The new is_tty() will report if a file descriptor is a terminal or not.
On POSIX systems, it is a wrapper around isatty(). However, the native
Windows implementation of isatty() will return true for all character
devices, not just terminals. So is_tty() has a special case for Windows
so it can use alternative Windows API functions to determine if a file
descriptor is a terminal.
This fixes a bug with MSVC and MinGW-w64 builds that refused to read from
or write to non-terminal character devices because xz thought it was a
terminal. For instance:
xz foo -c > /dev/null
would fail because /dev/null was assumed to be a terminal.
The following command caused a segmentation fault:
xz -Fraw --lzma1 --files=foo
when foo was a valid file. The usage of --files or --files0 was not
being checked when compressing or decompressing in raw mode without a
suffix. The suffix checking code was meant to validate that all files
to be processed are "-" (if not writing to standard out), meaning the
data is only coming from standard in. In this case, there were no file
names to check since --files and --files0 store their file name in a
different place.
Later code assumed the suffix was set and caused a segmentation fault.
Now, the above command results in an error.
The previous version set opt_stdout, but this caused an issue with
copying an input file to standard out when decompressing an unknown file
type. The following needs to result in an error:
echo foo | xz -df
since -c, --stdout is not used. This fixes the previous error by not
setting opt_stdout.
This fixes a bug introduced in cc5aa9ab13
when the suffix check was initially moved. This caused a situation that
previously worked:
echo foo | xz -Fraw --lzma1 | wc -c
to fail because the old code knew that this would write to standard out
so a suffix was not needed.
If the -c, --stdout argument is not used, then we can still detect when
the data will be written to standard out if all of the provided
filenames are "-" (denoting standard in) or if no filenames are
provided.
The macro lzma_attr_visibility_hidden has to be defined to make
fastpos.h usable. The visibility attribute is irrelevant to
fastpos_tablegen.c so simply #define the macro to an empty value.
fastpos_tablegen.c is never built by the included build systems
and so the problem wasn't noticed earlier. It's just a standalone
program for generating fastpos_table.c.
Fixes: https://github.com/tukaani-project/xz/pull/69
Thanks to GitHub user Jamaika1.
In ELF shared libs:
-fvisibility=hidden affects definitions of symbols but not
declarations.[*] This doesn't affect direct calls to functions
inside liblzma as a linker can replace a call to lzma_foo@plt
with a call directly to lzma_foo when -fvisibility=hidden is used.
[*] It has to be like this because otherwise every installed
header file would need to explictly set the symbol visibility
to default.
When accessing extern variables that aren't defined in the
same translation unit, compiler assumes that the variable has
the default visibility and thus indirection is needed. Unlike
function calls, linker cannot optimize this.
Using __attribute__((__visibility__("hidden"))) with the extern
variable declarations tells the compiler that indirection isn't
needed because the definition is in the same shared library.
About 15+ years ago, someone told me that it would be good if
the CRC tables would be defined in the same translation unit
as the C code of the CRC functions. While I understood that it
could help a tiny amount, I didn't want to change the code because
a separate translation unit for the CRC tables was needed for the
x86 assembly code anyway. But when visibility attributes are
supported, simply marking the extern declaration with the
hidden attribute will get identical result. When there are only
a few affected variables, this is trivial to do. I wish I had
understood this back then already.
MinGW (formely a MinGW.org Project, later the MinGW.OSDN Project
at <https://osdn.net/projects/mingw/>) has GCC 9.2.0 as the
most recent GCC package (released 2021-02-02). The project might
still be alive but majority of people have switched to MinGW-w64.
Thus it seems clearer to refer to MinGW-w64 in our API headers too.
Building with MinGW is likely to still work but I haven't tested it
in the recent years.
It properly adds -DLZMA_API_STATIC when compiling code that
will be linked against static liblzma. Having it there on
systems other than Windows does no harm.
See: https://www.msys2.org/docs/pkgconfig/
This removes support for FreeBSD 10.0 and 10.1 which used
<sys/capability.h> instead of <sys/capsicum.h>. Support for
FreeBSD 10.1 ended on 2016-12-31. So now FreeBSD >= 10.2 is
required to enable Capsicum support.
This also removes support for Capsicum on Linux (libcaprights)
which seems to have been unmaintained since 2017 and Linux 4.11:
https://github.com/google/capsicum-linux
This commit alone doesn't change anything in the real-world:
- configure.ac currently checks for clock_gettime() only
when using pthreads.
- CMakeLists.txt doesn't check for clock_gettime() on Windows.
So clock_gettime() wasn't used with MinGW-w64 before either.
clock_gettime() provides monotonic time and it's better than
gettimeofday() in this sense. But clock_gettime() is defined
in winpthreads, and liblzma or xz needs nothing else from
winpthreads. By avoiding clock_gettime(), we avoid the dependency on
libwinpthread-1.dll or the need to link against the static version.
As a bonus, GetTickCount64() and MinGW-w64's gettimeofday() can be
faster than clock_gettime(CLOCK_MONOTONIC, &tv). The resolution
is more than good enough for the progress indicator in xz.
