works for all of them.
This bug was inherited from gzip's zgrep. gzip 1.12 includes
a fix for zgrep.
The issue with the old sed script is that with multiple newlines,
the N-command will read the second line of input, then the
s-commands will be skipped because it's not the end of the
file yet, then a new sed cycle starts and the pattern space
is printed and emptied. So only the last line or two get escaped.
One way to fix this would be to read all lines into the pattern
space first. However, the included fix is even simpler: All lines
except the last line get a backslash appended at the end. To ensure
that shell command substitution doesn't eat a possible trailing
newline, a colon is appended to the filename before escaping.
The colon is later used to separate the filename from the grep
output so it is fine to add it here instead of a few lines later.
The old code also wasn't POSIX compliant as it used \n in the
replacement section of the s-command. Using \<newline> is the
POSIX compatible method.
LC_ALL=C was added to the two critical sed commands. POSIX sed
manual recommends it when using sed to manipulate pathnames
because in other locales invalid multibyte sequences might
cause issues with some sed implementations. In case of GNU sed,
these particular sed scripts wouldn't have such problems but some
other scripts could have, see:
info '(sed)Locale Considerations'
This vulnerability was discovered by:
cleemy desu wayo working with Trend Micro Zero Day Initiative
Thanks to Jim Meyering and Paul Eggert discussing the different
ways to fix this and for coordinating the patch release schedule
with gzip.
If a worker thread has consumed all input so far and it's
waiting on thr->cond and then the main thread enables
partial update for that thread, the code used to deadlock.
This commit allows one dummy decoding pass to occur in this
situation which then also does the partial update.
As part of the fix, this moves thr->progress_* updates to
avoid the second thr->mutex locking.
Thanks to Jia Tan for finding, debugging, and reporting the bug.
LZMA_TIMED_OUT is not an error and thus stopping threads on
LZMA_TIMED_OUT breaks the decoder badly.
Thanks to Jia Tan for finding the bug and for the patch.
If threading support is enabled at build time, this will
use lzma_stream_decoder_mt() even for single-threaded mode.
With memlimit_threading=0 the behavior should be identical.
This needs some work like adding --memlimit-threading=LIMIT.
The original patch from Sebastian Andrzej Siewior included
a method to get currently available RAM on Linux. It might
be one way to go but as it is Linux-only, the available-RAM
approach needs work for portability or using a fallback method
on other OSes.
The man page wasn't updated yet.
I realize that this is about a decade late.
Big thanks to Sebastian Andrzej Siewior for the original patch.
I made a bunch of smaller changes but after a while quite a few
things got rewritten. So any bugs in the commit were created by me.
Add lzma_outq_clear_cache2() which may leave one buffer allocated
in the cache.
Add lzma_outq_outbuf_memusage() to get the memory needed for
a single lzma_outbuf. This is now used internally in outqueue.c too.
Track both the total amount of memory allocated and the amount of
memory that is in active use (not in cache).
In lzma_outbuf, allow storing the current input position that
matches the current output position. This way the main thread
can notice when no more output is possible without first providing
more input.
Allow specifying return code for lzma_outq_read() in a finished
lzma_outbuf.
If lzma_index_append() failed (most likely memory allocation failure)
it could have gone unnoticed and the resulting .xz file would have
an incorrect Index. Decompressing such a file would produce the
correct uncompressed data but then an error would occur when
verifying the Index field.
Now it limits the input and output buffer sizes that are
passed to a raw decoder. This way there's no need to check
if the sizes can grow too big or overflow when updating
Compressed Size and Uncompressed Size counts. This also means
that a corrupt file cannot cause the raw decoder to process
useless extra input or output that would exceed the size info
in Block Header (and thus cause LZMA_DATA_ERROR anyway).
More importantly, now the size information is verified more
carefully in case raw decoder returns LZMA_OK. This doesn't
really matter with the current single-threaded .xz decoder
as the errors would be detected slightly later anyway. But
this helps avoiding corner cases in the upcoming threaded
decompressor, and it might help other Block decoder uses
outside liblzma too.
The test files bad-1-lzma2-{9,10,11}.xz test these conditions.
With the single-threaded .xz decoder the only difference is
that LZMA_DATA_ERROR is detected in a difference place now.
Previously lzma_lzma_props_encode() and lzma_lzma2_props_encode()
assumed that the options pointers must be non-NULL because the
with these filters the API says it must never be NULL. It is
good to do these checks anyway.
This broke 32-bit builds due to a pointer type mismatch.