This partially reverts creating crc_clmul.c
(8c0f9376f5) where is_clmul_supported()
was moved, extern'ed, and renamed to lzma_is_clmul_supported(). This
caused a problem when the function call to lzma_is_clmul_supported()
results in a call through the PLT. ifunc resolvers run very early in
the dynamic loading sequence, so the PLT may not be setup properly at
this point. Whether the PLT is used or not for
lzma_is_clmul_supported() depened upon the compiler-toolchain used and
flags.
In liblzma compiled with GCC, for instance, GCC will go through the PLT
for function calls internal to liblzma if the version scripts and
symbol visibility hiding are not used. If lazy-binding is disabled,
then it would have made any program linked with liblzma fail during
dynamic loading in the ifunc resolver.
Currently crc32 is always enabled, so COND_CHECK_CRC32 must always be
set. Because of this, it makes the recent change to conditionally
compile check/crc_clmul.c appear wrong since that file has CLMUL
implementations for both CRC32 and CRC64.
After forcing crc_simd_body() to always be inlined it caused
-fsanitize=address to fail for lzma_crc32_clmul() and
lzma_crc64_clmul(). The __no_sanitize_address__ attribute was added
to lzma_crc32_clmul() and lzma_crc64_clmul(), but not removed from
crc_simd_body(). ASAN and inline functions behavior has changed over
the years for GCC specifically, so while strictly required we will
keep __attribute__((__no_sanitize_address__)) on crc_simd_body() in
case this becomes a requirement in the future.
Older GCC versions refuse to inline a function with ASAN if the
caller and callee do not agree on sanitization flags
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89124#c3). If the
function was forced to be inlined, it will not compile if the callee
function has __no_sanitize_address__ but the caller doesn't.
In XZ Utils context this doesn't matter much because
unaligned reads and writes aren't used in hot code
when TUKLIB_FAST_UNALIGNED_ACCESS isn't #defined.
After testing a 32-bit Release build on MSVC, only lzma_crc64_clmul()
has the bug. crc_simd_body() and lzma_crc32_clmul() do not need the
optimizations disabled.
Forcing this to be inline has a significant speed improvement at the
cost of a few repeated instructions. The compilers tested on did not
inline this function since it is large and is used twice in the same
translation unit.
This macro must be used instead of the inline keyword. On MSVC, it is
a replacement for __forceinline which is an MSVC specific keyword that
should not be used with inline (it will issue a warning if it is).
It does not use a build system check to determine if
__attribute__((__always_inline__)) since all compilers that can use
CLMUL extensions (except the special case for MSVC) should support this
attribute. If this assumption is incorrect then it will result in a bug
report instead of silently producing slow code.
A detailed description of the three dispatch methods was added. Also,
duplicated comments now only appear in crc32_fast.c or were removed from
both crc32_fast.c and crc64_fast.c if they appeared in crc_clmul.c.
Both crc32_clmul() and crc64_clmul() are now exported from
crc32_clmul.c as lzma_crc32_clmul() and lzma_crc64_clmul(). This
ensures that is_clmul_supported() (now lzma_is_clmul_supported()) is
not duplicated between crc32_fast.c and crc64_fast.c.
Also, it encapsulates the complexity of the CLMUL implementations into a
single file and reduces the complexity of crc32_fast.c and crc64_fast.c.
Before, CLMUL code was present in crc32_fast.c, crc64_fast.c, and
crc_common.h.
During the conversion, various cleanups were applied to code (thanks to
Lasse Collin) including:
- Require using semicolons with MASK_/L/H/LH macros.
- Variable typing and const handling improvements.
- Improvements to comments.
- Fixes to the pragmas used.
- Removed unneeded variables.
- Whitespace improvements.
- Fixed CRC_USE_GENERIC_FOR_SMALL_INPUTS handling.
- Silenced warnings and removed the need for some #pragmas
The C standards don't allow an empty translation unit which can be
avoided by declaring something, without exporting any symbols.
When I committed f644473a21 I had
a feeling that some specific toolchain somewhere didn't like
empty object files (assembler or maybe "ar" complained) but
I cannot find anything to confirm this now. Quite likely I
remembered nonsense. I leave this here as a note to my future self. :-)
When the generic fast crc64 method is used, then we omit
lzma_crc64_table[][]. Similar to
d9166b52cf, we can avoid compiler warnings
with -Wempty-translation-unit (Clang) or -pedantic (GCC) by creating a
never used typedef instead of an extra symbol.
Before this commit, the following writes "foo" to the
console and deletes the input file:
echo foo | xz > con_xz
xz --suffix=_xz --decompress con_xz
It cannot happen without --suffix because names like con.xz
are also special and so attempting to decompress con.xz
(or compress con to con.xz) will already fail when opening
the input file.
Similar thing is possible when compressing. The following
writes to "nul" and the input file "n" is deleted.
echo foo | xz > n
xz --suffix=ul n
Now xz checks if the destination is a special file before
continuing. DOS/DJGPP version had a check for this but
Windows (and OS/2) didn't.