This bug was introduced with the output-size-limited encoding
in 625f4c7c99.
Thanks to huangqinjin for the bug report.
OpenBSD does not allow to change the group of a file if the user
does not belong to this group. In contrast to Linux, OpenBSD also
fails if the new group is the same as the old one. Do not call
fchown(2) in this case, it would change nothing anyway.
This fixes an issue with Perl Alien::Build module.
https://github.com/PerlAlien/Alien-Build/issues/62
Sometimes the version number from "less -V" contains a dot,
sometimes not. xzless failed detect the version number when
it does contain a dot. This fixes it.
Thanks to nick87720z for reporting this. Apparently it had been
reported here <https://bugs.gentoo.org/489362> in 2013.
Due to architectural limitations, address space available to a single
userspace process on MIPS32 is limited to 2 GiB, not 4, even on systems
that have more physical RAM -- e.g. 64-bit systems with 32-bit
userspace, or systems that use XPA (an extension similar to x86's PAE).
So, for MIPS32, we have to impose stronger memory limits. I've chosen
2000MiB to give the process some headroom.
When the uncompressed size is known to be exact, after decompressing
the stream exactly comp_size bytes of input must have been consumed.
This is a minor improvement to error detection.
The caller must still not specify an uncompressed size bigger
than the actual uncompressed size.
As a downside, this now needs the exact compressed size.
Right now this is just a planned extra-compact format for use
in the EROFS file system in Linux. At this point it's possible
that the format will either change or be abandoned and removed
completely.
The special thing about the encoder is that it uses the
output-size-limited encoding added in the previous commit.
EROFS uses fixed-sized blocks (e.g. 4 KiB) to hold compressed
data so the compressors must be able to create valid streams
that fill the given block size.
With this it is possible to encode LZMA1 data without EOPM so that
the encoder will encode as much input as it can without exceeding
the specified output size limit. The resulting LZMA1 stream will
be a normal LZMA1 stream without EOPM. The actual uncompressed size
will be available to the caller via the uncomp_size pointer.
One missing thing is that the LZMA layer doesn't inform the LZ layer
when the encoding is finished and thus the LZ may read more input
when it won't be used. However, this doesn't matter if encoding is
done with a single call (which is the planned use case for now).
For proper multi-call encoding this should be improved.
This commit only adds the functionality for internal use.
Nothing uses it yet.
Previously this required using --force but that has other
effects too which might be undesirable. Changing the behavior
of --keep has a small risk of breaking existing scripts but
since this is a fairly special corner case I expect the
likehood of breakage to be low enough.
I think the new behavior is more logical. The only reason for
the old behavior was to be consistent with gzip and bzip2.
Thanks to Vincent Lefevre and Sebastian Andrzej Siewior.
Omit the -q option from xz, gzip, and bzip2. With xz this shouldn't
matter. With gzip it's important because -q makes gzip replace SIGPIPE
with exit status 2. With bzip2 it's important because with -q bzip2
is completely silent if input is corrupt while other decompressors
still give an error message.
Avoiding exit status 2 from gzip is important because bzip2 uses
exit status 2 to indicate corrupt input. Before this commit xzgrep
didn't recognize corrupt .bz2 files because xzgrep was treating
exit status 2 as SIGPIPE for gzip compatibility.
zstd still needs -q because otherwise it is noisy in normal
operation.
The code to detect real SIGPIPE didn't check if the exit status
was due to a signal (>= 128) and so could ignore some other exit
status too.
This is a minor fix since this affects only the situation when
the files differ and the exit status is something else than 0.
In such case there could be SIGPIPE from a decompression tool
and that would result in exit status of 2 from xzdiff/xzcmp
while the correct behavior would be to return 1 or whatever
else diff or cmp may have returned.
This commit omits the -q option from xz/gzip/bzip2/lzop arguments.
I'm not sure why the -q was used in the first place, perhaps it
hides warnings in some situation that I cannot see at the moment.
Hopefully the removal won't introduce a new bug.
With gzip the -q option was harmful because it made gzip return 2
instead of >= 128 with SIGPIPE. Ignoring exit status 2 (warning
from gzip) isn't practical because bzip2 uses exit status 2 to
indicate corrupt input file. It's better if SIGPIPE results in
exit status >= 128.
With bzip2 the removal of -q seems to be good because with -q
it prints nothing if input is corrupt. The other tools aren't
silent in this situation even with -q. On the other hand, if
zstd support is added, it will need -q since otherwise it's
noisy in normal situations.
Thanks to Étienne Mollier and Sebastian Andrzej Siewior.